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« Abstract

12 In addition to the processes structuring free-living communities, host-associated microbiota are directly or indirectly
15 shaped by the host. Therefore, microbiota data have a hierarchical structure where samples are nested under one or
16 several variables representing host-specific factors, often spanning multiple levels of biological organization. Current
17 statistical methods do not accommodate this hierarchical data structure, and therefore cannot explicitly account for the
18 effect of the host in structuring the microbiota. We introduce a novel extension of joint species distribution models
19 (JSDMs) which can straightforwardly accommodate and discern between effects such as host phylogeny and traits,
20 recorded covariates like diet and collection sites, among other ecological processes. Our proposed methodology
21 includes powerful yet familiar outputs seen in community ecology overall, including: (i) model-based ordination to
22 visualize and quantify the main patterns in the data; (ii) variance partitioning to asses how influential the included host-
23 specific factors are in structuring the microbiota; and (iii) co-occurrence networks to visualize microbe-to-microbe

24 associations.

s Keywords: Host-associated; Microbiota; Microbiome; Joint species distribution models; Generalized linear

26 mixed models; Bayesian inference

» Introduction

23 Ecological communities are the product of stochastic and deterministic processes; while environmental factors may set
29 the upper bound on carrying capacity, competitive and facilitative interactions within and among taxa determine the
s identity of the species present in local communities. Ecologists are often interested in inferring ecological processes
a1 from patterns and determining their relative importance for the community under study [1]. During the last few
32 years, there has been a growing interest in developing new statistical tools aimed toward ecologists and the analysis
s of multivariate community data (see e.g., [2]). Many of the distance-based approaches however, have a number of
s« drawbacks, including uncertainty of selecting the most appropriate null models, low statistical power, and the lack
35 of possibilities for making predictions [3]]. One alternative, model-based framework which has become increasingly
3 popular in community ecology is joint species distribution models (JSDMs, [4]). Such models are an extension of
a7 generalized linear mixed models (GLMMs, [5]]), where multiple species are analyzed simultaneously often together
s with environmental variables, thereby revealing community level responses to environmental change. By incorporating

s both fixed and random effects, sometimes at multiple levels of biological organization, JSDMs have the capacity to
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40 assess the relative importance of processes such as environmental and biotic filtering versus stochastic variability.
41 Furthermore, with the increase of trait-based and phylogenetic data in community ecology together with the growing
«2 appreciation that species interactions are constrained by the “phylogenetic baggage” they inherit from their ancestors
s [6], ISDMs can further accommodate information on both species traits and phylogenetic relatedness among species
s [7,8,9,|10]. Finally, accounting for phylogenetic relatedness among species can greatly improve estimation accuracy
s and power when there is a phylogenetic signal in species traits and/or residual variation ([11]).

46 To model covariances between a large number of species using a standard multivariate random effect, as a stan-
47 dard JSDM [4} [12] does, is computationally challenging; the number of parameters that needs to be estimated when
48 assuming a completely unstructured covariance matrix increases rapidly (quadratically) with the number of species.
s An increasingly popular tool for overcoming this problem, which is capable of modeling such high-dimensional data,
so is latent factor models [[13]]. In community ecology, latent factor models and JSDMs have been combined to allow
s+ for a more parsimonious yet flexible way of modeling species covariances in large communities [[10, [14]]. Such an
52 approach offers a number of benefits. First, latent factors provide a method of explicitly accounting for residual cor-
s3  relation. This is important because missing covariates, ecological interactions and/or spatio-temporal correlation will
s« induce residual correlation among species, which, if not accounted for, may lead to erroneous inference. Second, latent
55 factors facilitate model-based ordination in order to visualize and quantify the main patterns in rows and/or columns
s of the data [15] |16]. While traditional distance-based ordination techniques may confound location (i.e., the mean
57 abundance) and dispersion (i.e., the variability) effects [3]], model-based ordination directly models the mean-variance
ss  relationship and can therefore accurately distinguish between the two effects [17, |18|]. Finally, the estimated factor
s9 loadings can be conveniently interpreted as indicating whether two species co-occur more or less often than by chance
e as well as the direction and strength of their co-occurrence, thus allowing a latent factor approach to robustly estimate
et large species-to-species co-occurrence networks [[19]]. Note that an important decision when fitting latent factor mod-
e2 els, is the choice of the number of latent factors. While less than five is usually sufficient for a good approximation
63 to correlations, there is a trade-off between model complexity and the model’s capacity to capture the true correlation
e« structure ([[13]). An alternative approach is to use variable selection, which automatically shrinks less-informative
es latent factors to zero ([20]).

66 In parallel to community ecology, there is a growing field of microbial ecology studying both free-living and
67 host-associated microbiota. While microbial ecologists can adopt many of the same statistical tools developed for tra-
es ditional multivariate abundance data (see e.g., [21]]), researchers studying host-associated microbiota need to consider

eo an additional layer of processes structuring the focal community, namely that host-associated microbiota are addition-
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70 ally shaped directly or indirectly by their hosts. For example, interactions between hosts and microbes often involve
7 long-lasting and sometimes extremely intimate relationships, where the host may have evolved the capacity to directly
72 control the identity and/or abundance of its microbial symbionts [22} |23]]. Similar to an environmental niche, the host
73 must be viewed as a multidimensional composite of all host-specific factors driving the occurrence and/or abundance
74 of microbes within a host—everything from broad evolutionary relationships between host species [24] to the direct
75 production of specific biomolecules within a single host individual [25]. As a result, host-associated microbiota have
76 a hierarchical data structure where samples are nested under one or several variables representing recorded and/or
77 measured host-specific factors sometimes spanning multiple levels of biological organization.

78 In this article, we propose a novel extension of JSDMs to analyze host-associated microbiota, based around ex-
79 plicitly modeling its characteristic hierarchical data structure. In doing so, our proposed model can straightforwardly
g0 accommodate and discriminate among any measured host-specific factors. Over the past few years, there has been an
a1 increase of model-based approaches aimed specifically toward the analysis of host-associated microbiota (see e.g., [[12]
g2 26,27, 28])). To our knowledge however, our proposed model is the first to explicitly and transparently account for the
s aforementioned hierarchical structure that is inherent in data on host-associated microbiota (Fig[I). Other key features
s« of the proposed model, which are inherited from JSDMs and latent factor models, include: (1) parsimonious modeling
s of the high-dimensional correlation structures typical of host-associated microbiota; (2) model-based ordination to
s visualize and quantify the main patterns in the data; (3) variance partitioning to assess the explanatory power of the
sz modeled host-specific factors and their influence in shaping the microbiota; and finally (4) co-occurrence networks to
s visualize OTU-to-OTU associations. Furthermore, by building our model in a probabilistic, i.e., Bayesian framework,
s we can straightforwardly sample from the posterior probability distribution of the correlation matrix computed by the
90 factor loadings; this means that we can choose to look at, or further analyze the correlations that have at least e.g.,
91 95% (or even 97% or 99%) probability.

92 We apply our proposed model to two published data sets. While we include the effect of host phylogenetic related-
93 ness in both case studies, we illustrate the flexibility of our approach by adapting the proposed model to overdispersed
94 counts and presence-absence responses, and study-specific meta data relevant to each case study. By utilizing recent
95 progress in latent factor modeling, our proposed model can also assist in cases where meta data are scarce by finding

9 latent “hidden” variables driving the microbiota.
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« Methods

9 We applied the proposed methodology to two published data sets on host-associated microbiota. Both datasets possess
99 two main features which characterize many host-associated microbiota data, namely high dimensionality i.e., the
10 number of OTUs is a non-negligable proportion of the number of samples, and sparsity i.e., most OTUs are rarely
101 observed. The first data set comprise 90 samples from 20 sponge species collected in four closely located sites in
102 the Bocas del Toro archipelago (Fig for original study see [29]). The meta data contain apart from collection
103 site, a classification of hosts into either High Microbial Abundance (HMA) or Low Microbial Abundance (LMA)
14 sponges (hereafter termed ecotype). This classification is based on the abundance of microbes harbored by the host
15 and determined by transmission electron microscopy [30]. The authors constructed a host phylogeny from 18S rRNA
106 gene sequences (downloaded from GenBank) by implementing a relaxed-clock model in MrBayes. The data have a
17 hierarchical structure with n = 90 samples nested within S = 20 host species and L = 4 collection sites. Host species
18 are then further nested under one of R = 2 ecotypes. The response matrix had already been filtered to only include
19 OTUs (defined at 97% similarity) with at least 500 reads, but we further removed OTUs with less than 20 presences
1o across samples, resulting in m = 187 modeled OTUs.

1 The second data set consists of 59 neotropical bird species with a total of 116 samples from the large intestine.
11z Host species were collected from 12 lowland forests sites across Costa Rica and Peru (Fig[S2] for original study see
13 [31]). The meta data include bird taxonomy and several covariates—including dietary specialization, stomach contents
1a  and host habitat. The authors sequenced and used the mitochondrial locus ND2 to reconstruct the host phylogeny by
115 implementing a partitioned GTR + I’ model in BEAST. Similarly to the sponge data set, this data set has a hierarchical
1s  structure with n = 116 samples nested within S = 59 host species and L = 12 collection sites. We filtered the response
17 matrix to include OTUs (defined at 97% similarity) with at least 50 reads and 40 presences across samples, resulting
11 in m = 151 modeled OTUs. Of the full list of covariates available, we included diet, stomach content, sex, elevation
1e and collection site as explanatory predictor variables in our model. While diet and geography have been shown to

120 influence the human gut microbiota (see e.g., [32}33])), the effect of sex and elevation is less known.

121 Joint species distribution models

122 We considered two response types commonly encountered in host-associated microbiota data: counts and presence-
123 absence. Formally, let the response matrix being modeled consist of either counts or presence-absence records of m

124 OTUs from n samples, and let y;; denote the response of the j-th OTU in the i-th sample. Also, let N(p, %) denote
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a univariate normal distribution with mean y and variance o2, and analogously, let MV N/ ( #,X) denote a multivariate
normal distribution with mean vector and covariance matrix ¥. We now split our model formulation up into the two
case studies/response types.

Case Study 1 (Counts): Due to the presence of overdispersion that was quadratic in nature, as confirmed by a
mean-variance plot of the OTU counts (not shown), we assumed a negative binomial distribution for the responses.
Specifically, we considered a negative binomial distribution with a quadratic mean-variance relationship for the ele-
ment y;;, such that Var(y;;) = ¢;j+¢ ;¢ 12] where ¢; is the OTU-specific overdispersion parameter. The mean abundance
was related to the covariates using a log-link function. Denoting the mean abundance of OTU j in sample i by ¢;,
then we have

Model 1

vij ~ Negative-Binomial(y;;, §), i=1,...,n=90, j=1,..,m=187 (1)
5 5
10g(¢ij):Oli+’}/j+ZZl‘q/\q]‘+ZZ§I[i]q/\;, q= 1,...,5 2)
q=1 g9=1

a; ~ N (u(host), 0> (sample))

p(host)s = p(ecotype)s + p(site)s + p(phylo)s x Oppyio, s=1,...,5=20 3)

plecotype); ~ N (jy (5, 0 (ecotype))
p(site)s ~ N (pygs) o (site))
p(phylo); ~ MV N (0, C(phylo))

Uy ~ Cauchy(0,2.5), r=1,...,R=2
u; ~ Cauchy(0,2.5), I=1,...,.L=4
yj ~ Cauchy(0,2.5)

6phylo ~ EXP(0~1)

To clarify the above formulation, s, r and ! index effects that are attributed to the S = 20 host species, R = 2
ecotypes and L = 4 sites respectively. For instance, “s[i]” and “r[s]” denote “sample i nested within host species s”
and “host species s nested within ecotype r”, respectively (Fig . In equation (2), the quantities «; and yj represent
sample and OTU-specific effects, respectively. The former adjusts for differences in sequencing depth among samples,

while the latter controls for differences in OTU total abundance. The inclusion of a; serves two main purposes. First
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139 and foremost, including «a; allows us to account for the hierarchical data structure and its effect on sample total
10 abundance specifically. In particular, to account for sample i being nested within host species s (which are further
141 nested within ecotype r) and site /, the sample effects «; are drawn from a normal distribution with a mean that is a
142 linear function of three host-specific effects: host ecotype pi(ecotype); host collection site y(site); and host phylogeny
143 p(phylo). Furthermore, the host ecotype p(ecotype) and host collection site pu(site) effects are themselves drawn
14« from a normal distribution with an ecotype and site-specific mean, respectively. Second, the inclusion of &; means
us  that the resulting ordinations constructed by the latent factors on the sample Z;, and host species ZS’L[Ii]q level are in
s terms of species composition only, as opposed to a composite of abundance and composition if the site effects were
147 not included in the formulation. We included five latent factors at both the sample and host species level, and both
and ZsH[i]q

149 to fix the location and scale (see Chapter 5, [34]]). Furthermore, to address rotational variance, the upper triangular

s Z were assigned standard normal priors N (0,1) with the assumption of zero mean and unit variance

iq
150 component of both loading matrices (i.e., sample A and host species AX level) are fixed to zero with the diagonals
151 constrained to be positive [35]]. As recommended by Polson and Scott [36]], and analogous to the prior distributions
152 we use for the mean y, and p;, we used a weakly informative prior in the form of a half-Cauchy distribution with a
13 center and scale equal to 0 and 2.5 for the overdispersion parameter ). Moreover, following Gelman et al. [37]], we
15« used the same distribution with location and scale equal to 0 and 1 as prior information on the variance parameters:
155 0%(sample); o?(ecotype); and o%(site). Based on our empirical investigation, we found that the use of such priors
156 stabilized the MCMC sampling substantially without introducing too much prior information, compared to using
157 more uninformative prior distributions. Lastly, the quantity C(phylo) corresponds to a phylogenetic correlation matrix
1ss  constructed from the host phylogeny by assuming Brownian motion evolution such that the covariances between host
159 species are proportional to their shared branch length from the most recent common ancestor [38[]. The phylogenetic
10 parameter Oppy1, quantifies variance that can be attributed to the phylogenetic effect, and is drawn from an exponential
11 distribution with a rate parameter of 0.1. Similar to the half-Cauchy priors, this prior distribution provides a weak level
12 of regularization—a rate parameter of 0.1 gives a prior mean of 10, thus preventing the estimated variance of getting
s implausibly large.

164 Case Study 2 (Presence-absence): We modelled the presence (y;; = 1) or absence (y;; = 0) of OTU j in sample
165 1 using probit regression, implemented via the indicator function 1ij>0 where the latent score is normally distributed
16 with the mean equal to a linear function of the covariates and latent factors, and variance set equal to one. The

17 hierarchical model was set up as follows:


https://doi.org/10.1101/137943
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/137943; this version posted May 3, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Model 2

zij ~ a; + Lij +ZZW\W, i=1,.,n=116, j=1,...,m=151, q=1,..,5 (4

Lij=yj+ inkﬁkjr k=1,...,5 )
k=1

i ~ N ((host) i, o> (sample)
p(host)s = p(non-phylo); + p(phylo)s x Oppyio, s=1,...,5=59 (6)

p(non-phylo); ~ N (s, o%(host))

p(phylo); ~ MV N (0, C(phylo))
us ~ Cauchy(0,2.5)
yj ~ Cauchy(0,2.5)

i ~ half-Cauchy(0, 2.5)

o%(sample) ~ half-Cauchy(0,1)

0 ~ Exp(0.1)

phylo

168 While the above description is largely the same as that of Model 1, we also included here a linear predictor L;; to
19 model the effects of five available covariates (represented by the model matrix X;;;k = 1,...,5) on species composition
7o (equation (3))). The linear predictor L; j thus acts to explain covariation between OTUs due to the measured explanatory
171 predictor variables, while the latent factors account for the remaining, residual covariation. Similarly to Model 1,
172 including «; means that the covariation between OTUs is in terms of species composition only. By drawing the sample
173 effects a; from a normal distribution with a mean that is a linear function of both non-phylogentic y(non — phylo)
17 and phylogenetic p(phylo) host effects (equation (6)), we account for the hierarchical structure present in the data.
175 Furthermore, from the loading matrix A, we computed a covariance matrix as Q = AAT, which we subsequently
176 convert to a correlation matrix for studying the OTU-to-OTU co-occurrence network.

177 For both case studies, we used Markov Chain Monte Carlo (MCMC) to estimate the models via JAGS [39]] and
178 the runjags package [40] in R [41]. For each model, we ran one chain with dispersed initial values for 300,000
179 iterations saving every 10" sample and discarding the first 25% of samples as burn-in. We evaluated convergence of
180 model parameters by visually inspecting trace and density plots using the R packages coda [42]] and mcmcplots [43],

1s1  as well as using the Geweke diagnostic [44].
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w2 Variance partitioning

18a  To discriminate among the relative contributions of the various factors driving covariation in the JSDMs, we partition
14 the explained variance by the row effects (a;), the linear predictor (L;;), and the loadings (1,; and /\;) into compo-
1ss nents reflecting sample and host level effects. Such a variance decomposition is analogous to the sum-of-squares and
186 variance decompositions seen in Analysis of Variance (ANOVA) and linear mixed models ([45]). Depending on the
157 response type, the row effects capture variance in relative abundance (Model 1) or species richness (Model 2), while
18 the linear predictor and the loadings capture variance in species composition. As mention above, when the linear
189 predictor is included in (Model 2), the loadings capture residual variation not accounted for by the modeled covariates.
190 Variance partitioning therefore allows us to asses the explanatory power of the hierarchical data structure, and mea-
191 sured covariates including “hidden” factors, and how influential each of them are in structuring the host-associated
192 microbiota ([10]).
We now discuss in more detail how we partition the explained variance into components attributed to the row
effects (a;) for Model I, and the loadings (A,;) together with the linear predictor (L;;) for Model 2. Let Viy, denote
the total variance of the a;, while Vumples Vecotypes Viite @ld Vpnylo denote the variances for the sample, host ecotype,

host collection site and host phylogeny, respectively. Then for Case Study 1 we have,

Vtotal = Vsample + Vecotype + Vsites + Vphle’ where
2
Vsample =0 (sample)
_ 2
Vecotype =0 (ecotype)
Viite = 02 (si
site = 0 (site)

_n2
Vohylo = Qphylo’
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and for Case Study 2 we have,

Viotal = Viinpred + Viesidual T Vsample + Vnon-phylo + Vphylo, Where,
thpred], = var(Diet; x 1) + var(StomachContents; X f5) + var(Sex; x f3) + var(Elevation; x f;4) + var(Site; x ;5)
Viesidual = d1ag(€2)
Vsample = o%(sample)
Vion-phylo = 0 (non-phylo)

Vphylo = Uz(phylo)

193 In the second partitioning, the quantity Vijyreq represents the variance explained by the linear predictor L;j, the
194 Viesidual T€presents the residual variance not accounted for by the modeled predictor variables i.e., as explained by
15 the diagonal elements of the residual covariance matrix (2, and finally the Viamples Vion-phylo @nd Vphyio to variance

16 attributed to the hierarchy present on the row effects a;;.

« Results

15s  Below we present the main results for each case study. We used the 95% highest density interval (HDI) as a measure
199 Of statistical significance. That is, if a parameter or a pairwise parameter comparison excludes zero, then we conclude

200 that the posterior probability of the difference being significantly different from zero exceeds 95%.

21 Case study 1

202 We applied Model 1 to data on sponge host-associated microbiota [29]]. The fitted model revealed that more than 86%
203 of the variation in relative abundance among samples could be attributed to processes operating on the host-species
204 level (Table [T} Fig[2). More specifically, 57% of this variation was explained by host phylogenetic relatedness, even
205 though the 95% HDI for the phylogenetic effects did not exclude zero for any of the host species. While this suggests
206 the presence of a phylogenetic signal in one or more host traits affecting microbial abundance and/or occurrence, it also
207 indicates that no particular host species or host species clade have a stronger signal than the rest. Easson and Thacker
208 [29]] used the Bloomberg’s K statistic and found a significant signal of the host phylogeny on the inverse Simpson’s
200 1index. This index measures the diversity of a community, but is strongly influenced by the relative abundance of its

210 most common species ([46[]). The authors specifically noted that host species Aiolochroia crassa, Aplysina cauliformis

10
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211 and Aplysina fulva from the order Verongida, along with host Erylus formosus from the order Astrophorida had higher
212 values of this index compared to the rest of the host species. Similarly, we found that the same four hosts harbored more
zis  abundant (Fig[2) and distinctively different microbiotas than the other host species (Fig[3). Pairwise comparisons of
214 these four hosts showed that A. crassa harbored markedly different microbial composition compared to its two closest
a1 relatives A. cauliformis and A. fulva (Table Table [S2). These three hosts were nonetheless collected at the same
216 site. The two species from the genus Aplysina on the other hand, harbored very similar microbiota composition to that
217 of host E. formosus even if they were collected some 17,000 km apart.

218 Host ecotype and collection site roughly explained two thirds of the remaining variation in relative abundance
210 (Table[I)). Furthermore, the host species level explained 39% of the variation beyond differences in relative abundance,
220 with the remaining variation explained by the latent factors on the sample level. While samples did not cluster based
221 on ecotype or sites, samples belonging to HMA hosts generally formed tighter clusters compared to samples from
22 LMA hosts (Fig[S3). Note however that because the sampling scheme in the original study confounded host ecotype

223 and collection site, it is impossible to fully disentangle the two.

2« Case study 2

225 Fitting Model 2 to the data on neotropical bird gut-associated microbiota [[31] revealed that only 9% of the variation in
226 species richness among samples could be explained by processes acting on the host species level, including processes
227 related to the host phylogeny. The remaining 91% of this variation was captured by processes operating on the sample
22s level (Table[2)). Of the total variance in species occurrence, variation in species richness only accounted for, on average,
220 about 17%. The modeled predictor variables explained 69% of the total variance, and varied from a minimum of less
20 than 0.01% to a maximum of 99.7% across all OTUs (Fig[5). The predictor variable that had the largest average effect
251 on microbiota composition was collection site (21.33%, Table[2)). None of the estimated regression coefficients for the
22 predictor variables excluded zero (Fig[S4). Furthermore, the ordination plots constructed from the the first two latent
233 factors did not reveal any obvious clustering by e.g., host taxonomy (at the order level), collection site, or diet (broad
2 dietary specialization) (Fig[6} Fig[S5} Fig[S6).

235 We ran an edge betweeness community detection algorithm [47] on the correlation matrix computed from the
256 loading matrix A where links represent positive and negative co-occurrences with at least 95% posterior probability.
237 We colored nodes by their bacterial taxonomic affiliation at the phylum level. This revealed a large tightly knit cluster
233 with well connected nodes in the centre and less connected nodes in the periphery of the cluster. The network displayed

230 equal proportion of positive and negative co-occurrences, and with no apparent clustering of OTUs belonging to certain

11
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2«0 phyla (Fig[S7). Caution should, however, be taken when interpreting statistical interactions: these are residual species-
2a1  to-species co-occurrences that can only be considered as hypotheses for ecological interactions, and without additional

22 biological information it is impossible to definitively confirm or assess their nature ([[19} 48, 49]).

xs  DIscussion

244 In this paper, we have developed a joint species distribution model (JSDM) aimed towards analyzing host-associated
25 microbiota data. The present work builds upon and extends existing JSDMs by specifically targeting the hierarchical
26 structure implicit in host-associated microbiota studies, while also including several other features that are attractive
27 for analyzing such data. First, we have shown how overdispersed counts and presence-absence data, two common
28 features of host-microbiota data can be modeled under a single framework by implementing a negative binomial and
29 a probit distribution with the appropriate link function. Furthermore, we have utilized recent progress in latent factor
250 modeling in order to represent the high-dimensional nature of host-microbiota data as a rank-reduced covariance
251 matrix, thus making the estimation of large OTU-to-OTU covariance matrices computationally tractable. By doing
252 80, we have also demonstrated how latent factors, both alone or together with measured covariates, can be used for
253 variance partitioning and further visualized as ordinations and co-occurrence networks. Lastly, depending on the
25« modelled response function, we have illustrated that the variance partitioning of the hierarchy present on the rows can
255 be represented in terms of either relative abundance or species richness.

256 We adapted our proposed model to make use of two published data sets on host-associated microbiota. Although
257 our goal was not to compare the results from these two case studies, such a systematic comparison can be done using
255 a model-based approach like ours. Broadly, the data analyzed here suggest that markedly different processes are
259 shaping the microbiota harbored by these different host organisms. Individually, the main results from each of our two
20 models were generally in agreement with the results reported in their respective original study; for example, Model
26t 1 identified the same four host species reported by Easson and Thacker [[29] to have more abundant and distinctively
262 different microbiotas compared to the other analyzed hosts. Similarly to Hird et al. [31]], the ordinations produced
263 by Model 2 did not cluster by host diet, host taxonomy nor collection site. By partitioning variance among fixed and
26« random effects, Model 2 further showed that there was substantial variation across OTUs in terms of which predictor
265 variables explained the most variance.

266 While distance-based methods such as PERMANOVA still remains one of the most widely used non-parametric

267 methods to analyze host-associated microbiota data, model-based approaches are increasingly recognized to outper-
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263 form such analyses (see e.g., [3,[17,27]), and we see our proposed model as making a strong case for further empirical
260 comparisons between distanced-based and model-based approaches to analyzing microbiota data.

270 There are a number of extensions one could make to the proposed model. Perhaps the most important of these
271 stems from the growing recognition that high-throughput DNA sequencing produces compositional data, i.e., non-
272 negative counts with an arbitrary sum imposed by the sequencing platform, which can produce spurious correlations
273 if not properly accounted for (see e.g., [50, |51} 52]). Because of the log-link function used in Model 1, it is possible
274 to parameterize this model and regard it in terms of compositional effects (see [53|] and also noting the fact that the
275 negative binomial distribution can itself be parameterized as a hierarchical Poisson model with Gamma distributed
276 random effects), although for ease of estimation and interpretation we chose to adopt the standard negative binomial
277 parameterization. This topic remains an area of active research, and there are currently several model-based methods
278 (see e.g., [54, 55156 |57]) to infer co-occurrence networks, each with its own set of assumptions—it is not yet conclu-
279 sive that any one of these methods outperforms the rest. Other model extensions and modifications can also be made
250 in order to answer specific ecological questions of interest. For example, whether closely related host species harbor
231 closely related microbes (i.e., host-microbiota phylogenetic congruence), or whether similarity among host-associated
2;2  microbiota decreases as a function of increasing geographical distance or social connectance between hosts. Such
283 questions may be answered for instance, by incorporating a phylogenetic effect acting on the columns of the response
234 matrix, and by implementing a Gaussian process model that quantifies the degree of spatial and/or social autocorre-
255 lation between hosts, respectively. These two “flavors" of JSDMs and mixed models more generally have previously
286 been considered in community ecology, both separately [58} 59, 60] and combined [8]], although both computation
257 and successful estimation and inference of all the model parameters remain a major issue especially with the high-
283 dimensional nature of host-associated microbiota data. In summary, while substantial methodological advances have
289 been made over the past few years in developing an extensive model framework for community ecological data, to
200 date there exists no similar unifying framework for modeling host-associated microbiota which is directly tailored to
201 the hierarchical and correlation structures present as well as questions of interest specific to such data. Our proposed

202 model, which explicitly accounts for the host’s effect in structuring its microbiota, takes us closer to that goal.
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Table 1: Variation explained by the hierarchy present on alpha;, i.e., the host effects p(host);.

Phylogeny 57.09%
Ecotype 14.58%
Site 14.51%
Sample 13.82%

Table 2: Variation attributed to the linear predictor L;;, the residual variation captured the diagonal elements of the
residual covariance matrix €2, and by the hierarchy present on the row effects a;;, i.e., the host effects p(host)s.

Collection site 21.33%
Stomach contents 16.13%

Elevation 15.97%
Diet 13.59%
Sex 2.12%
Residuals 13.89%
Sample 15.5%
Non-Phylogeny 0.65%
Phylogeny 0.82%
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Hierarchical structure

Figure 1: Host-associated microbiota data have a hierarchical data structure. In this example, samples are nested within
host species which in turn are nested under species traits. As there are also data on the host’s geographical distribution,
host species can be further nested within observation/collection sites. Additional data that are often available is the
host species phylogeny. The proposed model extension can straightforwardly accommodate for this hierarchical data
structure and discriminate their importance in structuring the microbiota.
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Figure 2: The main plot shows a caterpillar for the host means y(host);, with the colors representing the 7 HMA hosts.
The subplot shows a caterpillar plot for the row effects alpha;. The quantiles corresponds to the 95% (thin lines)
and 68% (thick lines) credible intervals. The number within the parentheses indicates how many individuals per host
species were used to draw inference on.
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Figure 4: The main plot shows a caterpillar for the host means y(host); colored by host taxonomy at the order level,
while the subplot shows a caterpillar plot for the row effects alpha;. The quantiles corresponds to the 95% (thin lines)

and 68% (thick lines) credible intervals. The number within the parentheses indicates how many individuals per host

species were used to draw inference on.
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Figure 5: The y-axis shows the relative proportion of variance in species occurrences explained by the hierarchy
present on alpha;, the covariates included on the linear predictor L;;, and the residual variance not accounted for by

the modeled effects i.e., the diagonal elements of the residual covariance matrix Q, for each OTU (x-axis).
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