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Abstract13

In addition to the processes structuring free-living communities, host-associated microbiota are directly or indirectly14

shaped by the host. Therefore, microbiota data have a hierarchical structure where samples are nested under one or15

several variables representing host-specific factors, often spanning multiple levels of biological organization. Current16

statistical methods do not accommodate this hierarchical data structure, and therefore cannot explicitly account for the17

effect of the host in structuring the microbiota. We introduce a novel extension of joint species distribution models18

(JSDMs) which can straightforwardly accommodate and discern between effects such as host phylogeny and traits,19

recorded covariates like diet and collection sites, among other ecological processes. Our proposed methodology20

includes powerful yet familiar outputs seen in community ecology overall, including: (i) model-based ordination to21

visualize and quantify the main patterns in the data; (ii) variance partitioning to asses how influential the included host-22

specific factors are in structuring the microbiota; and (iii) co-occurrence networks to visualize microbe-to-microbe23

associations.24

Keywords: Host-associated; Microbiota; Microbiome; Joint species distribution models; Generalized linear25

mixed models; Bayesian inference26

Introduction27

Ecological communities are the product of stochastic and deterministic processes; while environmental factors may set28

the upper bound on carrying capacity, competitive and facilitative interactions within and among taxa determine the29

identity of the species present in local communities. Ecologists are often interested in inferring ecological processes30

from patterns and determining their relative importance for the community under study [1]. During the last few31

years, there has been a growing interest in developing new statistical tools aimed toward ecologists and the analysis32

of multivariate community data (see e.g., [2]). Many of the distance-based approaches however, have a number of33

drawbacks, including uncertainty of selecting the most appropriate null models, low statistical power, and the lack34

of possibilities for making predictions [3]. One alternative, model-based framework which has become increasingly35

popular in community ecology is joint species distribution models (JSDMs, [4]). Such models are an extension of36

generalized linear mixed models (GLMMs, [5]), where multiple species are analyzed simultaneously often together37

with environmental variables, thereby revealing community level responses to environmental change. By incorporating38

both fixed and random effects, sometimes at multiple levels of biological organization, JSDMs have the capacity to39
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assess the relative importance of processes such as environmental and biotic filtering versus stochastic variability.40

Furthermore, with the increase of trait-based and phylogenetic data in community ecology together with the growing41

appreciation that species interactions are constrained by the “phylogenetic baggage” they inherit from their ancestors42

[6], JSDMs can further accommodate information on both species traits and phylogenetic relatedness among species43

[7, 8, 9, 10]. Finally, accounting for phylogenetic relatedness among species can greatly improve estimation accuracy44

and power when there is a phylogenetic signal in species traits and/or residual variation ([11]).45

To model covariances between a large number of species using a standard multivariate random effect, as a stan-46

dard JSDM [4, 12] does, is computationally challenging; the number of parameters that needs to be estimated when47

assuming a completely unstructured covariance matrix increases rapidly (quadratically) with the number of species.48

An increasingly popular tool for overcoming this problem, which is capable of modeling such high-dimensional data,49

is latent factor models [13]. In community ecology, latent factor models and JSDMs have been combined to allow50

for a more parsimonious yet flexible way of modeling species covariances in large communities [10, 14]. Such an51

approach offers a number of benefits. First, latent factors provide a method of explicitly accounting for residual cor-52

relation. This is important because missing covariates, ecological interactions and/or spatio-temporal correlation will53

induce residual correlation among species, which, if not accounted for, may lead to erroneous inference. Second, latent54

factors facilitate model-based ordination in order to visualize and quantify the main patterns in rows and/or columns55

of the data [15, 16]. While traditional distance-based ordination techniques may confound location (i.e., the mean56

abundance) and dispersion (i.e., the variability) effects [3], model-based ordination directly models the mean-variance57

relationship and can therefore accurately distinguish between the two effects [17, 18]. Finally, the estimated factor58

loadings can be conveniently interpreted as indicating whether two species co-occur more or less often than by chance59

as well as the direction and strength of their co-occurrence, thus allowing a latent factor approach to robustly estimate60

large species-to-species co-occurrence networks [19]. Note that an important decision when fitting latent factor mod-61

els, is the choice of the number of latent factors. While less than five is usually sufficient for a good approximation62

to correlations, there is a trade-off between model complexity and the model’s capacity to capture the true correlation63

structure ([13]). An alternative approach is to use variable selection, which automatically shrinks less-informative64

latent factors to zero ([20]).65

In parallel to community ecology, there is a growing field of microbial ecology studying both free-living and66

host-associated microbiota. While microbial ecologists can adopt many of the same statistical tools developed for tra-67

ditional multivariate abundance data (see e.g., [21]), researchers studying host-associated microbiota need to consider68

an additional layer of processes structuring the focal community, namely that host-associated microbiota are addition-69
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ally shaped directly or indirectly by their hosts. For example, interactions between hosts and microbes often involve70

long-lasting and sometimes extremely intimate relationships, where the host may have evolved the capacity to directly71

control the identity and/or abundance of its microbial symbionts [22, 23]. Similar to an environmental niche, the host72

must be viewed as a multidimensional composite of all host-specific factors driving the occurrence and/or abundance73

of microbes within a host–everything from broad evolutionary relationships between host species [24] to the direct74

production of specific biomolecules within a single host individual [25]. As a result, host-associated microbiota have75

a hierarchical data structure where samples are nested under one or several variables representing recorded and/or76

measured host-specific factors sometimes spanning multiple levels of biological organization.77

In this article, we propose a novel extension of JSDMs to analyze host-associated microbiota, based around ex-78

plicitly modeling its characteristic hierarchical data structure. In doing so, our proposed model can straightforwardly79

accommodate and discriminate among any measured host-specific factors. Over the past few years, there has been an80

increase of model-based approaches aimed specifically toward the analysis of host-associated microbiota (see e.g., [12,81

26, 27, 28]). To our knowledge however, our proposed model is the first to explicitly and transparently account for the82

aforementioned hierarchical structure that is inherent in data on host-associated microbiota (Fig 1). Other key features83

of the proposed model, which are inherited from JSDMs and latent factor models, include: (1) parsimonious modeling84

of the high-dimensional correlation structures typical of host-associated microbiota; (2) model-based ordination to85

visualize and quantify the main patterns in the data; (3) variance partitioning to assess the explanatory power of the86

modeled host-specific factors and their influence in shaping the microbiota; and finally (4) co-occurrence networks to87

visualize OTU-to-OTU associations. Furthermore, by building our model in a probabilistic, i.e., Bayesian framework,88

we can straightforwardly sample from the posterior probability distribution of the correlation matrix computed by the89

factor loadings; this means that we can choose to look at, or further analyze the correlations that have at least e.g.,90

95% (or even 97% or 99%) probability.91

We apply our proposed model to two published data sets. While we include the effect of host phylogenetic related-92

ness in both case studies, we illustrate the flexibility of our approach by adapting the proposed model to overdispersed93

counts and presence-absence responses, and study-specific meta data relevant to each case study. By utilizing recent94

progress in latent factor modeling, our proposed model can also assist in cases where meta data are scarce by finding95

latent “hidden” variables driving the microbiota.96
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Methods97

We applied the proposed methodology to two published data sets on host-associated microbiota. Both datasets possess98

two main features which characterize many host-associated microbiota data, namely high dimensionality i.e., the99

number of OTUs is a non-negligable proportion of the number of samples, and sparsity i.e., most OTUs are rarely100

observed. The first data set comprise 90 samples from 20 sponge species collected in four closely located sites in101

the Bocas del Toro archipelago (Fig S1, for original study see [29]). The meta data contain apart from collection102

site, a classification of hosts into either High Microbial Abundance (HMA) or Low Microbial Abundance (LMA)103

sponges (hereafter termed ecotype). This classification is based on the abundance of microbes harbored by the host104

and determined by transmission electron microscopy [30]. The authors constructed a host phylogeny from 18S rRNA105

gene sequences (downloaded from GenBank) by implementing a relaxed-clock model in MrBayes. The data have a106

hierarchical structure with n = 90 samples nested within S = 20 host species and L = 4 collection sites. Host species107

are then further nested under one of R = 2 ecotypes. The response matrix had already been filtered to only include108

OTUs (defined at 97% similarity) with at least 500 reads, but we further removed OTUs with less than 20 presences109

across samples, resulting in m = 187 modeled OTUs.110

The second data set consists of 59 neotropical bird species with a total of 116 samples from the large intestine.111

Host species were collected from 12 lowland forests sites across Costa Rica and Peru (Fig S2, for original study see112

[31]). The meta data include bird taxonomy and several covariates–including dietary specialization, stomach contents113

and host habitat. The authors sequenced and used the mitochondrial locus ND2 to reconstruct the host phylogeny by114

implementing a partitioned GTR + � model in BEAST. Similarly to the sponge data set, this data set has a hierarchical115

structure with n = 116 samples nested within S = 59 host species and L = 12 collection sites. We filtered the response116

matrix to include OTUs (defined at 97% similarity) with at least 50 reads and 40 presences across samples, resulting117

in m = 151 modeled OTUs. Of the full list of covariates available, we included diet, stomach content, sex, elevation118

and collection site as explanatory predictor variables in our model. While diet and geography have been shown to119

influence the human gut microbiota (see e.g., [32, 33]), the effect of sex and elevation is less known.120

Joint species distribution models121

We considered two response types commonly encountered in host-associated microbiota data: counts and presence-122

absence. Formally, let the response matrix being modeled consist of either counts or presence-absence records of m123

OTUs from n samples, and let yij denote the response of the j-th OTU in the i-th sample. Also, let N (µ,�2) denote124
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a univariate normal distribution with mean µ and variance �2, and analogously, letMVN (µ,⌃) denote a multivariate125

normal distribution with mean vector and covariance matrix ⌃. We now split our model formulation up into the two126

case studies/response types.127

Case Study 1 (Counts): Due to the presence of overdispersion that was quadratic in nature, as confirmed by a128

mean-variance plot of the OTU counts (not shown), we assumed a negative binomial distribution for the responses.129

Specifically, we considered a negative binomial distribution with a quadratic mean-variance relationship for the ele-130

ment yij , such that Var(yij ) =  ij+�j 
2
ij

where�j is the OTU-specific overdispersion parameter. The mean abundance131

was related to the covariates using a log-link function. Denoting the mean abundance of OTU j in sample i by  ij ,132

then we have133

Model 1

yij ⇠ Negative-Binomial( ij ,�j ), i = 1, . . . ,n = 90, j = 1, . . . ,m = 187 (1)

log( ij ) = ↵i +�j +
5X

q=1

Ziq�qj +
5X

q=1

Z
H

s[i]q�
H

qj
, q = 1, . . . ,5 (2)

↵i ⇠N (µ(host)s[i],�2(sample))

µ(host)s = µ(ecotype)s +µ(site)s +µ(phylo)s ⇥✓phylo, s = 1, . . . ,S = 20 (3)

µ(ecotype)s ⇠N (µr[s],�2(ecotype))

µ(site)s ⇠N (µl[s],�2(site))

µ(phylo)s ⇠MVN (0,C(phylo))

µr ⇠ Cauchy(0,2.5), r = 1, . . . ,R = 2

µl ⇠ Cauchy(0,2.5), l = 1, . . . ,L = 4

�j ⇠ Cauchy(0,2.5)

✓phylo ⇠ Exp(0.1)

To clarify the above formulation, s, r and l index effects that are attributed to the S = 20 host species, R = 2134

ecotypes and L = 4 sites respectively. For instance, “s[i]” and “r[s]” denote “sample i nested within host species s”135

and “host species s nested within ecotype r”, respectively (Fig 1). In equation (2), the quantities ↵i and �j represent136

sample and OTU-specific effects, respectively. The former adjusts for differences in sequencing depth among samples,137

while the latter controls for differences in OTU total abundance. The inclusion of ↵i serves two main purposes. First138
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and foremost, including ↵i allows us to account for the hierarchical data structure and its effect on sample total139

abundance specifically. In particular, to account for sample i being nested within host species s (which are further140

nested within ecotype r) and site l, the sample effects ↵i are drawn from a normal distribution with a mean that is a141

linear function of three host-specific effects: host ecotype µ(ecotype); host collection site µ(site); and host phylogeny142

µ(phylo). Furthermore, the host ecotype µ(ecotype) and host collection site µ(site) effects are themselves drawn143

from a normal distribution with an ecotype and site-specific mean, respectively. Second, the inclusion of ↵i means144

that the resulting ordinations constructed by the latent factors on the sample Ziq and host species Z
H

s[i]q level are in145

terms of species composition only, as opposed to a composite of abundance and composition if the site effects were146

not included in the formulation. We included five latent factors at both the sample and host species level, and both147

Ziq and Z
H

s[i]q were assigned standard normal priors N (0,1) with the assumption of zero mean and unit variance148

to fix the location and scale (see Chapter 5, [34]). Furthermore, to address rotational variance, the upper triangular149

component of both loading matrices (i.e., sample � and host species �
H level) are fixed to zero with the diagonals150

constrained to be positive [35]. As recommended by Polson and Scott [36], and analogous to the prior distributions151

we use for the mean µr and µl , we used a weakly informative prior in the form of a half-Cauchy distribution with a152

center and scale equal to 0 and 2.5 for the overdispersion parameter  . Moreover, following Gelman et al. [37], we153

used the same distribution with location and scale equal to 0 and 1 as prior information on the variance parameters:154

�
2(sample); �2(ecotype); and �2(site). Based on our empirical investigation, we found that the use of such priors155

stabilized the MCMC sampling substantially without introducing too much prior information, compared to using156

more uninformative prior distributions. Lastly, the quantity C(phylo) corresponds to a phylogenetic correlation matrix157

constructed from the host phylogeny by assuming Brownian motion evolution such that the covariances between host158

species are proportional to their shared branch length from the most recent common ancestor [38]. The phylogenetic159

parameter ✓phylo quantifies variance that can be attributed to the phylogenetic effect, and is drawn from an exponential160

distribution with a rate parameter of 0.1. Similar to the half-Cauchy priors, this prior distribution provides a weak level161

of regularization–a rate parameter of 0.1 gives a prior mean of 10, thus preventing the estimated variance of getting162

implausibly large.163

Case Study 2 (Presence-absence): We modelled the presence (yij = 1) or absence (yij = 0) of OTU j in sample164

i using probit regression, implemented via the indicator function 1zij>0 where the latent score is normally distributed165

with the mean equal to a linear function of the covariates and latent factors, and variance set equal to one. The166

hierarchical model was set up as follows:167
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Model 2

zij ⇠ ↵i +Lij +
5X

q=1

Ziq�qj , i = 1, . . . ,n = 116, j = 1, . . . ,m = 151, q = 1, . . . ,5 (4)

Lij = �j +
5X

k=1

Xik�kj , k = 1, . . . ,5 (5)

↵i ⇠N (µ(host)s[i],�2(sample))

µ(host)s = µ(non-phylo)s +µ(phylo)s ⇥✓phylo, s = 1, . . . ,S = 59 (6)

µ(non-phylo)s ⇠N (µs,�2(host))

µ(phylo)s ⇠MVN (0,C(phylo))

µs ⇠ Cauchy(0,2.5)

�j ⇠ Cauchy(0,2.5)

 ij ⇠ half-Cauchy(0,2.5)

�
2(sample) ⇠ half-Cauchy(0,1)

✓phylo ⇠ Exp(0.1)

While the above description is largely the same as that of Model 1, we also included here a linear predictor Lij to168

model the effects of five available covariates (represented by the model matrix Xik ;k = 1, . . . ,5) on species composition169

(equation (5)). The linear predictor Lij thus acts to explain covariation between OTUs due to the measured explanatory170

predictor variables, while the latent factors account for the remaining, residual covariation. Similarly to Model 1,171

including ↵i means that the covariation between OTUs is in terms of species composition only. By drawing the sample172

effects ↵i from a normal distribution with a mean that is a linear function of both non-phylogentic µ(non � phylo)173

and phylogenetic µ(phylo) host effects (equation (6)), we account for the hierarchical structure present in the data.174

Furthermore, from the loading matrix �, we computed a covariance matrix as ⌦ = ��
>, which we subsequently175

convert to a correlation matrix for studying the OTU-to-OTU co-occurrence network.176

For both case studies, we used Markov Chain Monte Carlo (MCMC) to estimate the models via JAGS [39] and177

the runjags package [40] in R [41]. For each model, we ran one chain with dispersed initial values for 300,000178

iterations saving every 10th sample and discarding the first 25% of samples as burn-in. We evaluated convergence of179

model parameters by visually inspecting trace and density plots using the R packages coda [42] and mcmcplots [43],180

as well as using the Geweke diagnostic [44].181
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Variance partitioning182

To discriminate among the relative contributions of the various factors driving covariation in the JSDMs, we partition183

the explained variance by the row effects (↵i ), the linear predictor (Lij ), and the loadings (�qj and �H
qj

) into compo-184

nents reflecting sample and host level effects. Such a variance decomposition is analogous to the sum-of-squares and185

variance decompositions seen in Analysis of Variance (ANOVA) and linear mixed models ([45]). Depending on the186

response type, the row effects capture variance in relative abundance (Model 1) or species richness (Model 2), while187

the linear predictor and the loadings capture variance in species composition. As mention above, when the linear188

predictor is included in (Model 2), the loadings capture residual variation not accounted for by the modeled covariates.189

Variance partitioning therefore allows us to asses the explanatory power of the hierarchical data structure, and mea-190

sured covariates including “hidden” factors, and how influential each of them are in structuring the host-associated191

microbiota ([10]).192

We now discuss in more detail how we partition the explained variance into components attributed to the row

effects (↵i ) for Model 1, and the loadings (�qj ) together with the linear predictor (Lij ) for Model 2. Let Vtotal denote

the total variance of the ↵i , while Vsample, Vecotype, Vsite and Vphylo denote the variances for the sample, host ecotype,

host collection site and host phylogeny, respectively. Then for Case Study 1 we have,

Vtotal = Vsample +Vecotype +Vsites +Vphylo, where

Vsample = �2(sample)

Vecotype = �2(ecotype)

Vsite = �2(site)

Vphylo = ✓2
phylo,
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and for Case Study 2 we have,

Vtotal = Vlinpred +Vresidual +Vsample +Vnon-phylo +Vphylo,where,

Vlinpredj = var(Dieti ⇥ �j1) + var(StomachContentsi ⇥ �j2) + var(Sexi ⇥ �j3) + var(Elevationi ⇥ �j4) + var(Sitei ⇥ �j5)

Vresidual = diag(⌦)

Vsample = �2(sample)

Vnon-phylo = �2(non-phylo)

Vphylo = �2(phylo)

In the second partitioning, the quantity Vlinpred represents the variance explained by the linear predictor Lij , the193

Vresidual represents the residual variance not accounted for by the modeled predictor variables i.e., as explained by194

the diagonal elements of the residual covariance matrix ⌦, and finally the Vsample, Vnon-phylo and Vphylo to variance195

attributed to the hierarchy present on the row effects ↵ij .196

Results197

Below we present the main results for each case study. We used the 95% highest density interval (HDI) as a measure198

of statistical significance. That is, if a parameter or a pairwise parameter comparison excludes zero, then we conclude199

that the posterior probability of the difference being significantly different from zero exceeds 95%.200

Case study 1201

We applied Model 1 to data on sponge host-associated microbiota [29]. The fitted model revealed that more than 86%202

of the variation in relative abundance among samples could be attributed to processes operating on the host-species203

level (Table 1; Fig 2). More specifically, 57% of this variation was explained by host phylogenetic relatedness, even204

though the 95% HDI for the phylogenetic effects did not exclude zero for any of the host species. While this suggests205

the presence of a phylogenetic signal in one or more host traits affecting microbial abundance and/or occurrence, it also206

indicates that no particular host species or host species clade have a stronger signal than the rest. Easson and Thacker207

[29] used the Bloomberg’s K statistic and found a significant signal of the host phylogeny on the inverse Simpson’s208

index. This index measures the diversity of a community, but is strongly influenced by the relative abundance of its209

most common species ([46]). The authors specifically noted that host species Aiolochroia crassa, Aplysina cauliformis210
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and Aplysina fulva from the order Verongida, along with host Erylus formosus from the order Astrophorida had higher211

values of this index compared to the rest of the host species. Similarly, we found that the same four hosts harbored more212

abundant (Fig 2) and distinctively different microbiotas than the other host species (Fig 3). Pairwise comparisons of213

these four hosts showed that A. crassa harbored markedly different microbial composition compared to its two closest214

relatives A. cauliformis and A. fulva (Table S1; Table S2). These three hosts were nonetheless collected at the same215

site. The two species from the genus Aplysina on the other hand, harbored very similar microbiota composition to that216

of host E. formosus even if they were collected some 17,000 km apart.217

Host ecotype and collection site roughly explained two thirds of the remaining variation in relative abundance218

(Table 1). Furthermore, the host species level explained 39% of the variation beyond differences in relative abundance,219

with the remaining variation explained by the latent factors on the sample level. While samples did not cluster based220

on ecotype or sites, samples belonging to HMA hosts generally formed tighter clusters compared to samples from221

LMA hosts (Fig S3). Note however that because the sampling scheme in the original study confounded host ecotype222

and collection site, it is impossible to fully disentangle the two.223

Case study 2224

Fitting Model 2 to the data on neotropical bird gut-associated microbiota [31] revealed that only 9% of the variation in225

species richness among samples could be explained by processes acting on the host species level, including processes226

related to the host phylogeny. The remaining 91% of this variation was captured by processes operating on the sample227

level (Table 2). Of the total variance in species occurrence, variation in species richness only accounted for, on average,228

about 17%. The modeled predictor variables explained 69% of the total variance, and varied from a minimum of less229

than 0.01% to a maximum of 99.7% across all OTUs (Fig 5). The predictor variable that had the largest average effect230

on microbiota composition was collection site (21.33%, Table 2). None of the estimated regression coefficients for the231

predictor variables excluded zero (Fig S4). Furthermore, the ordination plots constructed from the the first two latent232

factors did not reveal any obvious clustering by e.g., host taxonomy (at the order level), collection site, or diet (broad233

dietary specialization) (Fig 6; Fig S5; Fig S6).234

We ran an edge betweeness community detection algorithm [47] on the correlation matrix computed from the235

loading matrix � where links represent positive and negative co-occurrences with at least 95% posterior probability.236

We colored nodes by their bacterial taxonomic affiliation at the phylum level. This revealed a large tightly knit cluster237

with well connected nodes in the centre and less connected nodes in the periphery of the cluster. The network displayed238

equal proportion of positive and negative co-occurrences, and with no apparent clustering of OTUs belonging to certain239
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phyla (Fig S7). Caution should, however, be taken when interpreting statistical interactions: these are residual species-240

to-species co-occurrences that can only be considered as hypotheses for ecological interactions, and without additional241

biological information it is impossible to definitively confirm or assess their nature ([19, 48, 49]).242

Discussion243

In this paper, we have developed a joint species distribution model (JSDM) aimed towards analyzing host-associated244

microbiota data. The present work builds upon and extends existing JSDMs by specifically targeting the hierarchical245

structure implicit in host-associated microbiota studies, while also including several other features that are attractive246

for analyzing such data. First, we have shown how overdispersed counts and presence-absence data, two common247

features of host-microbiota data can be modeled under a single framework by implementing a negative binomial and248

a probit distribution with the appropriate link function. Furthermore, we have utilized recent progress in latent factor249

modeling in order to represent the high-dimensional nature of host-microbiota data as a rank-reduced covariance250

matrix, thus making the estimation of large OTU-to-OTU covariance matrices computationally tractable. By doing251

so, we have also demonstrated how latent factors, both alone or together with measured covariates, can be used for252

variance partitioning and further visualized as ordinations and co-occurrence networks. Lastly, depending on the253

modelled response function, we have illustrated that the variance partitioning of the hierarchy present on the rows can254

be represented in terms of either relative abundance or species richness.255

We adapted our proposed model to make use of two published data sets on host-associated microbiota. Although256

our goal was not to compare the results from these two case studies, such a systematic comparison can be done using257

a model-based approach like ours. Broadly, the data analyzed here suggest that markedly different processes are258

shaping the microbiota harbored by these different host organisms. Individually, the main results from each of our two259

models were generally in agreement with the results reported in their respective original study; for example, Model260

1 identified the same four host species reported by Easson and Thacker [29] to have more abundant and distinctively261

different microbiotas compared to the other analyzed hosts. Similarly to Hird et al. [31], the ordinations produced262

by Model 2 did not cluster by host diet, host taxonomy nor collection site. By partitioning variance among fixed and263

random effects, Model 2 further showed that there was substantial variation across OTUs in terms of which predictor264

variables explained the most variance.265

While distance-based methods such as PERMANOVA still remains one of the most widely used non-parametric266

methods to analyze host-associated microbiota data, model-based approaches are increasingly recognized to outper-267
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form such analyses (see e.g., [3, 17, 27]), and we see our proposed model as making a strong case for further empirical268

comparisons between distanced-based and model-based approaches to analyzing microbiota data.269

There are a number of extensions one could make to the proposed model. Perhaps the most important of these270

stems from the growing recognition that high-throughput DNA sequencing produces compositional data, i.e., non-271

negative counts with an arbitrary sum imposed by the sequencing platform, which can produce spurious correlations272

if not properly accounted for (see e.g., [50, 51, 52]). Because of the log-link function used in Model 1, it is possible273

to parameterize this model and regard it in terms of compositional effects (see [53] and also noting the fact that the274

negative binomial distribution can itself be parameterized as a hierarchical Poisson model with Gamma distributed275

random effects), although for ease of estimation and interpretation we chose to adopt the standard negative binomial276

parameterization. This topic remains an area of active research, and there are currently several model-based methods277

(see e.g., [54, 55, 56, 57]) to infer co-occurrence networks, each with its own set of assumptions–it is not yet conclu-278

sive that any one of these methods outperforms the rest. Other model extensions and modifications can also be made279

in order to answer specific ecological questions of interest. For example, whether closely related host species harbor280

closely related microbes (i.e., host-microbiota phylogenetic congruence), or whether similarity among host-associated281

microbiota decreases as a function of increasing geographical distance or social connectance between hosts. Such282

questions may be answered for instance, by incorporating a phylogenetic effect acting on the columns of the response283

matrix, and by implementing a Gaussian process model that quantifies the degree of spatial and/or social autocorre-284

lation between hosts, respectively. These two “flavors" of JSDMs and mixed models more generally have previously285

been considered in community ecology, both separately [58, 59, 60] and combined [8], although both computation286

and successful estimation and inference of all the model parameters remain a major issue especially with the high-287

dimensional nature of host-associated microbiota data. In summary, while substantial methodological advances have288

been made over the past few years in developing an extensive model framework for community ecological data, to289

date there exists no similar unifying framework for modeling host-associated microbiota which is directly tailored to290

the hierarchical and correlation structures present as well as questions of interest specific to such data. Our proposed291

model, which explicitly accounts for the host’s effect in structuring its microbiota, takes us closer to that goal.292
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Table 1: Variation explained by the hierarchy present on alphai , i.e., the host effects µ(host)s.

Phylogeny 57.09%
Ecotype 14.58%
Site 14.51%
Sample 13.82%

Table 2: Variation attributed to the linear predictor Lij , the residual variation captured the diagonal elements of the
residual covariance matrix ⌦, and by the hierarchy present on the row effects ↵ij , i.e., the host effects µ(host)s.

Collection site 21.33%
Stomach contents 16.13%
Elevation 15.97%
Diet 13.59%
Sex 2.12%
Residuals 13.89%

Sample 15.5%
Non-Phylogeny 0.65%
Phylogeny 0.82%
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Figure 1: Host-associated microbiota data have a hierarchical data structure. In this example, samples are nested within
host species which in turn are nested under species traits. As there are also data on the host’s geographical distribution,
host species can be further nested within observation/collection sites. Additional data that are often available is the
host species phylogeny. The proposed model extension can straightforwardly accommodate for this hierarchical data
structure and discriminate their importance in structuring the microbiota.
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Figure 2: The main plot shows a caterpillar for the host means µ(host)s, with the colors representing the 7 HMA hosts.
The subplot shows a caterpillar plot for the row effects alphai . The quantiles corresponds to the 95% (thin lines)
and 68% (thick lines) credible intervals. The number within the parentheses indicates how many individuals per host
species were used to draw inference on.
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Figure 4: The main plot shows a caterpillar for the host means µ(host)s colored by host taxonomy at the order level,
while the subplot shows a caterpillar plot for the row effects alphai . The quantiles corresponds to the 95% (thin lines)
and 68% (thick lines) credible intervals. The number within the parentheses indicates how many individuals per host
species were used to draw inference on.
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