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Abstract 9 

Inferring the genome-scale gene co-expression network is important for understanding 10 

genetic architecture underlying the complex and various biological phenotypes. The 11 

recent availability of large-scale RNA-seq sequencing data provides great potential for 12 

co-expression network inference. In this study, for the first time, we presented a novel 13 

heterogeneous ensemble pipeline integrating three frequently used inference methods, 14 

to build a high-quality RNA-seq-based Gene Co-expression Network (GCN) in rice, 15 

an important monocot species. The quality of the network obtained by our proposed 16 

method was first evaluated and verified with the curated positive and negative gene 17 

functional link datasets, which obviously outperformed each single method. Secondly, 18 

the powerful capability of this network for associating unknown genes with biological 19 

functions and agronomic traits was showed by enrichment analysis and case studies. 20 

Particularly, we demonstrated the potential applications of our proposed method to 21 

predict the biological roles of long non-coding RNA (lncRNA) and circular RNA 22 

(circRNA) genes. Our results provided a valuable data source for selecting candidate 23 

genes to further experimental validation during rice genetics research and breeding. 24 

To enhance identification of novel genes regulating important biological processes 25 

and agronomic traits in rice and other crop species, we released the source code of 26 

constructing high-quality RNA-seq-based GCN and rice RNA-seq-based GCN, which 27 

can be freely downloaded online at https://github.com/czllab/NetMiner. 28 
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Introduction 32 

The complex cellular network formed by the interacting macromolecules underlie an 33 

organism’s phenotypes (Kitano, 2002a, 2002b; Vidal et al., 2011). Reconstructing a 34 

complete map of the cellular network is crucial for understanding an organism’s 35 

genetic architecture underlying phenotypes. In animals, multiple types of networks 36 

have been built based on multi-level ‘-omics’ datasets from genome, transcriptome, 37 

proteome, epigenome, metabolome and other subcellular systems (Mitra et al., 2013). 38 

In plants, most of the current available ‘-omics’ dataset comes from the transcriptome 39 

analysis, with relatively few studies generating other types of ‘-omics’ datasets (Ma et 40 

al., 2013). The rapid accumulation of large-scale open access plant transcriptome data 41 

provides the great potential for identifying the molecular networks underlying diverse 42 

functions. Co-expression meta-analysis is a powerful method for reconstructing gene 43 

co-expression network using transcriptome data. This method combines expression 44 

profiles from all available experimental conditions, aims to predict the statistically 45 

significant functional associations between genes. The extensibility and easiness to 46 

apply make it a powerful tool for inferring the biological roles of uncharacterized 47 

genes (Bergmann et al., 2003; Gerstein et al., 2014; Ma et al., 2013; Mutwil et al., 48 

2011; Stuart et al., 2003).  49 

For co-expression meta-analysis, many algorithms have been proposed to construct 50 

the gene networks. However, it has been shown that the outcome of network inference 51 

varies between tools, and the single network inference approach has inherent biases 52 

and is unable to perform optimally across all experimental datasets (De Smet and 53 

Marchal, 2010; Marbach et al., 2012). In addition, how to clean-up the links occurring 54 

by accident in a gene co-expression network and select biologically significant 55 

associations is also a critical procedure for modeling the authentic gene relations 56 

(Alipanahi and Frey, 2013; Usadel et al., 2009). Moreover, the current computational 57 

methods are mainly designed for analyzing microarray dataset. Indeed, microarrays 58 

are intrinsically limited for measuring a relative small dynamic range of gene 59 

expression and only representing a subset of genomic contents (Abdullah Sayani et al., 60 

2006; Mutwil et al., 2011). Compared with microarrays, RNA sequencing (RNA-seq) 61 

emerges as a new approach to transcriptome profiling, which provides broader 62 

dynamic range of measurements allowing genome-wide detection of novel, rare and 63 

low-abundance transcripts. However, the majority of co-expression meta-analyses 64 

have been neglected the rapid growing availability of next-generation RNA-seq data 65 

(especially in plants). Its potential capacity in co-expression network inference has not 66 

been well studied. 67 
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In this study, we designed a novel ensemble pipeline for inferring high-quality Gene 68 

Co-expression Network (GCN) using RNA-seq data by integrating the predictions of 69 

three different network inference algorithms. Since the multiple types of networks in 70 

the model plant, Arabidopsis, has been constructed and widely analyzed, we directly 71 

applied this pipeline to the important crop species, rice, to enhance its efficiency of 72 

molecular breeding. We compiled a standard physical and non-physical set of positive 73 

and negative functional link datasets between genes derived from 4 known biological 74 

networks and evaluated the quality of our network. In the case study, bottom-up 75 

subnetwork analysis revealed that the usefulness of reconstructed RNA-seq-based 76 

gene co-expression network for realistic biological problems. Particularly, we showed 77 

that the potential application of our method for predicting the biological roles of the 78 

uncharacterized genome elements including long non-coding RNA (lncRNA) and 79 

circular RNA (circRNA) genes. Our study revealed the massive genetic regulatory 80 

relationships associating with cellular activities and agronomic traits, which provide a 81 

valuable data source for selecting candidate genes to accelerate rice genetics research.  82 

Results 83 

Network construction and evaluation 84 

To evaluate the quality and reliability of publicly available RNA-seq dataset, we 85 

analyzed 348 RNA-seq transcriptomes of the important monocot crop species rice 86 

after removing the unreliable genes and samples (for details, see Dataset 2, Materials 87 

and methods section). After quality filtering and trimming, a total of 12,458,505,209 88 

reads were remained in the samples, 75.2% of which were mapped to the MSU7.0 89 

reference genome and 71.4% were mapped uniquely (see Dataset 2). Of the genes 90 

(MSU7.0 reference set) covered with RNA-Seq reads, 98.4% have coverage of > 50% 91 

of the gene length (see Supplementary Information, Fig.S1A). Despite of the large 92 

difference in the number of mapped reads between samples, the percentage of 93 

expressed genes is similar in most of them, ranging from 32% (10th percentile) to 94 

66% (90th percentile), and as the number of mapped reads increases, the ratio of the 95 

number of expressed genes is rapidly increased to saturation (see Supplementary 96 

Information, Fig.S1B). We tested several normalization methods to compute the 97 

expression abundance and expression correlations between genes and samples, the 98 

tissue-specific expression pattern and enrichment results of rice genes showed that 99 

these RNA-seq data are highly reliable (see Supplementary Text, Fig.S2-Fig.S6, Table 100 

S1 and Dataset 3 for details).  101 

We comprehensively analyzed whether the co-expression between genes is associated 102 
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with their biological roles, and demonstrated that functionally related genes are often 103 

to be co-expressed in our RNA-seq dataset (see Supplementary Text, Fig.S7-Fig.S8, 104 

Dataset 4 for details). Based on this, we designed a new ensemble pipeline to build 105 

RNA-seq-based gene co-expression network by integrating the predictions of three 106 

state-of-the-art network inference methods, including Weighted Gene Correlation 107 

Network Analysis (WGCNA) (Langfelder and Horvath, 2008), Graphical Gaussian 108 

Model (GGM) (Schäfer et al., 2001) and Bagging the Conservative Causal Core of 109 

Network (BC3NET) (de Matos Simoes and Emmert-Streib, 2012), based upon an 110 

un-weighted voting system and rescoring the co-expression links (see Materials and 111 

Methods for details). We here did select these three inference methods but not the 112 

other existing approaches is because of either their high computational complexity or 113 

the inconsistent data source (Feizi et al., 2013; Friedman et al., 2008; Huynh-Thu et 114 

al., 2010; Qin et al., 2014). We constructed the co-expression network of rice which 115 

included 16770 genes with 146,419 links. This network shows the small-world 116 

characteristic with an average path length between any two nodes is equal to 6.28. The 117 

distribution of connection degrees obeys the truncated power-law where most nodes 118 

have a few co-expression partners with only a small ratio of hub nodes associating 119 

with a large number of partners (see Supplementary Information, Fig.S9A). The 120 

negative correlation between degrees and clustering coefficients of genes reveal 121 

hierarchical and modular characteristics of network and the possible synergistic 122 

regulation of gene expression (Supplementary Information, Fig.S9B) (Bergmann et al., 123 

2003). 124 

We evaluated the performance of the ensemble inference pipeline in rice. Since there 125 

are no gold standard reference co-expression networks available in rice, we compiled 126 

as replacement a standard set of positive links (9390203 interactions), by capturing 127 

gene pairs that were contained in the same Gene Ontology (GO) categories, the same 128 

pathways, interact with each other in the protein-protein interaction network or linked 129 

in the probabilistic functional gene network (RiceNet), and a standard set of negative 130 

links (272997 interactions) based on the functional dissimilarities between genes (for 131 

details, see Materials and methods section). We used fold enrichment to measure the 132 

relationship of two data sets (our network and standard positive functional links / our 133 

network and standard negative functional links): the larger the proportion of the 134 

number of shared elements divided by that expected by random chance, the closer 135 

they are (see Materials and methods for details). We found that the co-expression 136 

relationships connecting highly or frequently expressed gene pairs were positively 137 

associated with the positive standard links and were negatively associated with the 138 

negative standard links (see Supplementary Information, Fig.S10). Meanwhile, we 139 

also observed that the expression sample number of co-expression link (defined as the 140 
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total number samples which simply plus the number of gene A expressed samples and 141 

the number of gene B expressed samples) is a more reliable factor than its expression 142 

level (defined as the expression abundance summation of gene A and gene B) to affect 143 

the fold enrichment of the standard links (see Supplementary Information, Fig.S10). 144 

These outcomes indicated that the positive standard links had reliably captured the 145 

co-expression links between genes. Using the standard datasets, we found that the 146 

network structure obtained by our ensemble inference method was consistently better 147 

than the networks built by the individual method with higher enrichment for positive 148 

links and lower enrichment for negative links (Fig.1). These results suggested that the 149 

committee of different methods can reduce the bias occurring in a single inference 150 

method and provide more reliable predictions with higher sensitivity and specificity. 151 

We observed that the folds of enrichment are not obviously improved or are slightly 152 

decreased by the integrated networks from 6 data set (Fig.1A, the GGM method, line 153 

highlighted in yellow) than that of each single data set, indicating that integrating the 154 

networks built using different data normalization methods might have no obvious 155 

effects on the structure of inferred network (Fig.1). Co-expression is actually one of 156 

the inputs used to build the probabilistic functional gene network (RiceNet), which 157 

were included in the standard positive links. To examine whether this has effect on our 158 

evaluation results, we carried out the fold enrichment analysis after removing the links 159 

contained in RiceNet from the standard positive links. We found that integrating the 160 

functional links of RiceNet into the standard positive links has no effect on the results 161 

of comparing the quality of our network with the other networks obtained by the 162 

single algorithm (see Supplementary Information, Fig.S11). Based on the novel 163 

RNA-seq dataset, we also examined whether a large fraction of potential interactions 164 

was recovered by our collected RNA-seq dataset, and found that the most general 165 

transcriptional links were already established reliably with these 348 rice RNA-seq 166 

samples (see Supplementary Text for details). 167 

Prediction of gene functions through co-expression subnetworks 168 

We observed that our reconstructed RNA-seq-based gene co-expression network is 169 

always positive predictor of functional associations for the protein-protein interaction 170 

network and probabilistic functional gene network, GO network and pathway network 171 

(see Supplementary Text, Fig.S12). Meanwhile, we also observed that many genes 172 

under the same GO functional category are significantly more connected to each other 173 

than expected by chance (see Supplementary Text, Dataset 5). Therefore, we adopted 174 

GO enrichment analysis of a gene’s co-expression neighborhood as a tool to predict 175 

its biological functions (Vandepoele et al., 2009). For each gene belonging to a given 176 

GO category, we asked whether the GO enrichment in its co-expression neighborhood 177 
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could infer its correct function: an inference is called true positive if and only if the 178 

predicted GO term is more specific than its known GO terms or is equal to the known 179 

GO terms. In the enrichment significance level of corrected p-value smaller than 0.05, 180 

we found that 15.50% (Sensitivity) annotated functions were correctly inferred based 181 

on 10545 annotated genes in rice network. If we used only the gene annotations on the 182 

second and third layers of the directed GO graph for inference, the Sensitivity was 183 

increased to 21.66%. We found that the 21.27% (Precision) of all inferred functions 184 

are true positives and this number is improved to 25.38% when we only adopted the 185 

second and third layers of directed GO graph. These results might be suggesting that 186 

the incompleteness or errors in the GO annotations of rice genes. 187 

The relatively low Sensitivity and Precision of our network in function inference 188 

might be due to the simple scoring metrics. We here further analyzed the predictive 189 

performance of our network based on the Critical Assessment of protein Function 190 

Annotation (CAFA) metrics (Tzafrir et al., 2003) (see Materials and Methods). To 191 

eliminate the effects of the incompleteness and errors of GO annotations, we removed 192 

the genes with I) the number of known annotations smaller than 3; II) the number of 193 

predicted annotations smaller than 3 and III) the variation coefficient of the number of 194 

known annotations and the number of predicted annotations larger than 0.5. To order 195 

to produce the Receiver Operating Characteristics (ROC) and Precision-Recall (PR) 196 

curves, we calculated the sensitivities, 1-specificities and precisions under different 197 

thresholds (-log(corrected q-value)). For the purpose of correcting different depths of 198 

GO predictions, we also calculated the weight value of each GO term and obtained the 199 

weighted ROC and PR curves. The weighted ROC and PR curves obtain the larger 200 

AUC score (70.01%) and maximum F-measure (F-max = 0.54) than the not weighted 201 

ones (AUC = 68.23%, F-max = 0.53) (see Fig.2), indicating that our gene network can 202 

effectively predict the difficult or less frequent GO terms (see Fig.2). In addition, we 203 

further compared the predictive performances of our network with RiceNet using the 204 

same evaluation criteria as employed in our study. We observed that our co-expression 205 

network is comparable or better than the RiceNet in terms of the ROC and PR curves 206 

(Fig.2). Moreover, we also found that the semantic similarities between the known 207 

GO terms and our predicted GO terms are obviously higher than the random ones 208 

(p-value = 5.24E-10, paired t-test). These results indicated that our RNA-seq-based 209 

gene network can be applied for inferring the potential functions of unknown genes. 210 

In addition to the neighboring gene analysis above, we used two examples below to 211 

demonstrate the stricter and intuitive method of RNA-seq-based gene co-expression 212 

network analysis for inferring the gene functions. In flowering plants, floral organ 213 

development is a very important biological process. We therefore first selected a priori 214 
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guide gene OsMADS16 involving in flower development to obtain a co-expression 215 

subnetwork consisting of 37 closely connected neighbors within two-layer links from 216 

the guide genes (see Fig.3A and Dataset 6). We found that 15 genes were involved in 217 

flower development process, with ~ 203-fold enrichment. For example, 11 members 218 

of MADS-box family, which were verified involving in the determination of floral 219 

organ identity and development, are effectively captured in this subnetwork. Moreover, 220 

this subnetwork includes the well-known genes DL, Wda1 and DPW, which have 221 

been experimentally validated to control the floral organ identity, anther and pollen 222 

development (Jung et al., 2006; Nagasawa et al., 2003; Shi et al., 2011). Interestingly, 223 

we did not find that two YABBY domain containing genes OsYABBY1 and OsYABBY6 224 

are annotated involving in floral organ development in rice, but their Arabidopsis 225 

homologs of YABBY2 and YABBY1 were associated with the inflorescence meristem 226 

growth and regulation of floral organ development (Siegfried et al., 1999). The 227 

connections between the unannotated genes (gray nodes) and known genes within a 228 

subnetwork provide clues for their associations with specific biological processes. For 229 

example, LOC_Os07g09020 involves in the reproduction and embryo development, 230 

whose links with OsMADS3, OsMADS4 and DL enable further targeted experimental 231 

validations.  232 

Second, we used another guide gene OsCESA4 involving in cell wall metabolism to 233 

build a subnetwork (Fig.3B and Dataset 6). The resulting subnetwork was made up of 234 

139 genes with ~96-fold enrichment, including 4 homologs of OsCESA4: OsCESA1, 235 

OsCESA3, OsCESA7 and OsCESA9, and 14 other genes associated with the cell wall 236 

metabolism. In addition, this subnetwork also captures 28 genes (pink nodes) whose 237 

Arabidopsis thaliana homologs were involved in cell wall metabolism. For example, 238 

LOC_Os01g06580, encoding a fasciclin domain containing protein, is a homologous 239 

gene to AT5G03170 which is involved in secondary cell wall biogenesis. Two genes 240 

of LOC_Os01g62490 and LOC_Os03g16610 are laccase precursor proteins are both 241 

homologs to LAC17 involved in cell wall biogenesis. AT1G09540, an Arabidopsis 242 

homolog of two rice MYB family transcription factors of LOC_Os05g04820 and 243 

LOC_Os01g18240, are participating in cell wall macromolecule metabolism and 244 

xylem development. We also noted that 14 genes labeled with blue nodes, involving 245 

in carbohydrate metabolism, associating with microtubule or resembling to known 246 

cell wall metabolism genes in function domain, are recovered in this gene subnetwork. 247 

All these genes are the potential candidates for the further functional investigation. 248 

Especially, the known cell cycle genes LOC_Os04g28620 and LOC_Os04g53760 are 249 

also captured in this subnetwork, confirming that cell wall metabolism and cell cycle 250 

are two closely associated processes. 251 
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Construction of regulatory subnetworks for gene functional analysis 252 

We explored the potential value of motif-guided analysis (Ma et al., 2013) in building 253 

regulatory network and finding functionally related genes using two examples. Cell 254 

cycle is a highly conserved biological process in higher eukaryotes. From G1 phase to 255 

S phase of the cell cycle is controlled by the E2F transcription factors, which bind to a 256 

conserved DNA motif WTTSSCSS (with “W” standing for “A” or “T” and “S” 257 

standing for “C” or “G”) (Vandepoele et al., 2005). We used this motif to retrieve 258 

1093 genes from the rice network. Out of the 180 cell cycle genes annotated in rice 259 

(totally 55986 genes), 33 cell cycle genes were included in these 1093 genes, resulting 260 

in 9.4-fold enrichment. We used the cell cycle genes and the genes that were directly 261 

linked to them to form a regulatory network (totally 104 genes, Fig.4A and Dataset 6). 262 

We observed that a large number of genes (red nodes in Fig.4A) encode proteins 263 

participating in regulation of cell cycle, DNA replication, chromatin dynamics and 264 

DNA repair. The currently known cell cycle genes include three cyclin genes, one E2F 265 

transcription factor, 9 DNA replication origin factors, two checkpoint regulators, 13 266 

DNA replication or repair proteins and 10 other genes with unknown biochemical 267 

functions but were annotated playing important roles during cell cycle. In addition, 268 

this subnetwork also includes 18 genes whose Arabidopsis homologs participate in 269 

regulation of cell cycle, DNA replication, DNA repair and chromatin dynamics. Also 270 

recovered are four genes including LOC_Os01g64900, LOC_Os03g49200, LOC_Os 271 

07g18560 and LOC_Os09g36900 whose Arabidopsis homologs have not annotated 272 

biochemical function but were involved in cell cycle. Although some genes are not 273 

annotated with direct participation of cell cycle, their molecular structure and function 274 

domain indicated their potential roles in it, such as the ribonuclease H2 subunit B 275 

(LOC_Os04g40050), ATP-dependent RNA helicase (LOC_Os11g44910), ribonuclease 276 

H2 subunit B (LOC_Os04g40050) and the BRCA1 C Terminus domain containing 277 

protein (LOC_Os08g31930). All these genes are the potential candidate cell cycle 278 

genes for further investigation. 279 

WRKY transcription factors play important roles in regulation of plant stress response 280 

by binding the W-box sequence TTGACY (with ‘‘Y’’ standing for ‘‘C’’ or ‘‘T’’) (Chen 281 

et al., 2012; Rushton et al., 2010). Similarly, we extracted a total of 1329 genes 282 

associating with W-box, from which a subset of 88 known stress response genes out 283 

of 996 genes relating to stress response in rice were found, achieving the fold 284 

enrichment of 3.72. We also constructed a regulatory network using the 88 genes and 285 

the genes with W-box that were directly linked to them (totally 389 genes, Fig.4B and 286 

Dataset 6). This subnetwork includes 172 genes that are regulated by different types 287 

of environmental stresses (red node). Among them, 138 rice genes and 34 homologs 288 
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in Arabidopsis are annotated in the reference genomes relating to abiotic and biotic 289 

stresses. The majority of Arabidopsis homologs of these genes are experimentally 290 

confirmed involving in the biological regulation of phosphate starvation, water 291 

deprivation, nitrate, hypoxia, salt, cold, heat, chitin, sugar and oxidative stresses. 292 

Particularly, 53 of 172 abiotic stress response genes whose Arabidopsis homologs are 293 

reacted to the ethylene (ETH), abscisic acid (ABA), salicylic acid (SA) or jasmonic 294 

acid (JA), which is in accordance with the fact that WRKYs play roles in the plant 295 

abiotic stress by invoking the ETH-, ABA-, SA- or JA-mediated signaling pathways 296 

(Chen et al., 2012). Moreover, 36 genes play important roles in regulating plant 297 

immune responses to pathogens including WRKYs, NB-ARC domain containing 298 

resistance proteins, NBS-LRR domain containing resistance proteins, kinase proteins 299 

and other verified defense members of the plant innate immune system were also 300 

contained in this network (see Dataset 6). This is completely supported by the 301 

transcriptional reprogramming network model of the WRKY-mediated plant immune 302 

responses (Eulgem and Somssich, 2007). In addition, this gene subnetwork also 303 

included 8 genes whose Arabidopsis homologs are associated with the seed 304 

development, dormancy and germination. In agreement with the fact that the SA and 305 

ABA antagonizes gibberellin (GA)-promoted seed germination; 6 of these genes 306 

participate in the SA- and ABA-mediated signaling pathways (Xie et al., 2007). 307 

Interestingly, three genes of LOC_Os03g12290, LOC_Os01g24550 and LOC_Os01g 308 

64470 involving in leaf senescence are also placed in this network, with LOC_Os 01g 309 

64470 involving in the SA- and JA-mediated signaling pathway, which is supported 310 

by the fact that the WRKYs function in leaf senescence by modulating the JA and SA 311 

equilibrium (Miao and Zentgraf, 2007). This subnetwork successfully captured the 312 

W-box related genes that can facilitate further studies the functions of uncharacterized 313 

genes and help us to understand the regulatory mechanisms of plant responding to 314 

various stresses. 315 

In addition, we also used two miRNAs of osa-miR156 and osa-miR396 to capture the 316 

functionally related genes based on microRNA target enrichment analysis, which is 317 

performed similar with motif enrichment analysis (Ma et al., 2013). We observed that 318 

a large number of genes involving in cell division and organ development were 319 

captured in this gene subnetwork, for example, two TCP transcription factors of 320 

LOC_Os01g55100 and LOC_Os11g07460 (see Fig.S13 and Dataset 6). Meanwhile, 321 

we also found that many genes relating to stress tolerance were placed in the 322 

subnetwork of osa-miR156, for instance, a WRKY transcription factors LOC_Os 323 

10g18099 (see Fig.S13 and Dataset 6). These obtained results well confirm the 324 

biological roles of these two miRNAs (Rodriguez et al., 2010; Stief et al., 2014; Wu et 325 

al., 2009). Taken together, all these outcomes indicated that the rice RNA-seq-based 326 
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gene co-expression network could be converted to highly reliable regulatory network 327 

for further studying gene regulations. 328 

Co-expression analysis of genes controlling the important agronomic 329 

traits 330 

For the perspective of system biology, the phenotype of an organism was controlled 331 

by functionally linked genes involving in the related biological processes. Given the 332 

co-expressed genes tend to have the related biochemical functions; we next want to 333 

use the co-expression relationships between genes to assign the agronomic traits for 334 

unknown genes. This is especially important for identifying the candidate genes in 335 

Quantitative Trait Loci (QTL) mapping, Genome-Wide Association Study (GWAS) or 336 

in reverse genetic studies. We collected 1031 known rice genes with the well-studied 337 

functions through wet lab experiments. For these genes, we found that 934 genes were 338 

expressed in our collected RNA-seq datasets and 623 genes were in network with 339 

12125 connections. To examine the potential capacity of our RNA-seq-based gene 340 

co-expression network for associating genes with the agronomic traits, we analyzed 341 

the density of co-expression links between genes of within and between agronomic 342 

traits. We found that 262 co-expression links out of 88041 all possible links within the 343 

common agronomic traits and that 252 co-expression links out of 982302 all possible 344 

links between the different agronomic traits were captured in network, with ~11-fold 345 

enrichment of links within the agronomic traits. In details, we found that several 346 

agronomic traits whose genes were tightly clustered together relative to the average 347 

link density of whole co-expression network (Supplementary Text, Table S2). For 348 

example, an agronomic trait, source activity, measuring the capacity of making 349 

photosynthetic products; whose genes was highly aggregated in network with the 350 

enrichment fold of 47.81 and the corrected p-value of 3.96E-117. Besides, genes 351 

associating with culm leaf, panicle flower, eating quality and tolerance are also 352 

significantly clustered together. Moreover, we performed the permutation test, 353 

discovering found that co-expression link densities between genes of same agronomic 354 

traits were significantly larger than random control gene set (Supplementary Text, 355 

Table S2). These results indicated that our gene networks can be used to discover the 356 

gene related to important agronomic traits by co-expression links. 357 

Function discovering for lncRNA genes 358 

Long non-coding RNAs (lncRNAs) have been shown to play important roles in the 359 

kingdoms of plants and animals (Ranzani et al., 2015; Zhang et al., 2014). Given that 360 

the reconstructed RNA-seq-based co-expression network can successfully associate 361 

genes with biological functions and phenotypes of interest, we next wish to discover 362 
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the functions for uncharacterized lncRNA genes using network-based method. We 363 

downloaded the known lncRNAs of rice identified in previous studies (Zhang et al., 364 

2014). We then combined these lncRNA genes with MSU7.0 reference genes to 365 

establish co-expression network based on the ensemble inference pipeline. The 366 

obtained network is composed of 24875 genes, containing 24014 protein-coding gene 367 

and 861 lncRNA genes connected by 1357039 edges. Compared with the previous 368 

protein-coding gene network, 7692 novel protein-coding genes were captured and 369 

linked with 817 lncRNA genes. As there is no gold standard available to evaluate the 370 

predictive performance, we adopted gene-guide subnetwork analysis to illustrate the 371 

potential capacity of this network for lncRNA function discovering. We selected a 372 

well-studied lncRNA gene of XLOC_057324, which was verified involving in panicle 373 

development and fertility, to establish a gene subnetwork consisting of the two-step 374 

co-expression neighborhoods (Fig.5 and Dataset 7). In this subnetwork, 4 genes 375 

including SSD1, PLA1, DEP1 and GSD1 related to panicle development or fertility. In 376 

addition, we also found that 7 genes (pink nodes) whose Arabidopsis homologs 377 

participate in meiosis, embryo development or reproductive process. According to the 378 

functional annotation, some genes (blue nodes) might be also involved in pollen 379 

development, such as two cyclin genes CYCA2 and CYCD2. Interestingly, 3 lncRNAs 380 

of XLOC_061753, XLOC_006119 and XLOC_031878 expressed in the reproductive 381 

organs are contained in this subnetwork. These results are in good agreement with the 382 

experimentally verified role of XLOC_057324.  383 

CircRNA gene identification and function analysis 384 

CircRNA is an RNA molecule forming a covalently closed continuous loop that has 385 

been discovered in various species across the domains of life with distinct sizes 386 

(Memczak et al., 2013; Ye et al., 2015). The functions of circRNAs are largely 387 

unknown and hard to investigate. Therefore, we try to classify them through gene 388 

co-expression network. We first identified 14325 circRNAs in rice derived from 5284 389 

genes including 4609 protein-coding genes, 675 noncoding genes (see Materials and 390 

Methods for details). 43 of these genes including 27 protein-coding genes and 16 391 

non-coding genes produce the circRNAs with the percentage larger than 90% in at 392 

least one sample. We analyzed the distribution of the number of detected circRNAs 393 

and found that a majority of circRNAs were identified in one sample with relative 394 

small number of circRNAs were detected in more than 3 samples (Fig.S14A). Though 395 

a large number of circRNAs were detected in relative small number of RNA-seq 396 

samples, 63 circRNAs (transcribed from the protein-coding genes), identified in more 397 

than 10 samples and supported by more than 26 junction reads, were captured in the 398 

gene co-expression network. Moreover, we found that the primary genes transcribing 399 
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these circRNAs were not contained in the co-expression network. We predicted the 400 

functions of these circRNAs using GO enrichment analysis of their co-expression 401 

neighborhoods. Indeed, these circRNAs are related to a broad range of biological 402 

functions, for example protein phosphorylation, ATP binding and photosynthesis 403 

(Fig.S14B). These results indicated that a great number of circRNAs play important 404 

biological roles but not are the transcriptional noise. 405 

Discussion 406 

The phenotypes of an organism are determined by the coordinated activity of many 407 

genes and gene products. To gain insight into the genetic foundation underlying the 408 

complex biological processes and phenotypes, we developed a novel analytic pipeline 409 

for constructing high-quality RNA-seq-based co-expression network and predicting 410 

gene function and regulations. we applied this pipeline to the important crop species 411 

rice. The obtained co-expression links between genes were ranked by confidence 412 

score, expression level and expression sample number. The thresholds of these 413 

measures can be selected as the indictors of co-expression reliability for the further 414 

targeted experimental validation. The detailed analysis of the topology properties of 415 

network demonstrates that the degree frequency distribution follows the truncated 416 

power-law and network structure is highly modular. Using the rice gold standards and 417 

bottom-up co-expression subnetwork analysis, we showed that this analysis pipeline 418 

can be effectively applied to study the gene function and regulation. Particularly, the 419 

potential application value of RNA-seq gene network for predicting biological roles of 420 

lncRNA and circRNA genes are well demonstrated. Overall, our analysis provides 421 

new insights into the regulatory code underlying transcription control and a starting 422 

point for understanding the complex regulatory system. 423 

Compared with the sequence-based functional annotation, a great advantage of gene 424 

co-expression-based inference approach is that homologs are not required for a gene 425 

to receive a prediction. Actually, it is the case when a novel function appears for a 426 

particular species and the genes participating in the new biological process do not 427 

have corresponding homologues in other species. This is especially interesting for the 428 

non-coding RNAs because only short regions of non-coding RNA transcripts are 429 

limited by sequence- or structure-specific interactions, compared to the protein-coding 430 

gene; this difference in selection pressure makes it very difficult to find orthologous 431 

non-coding RNAs by their sequences. Indeed, using the BLAST search against NCBI 432 

Reference Sequence Database (RSD), we found that 87% and 89% of unannotated 433 

genes and lncRNA genes do not have homologous genes in other species, respectively. 434 

The functional analysis of rice lncRNA gene of XLOC_057324 suggested that our 435 
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RNA-seq-based gene network can be effectively applied to annotate the functions of 436 

non-coding genome elements. 437 

For RNA-seq-based gene co-expression network investigators, the creation of novel 438 

computational methods for building high-quality network poses a future fundamental 439 

challenge. According to our best knowledge, only four existing methods including 440 

Pearson’s Correlation Coefficient (PCCs), WGCNA, Canonical Correlation Analysis 441 

(CCA) and SpliceNet have been used to establish the RNA-seq gene co-expression 442 

networks (Giorgi et al., 2013; Hong et al., 2013; Iancu et al., 2012; Yalamanchili et al., 443 

2014). Moreover, some of these inference tools are unable to be applied to the 444 

large-scale expression dataset owing to their high computational complexity. For the 445 

uncertainty and complexity of mechanism models underlying the RNA-seq data, we 446 

designed a novel ensemble-based inference pipeline to establish the high confidence 447 

RNA-seq gene co-expression network. Our outcomes demonstrate that the committee 448 

of three inference methods provides more robust and less false positive and false 449 

negative results than single algorithm. The improved performance of our ensemble 450 

inference method depends on the voting and rescoring scheme which can reduce the 451 

bias occurring in a single learning method and assign a higher confidence to the 452 

interactions that are repeatedly retrieved by different methods. Indeed, the standpoint 453 

of aggregating the results of different algorithms has been adopted in various contexts 454 

and it has proven to be effective in a variety of applications (Lertampaiporn et al., 455 

2013; Liu et al., 2007; Yang et al., 2010).  456 

In principle, gene co-expression meta-analysis can only detect co-regulations between 457 

genes which are co-expressed constantly or are sometimes co-expressed but otherwise 458 

silent. However, many activation patterns of gene groups appear only under the 459 

specific experimental conditions but behave independently under the other conditions, 460 

which might not be captured by our method. Especially, for lncRNA and circRNA 461 

genes, their expression patterns demonstrated highly spatiotemporal specificity. To 462 

overcome this problem, the high-efficiency bi-clustering methods can be integrated 463 

into our model to reveal the transcriptional gene interactions presented only under a 464 

specific subset of the experimental conditions (Madeira and Oliveira, 2004). Our 465 

approach can further improved by I) expanding our ensemble pipeline with other 466 

high-efficiency inference methods (Hase et al., 2013), II) employing more reasonable 467 

voting and rescoring schemes to generate the  consensus networks. 468 

Materials and methods 469 

Dataset preprocessing 470 
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We downloaded 456 rice primary RNA-seq samples from the NCBI Sequence Read 471 

Archive (see Dataset 1 and 2 for details), with the keywords of “Oryza sativa” 472 

[Organism] AND “platform illumina” [Properties] AND “strategy rna seq” [Properties] 473 

(accessed on May 29, 2014). These RNA-seq samples contained a wide spread of 474 

experimental conditions, tissue types and developmental stages. After the SRA files 475 

were gathered, the archives were extracted and saved in FASTQ format using the SRA 476 

Toolkit. The FASTQ files were firstly trimmed using Trimmomatic software (version 477 

0.32) (Bolger et al., 2014) with the default settings, except for an additional parameter 478 

of minimum read length at least 70% of original size. Then, the fastq_quality_filter 479 

program included in FASTX Toolkit was adopted to further filtrate the FASTQ files, 480 

with the minimum quality score 10 and minimum percent of 50% bases that have a 481 

quality score larger than this cutoff value. Surviving RNA-seq samples were mapped 482 

to the MSU7.0 reference genomes (55986 genes) using TopHat v2.0.4 with the default 483 

settings except for “--max-multihits 1” (Trapnell et al., 2009). The PCR and 484 

optical/sequencing-driven duplicate reads were removed using the Picard tools. After 485 

reads mapping, the uniquely aligned reads count (RAW) and Fragments Per Kilobase 486 

Of Exon Per Million Fragments Mapped (FPKM) of each gene was calculated relative 487 

to the reference gene model using the HTSeq-count (v0.5.4) and Cufflinks software 488 

(v2.1.1), respectively (Anders et al., 2014; Trapnell et al., 2012). The unreliable 489 

samples and genes were filtered according to the following three criteria: I) The 490 

samples, in which the percentage of the number of genes with expression value 491 

smaller than 10 reads is larger than 90%, were not considered for further analysis; II) 492 

We did not consider the genes whose expression value is less than 10 reads in more 493 

than 80% samples; III) Genes with the variation coefficient of expression values 494 

smaller than 0.5 were excluded from subsequent analysis. After filtering, we got two 495 

expression datasets composed of 348 RNA-seq samples and 24775 genes were. The 496 

filtered RAW dataset were further corrected using four normalization methods: I) 497 

Upper Quartile (UQ) (Robinson et al., 2010); II) Trimmed Mean of M values (TMM) 498 

(Robinson et al., 2010); III) Relative Log Expression (RLE) (Robinson et al., 2010) 499 

and IV) Variance Stabilizing Transformation (VST) (Anders and Huber, 2010).  500 

The microarray gene expression data were extracted from both ATTED-II database 501 

and Rice Oligonucleotide Array Database (ROAD) (Cao et al., 2012; Obayashi et al., 502 

2009). The Gene Ontologies (GOs) were downloaded from Plant GeneSet Enrichment 503 

Analysis Toolkit (PlantGSEA) (Yi et al., 2013). We downloaded biological pathways 504 

from two data sources including PlantGSEA database and Plant Metabolic Network 505 

(PMN) (http://pmn.plantcyc.org/). The gene sets of transcription factor family were 506 

downloaded from Plant Transcription Factor Database (PlantTFDB) (Jin et al., 2013). 507 

MicroRNAs and their related targets were collected from the Plant MicroRNA Target 508 
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Expression database (PMTED) and Plant MicroRNA database (PMRD) (Zhang et al., 509 

2010). Known agronomic trait genes were collected from both Q-TARO database 510 

(Yonemaru et al., 2010) and literatures. Tos17 mutant phenotypes were extracted from 511 

Rice Tos17 Insertion Mutant Database (Hirochika et al., 1996). The phenotypes were 512 

associated with MSU7.0 gene locus identifiers through BLASTN alignments of Tos17 513 

flanking sequences obtained from NCBI website. Protein-protein interaction network 514 

of rice were downloaded from PRIN (Gu et al., 2011). Probabilistic functional gene 515 

network of rice was obtained from RiceNet data portal (Lee et al., 2011). 516 

Gene co-expression network construction 517 

We developed an ensemble-based inference pipeline for constructing the high-quality 518 

RNA-seq-based Gene Co-expression Network (GCN) based upon combining multiple 519 

inference algorithms, then aggregating their predictions through an unweighted voting 520 

system and rescoring co-expression links. Our ensemble-based inference system was 521 

designed based on the hypothesis that the different network inference methods have 522 

complementary advantages and limitations under the different contexts. To select base 523 

inference methods for constructing an ensemble system, five algorithms were initially 524 

tested and evaluated, including the weighted gene co-expression network analysis 525 

(Langfelder and Horvath, 2008), graphical Gaussian model (Schäfer et al., 2001), 526 

bagging statistical network inference (de Matos Simoes and Emmert-Streib, 2012), 527 

graphical lasso model (Friedman et al., 2008) and tree-based method (Huynh Thu et 528 

al., 2010). Since graphical lasso and tree-based method have high computational 529 

complexity and are infeasible for large number of RNA-seq dataset, we did not adopt 530 

these two algorithms for subsequent network construction. The flowchart for building 531 

high confidence RNA-seq-based gene co-expression network was depicted in Fig.6. 532 

In details, our procedure for producing the high-quality gene co-expression network 533 

was started from 6 RNA-seq datasets as described in Dataset preprocessing. Based on 534 

the 6 RNA-seq expression datasets, the weighted co-expression network inference, 535 

graphical Gaussian model and bagging statistical network inference were adopted to 536 

obtain 18 initial gene co-expression networks using the R packages of WGCNA, 537 

GeneNet and BC3NET, respectively (available from the CRAN repository). Since the 538 

outputs of WGCNA and GeneNet produced the long ordered list of confidence scores 539 

(topological overlap for WGCNA and partial correlation coefficient for GeneNet) for 540 

an enormous amount of gene pairs, we designed a random permutation model to 541 

choose the restrict threshold that roughly identifies functional co-expression links. We 542 

repeatedly created 100 times random datasets to obtain a series of background 543 

distributions, by randomly shuffling the associations from genes to expression profiles, 544 

and used the average of 99.99th percentile of these distributions (corresponding to the 545 
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probability of 10-4 that two genes are connected by chance) to define the threshold. 546 

After obtaining initial networks, we employed two-step voting procedure, including 547 

voting within inference method and voting among the inference methods, to construct 548 

the high-quality gene co-expression network. In the first step of voting procedure, we 549 

selected the links included in more than two networks of all 6 initial co-expression 550 

networks, which were built by applying the single network inference algorithm to 6 551 

RNA-seq datasets, to establish a consensus gene network (i.e. intra-method consensus 552 

network). In second step of voting procedure, we pick the co-expression relationships 553 

contained in more than one network of three intra-method consensus networks to 554 

establish the final co-expression network.  555 

The confidence score calculation procedure for each gene pair of the final RNA-seq 556 

gene co-expression network was performed as following: I) Firstly, we normalized the 557 

confidence scores of each co-expression link of each initial network to the interval 558 

range from 0 to 1. II) Then, we assigned a confidence score to each association of the 559 

intra-method consensus gene networks by averaging the normalized confidence scores 560 

of all 6 initial networks. III) Finally, we defined the confidence score for each edge of 561 

final high confidence co-expression network by averaging the confidence scores of 562 

three intra-method consensus gene networks. Note that for the co-expression links not 563 

listed in a co-expression network were assigned a confidence score of 0. 564 

Performance evaluation 565 

As the information about gold standard Oryza sativa reference gene network is 566 

unavailable, we compiled as replacement a standard set of positive and negative links 567 

for the performance evaluation. The gold standard of positive functional links was 568 

obtained by capturing gene pairs that were contained in the same GO categories, the 569 

same pathways, interact with each other in protein-protein interaction network or 570 

linked in probabilistic functional gene network. To construct the gold standard of 571 

negative functional links, we firstly selected all the biologically unrelated GO pairs 572 

(semantic similarity score = 0) that have the number of genes greater than 5 and less 573 

than 50, coupling all possible gene pairs of each partnership in remainder GO terms as 574 

initial non-functional relationships. Subsequently, we established 10000 background 575 

distributions of functional similarity, by 10000 times randomly sampling of 1000 gene 576 

pairs and calculating the functional similarities. We selected a subset of gene pairs 577 

from the initial non-functional links as final non-functional links using the criterion 578 

that the functional similarity between gene pair that are smaller than the average of 579 

5th percentiles of these simulated background distributions. The semantic similarities 580 

between the GO terms were calculated using the R package of GOSim (Fröhlich et al., 581 
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2007). Functional similarities between genes in terms of the GO space were calculated 582 

using the metric adopted from (Chabalier et al., 2007).  583 

Since our gold standards included only a subset of true functional and non-functional 584 

link, we evaluated the predictive performance of our method for gene co-expression 585 

network inference using the fold enrichment measure. The fold of enrichment was 586 

calculated as a function of the confidence score cutoff (k) in the edge list of the 587 

inferred network by the following formula: 588 

n Mk
m N

k
×                               (1), 589 

where, nk is the number of true positive or true negative functional links in the kth 590 

cutoff of the edge list; mk is the number of edges of the inferred network in the kth 591 

cutoff; M denotes the number of true positive or true negative functional links in the 592 

gold standards and N represents the number of all possible interactions in the genome 593 

space. The network visualization was carried out using both Cytoscape (Cline et al., 594 

2007) and BioLayout Express3D (Theocharidis et al., 2009).   595 

The function enrichment of co-expression neighborhoods was calculated as the ratio 596 

of the relative occurrence in gene set of co-expression neighborhoods to the relative 597 

occurrence in genome using Fisher’s exact test. The p-value was further adjusted by 598 

Benjamini-Hochberg correction for multiple hypotheses testing. The corrected p-value 599 

smaller than 0.05, was considered as enriched. To evaluate the predictive performance 600 

of our RNA-seq-based network for inferring gene function using the co-expression 601 

neighborhoods, we adopted the gene-centric evaluation, which were provided in the 602 

Critical Assessment of protein Function Annotation (CAFA) project (Tzafrir et al., 603 

2003). For this metric, the GO terms of each gene (gold and predicted) are propagated 604 

up the GO hierarchy to the root, obtaining a set of terms. In this process, for each 605 

scored GO term, we propagated its score (-log(q-value) of Fisher’s exact test) toward 606 

the root of the ontology such that each parent term received the highest score among 607 

its children. The Sensitivity (Recall), 1-specificity, Precision and maximum F-measure 608 

(F-max) was calculated using the same method as in the CAFA project. The Receiver 609 

Operating Characteristics (ROC) curve was drawn by changing the threshold and 610 

plotting the Sensitivity versus the 1-specificity and then calculated the score of Area 611 

Under Curve. Similarly, we plotted the Precision-Recall (PR) curve by altering the 612 

threshold and plotting the Precision versus the Recall. Semantic similarity scores 613 

between the GO term pairs were calculated using the R package of GOSim. 614 

Analysis of circRNA genes 615 
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The circular RNA (circRNA) genes were predicted using 618 novel rice RNA-seq 616 

samples downloaded from the NCBI Sequence Read Archive (accessed on February 617 

15, 2016) by CIRI software (Gao et al., 2015). We calculated the counts of junction 618 

reads of a circRNA as its relative expression abundance. Then, we integrated the 619 

aligned reads number of known rice genes using HTSeq-count program (v0.5.4) and 620 

expression values of circRNAs into a numeric expression matrix. We removed the 621 

circRNAs from the matrix if it was identified in less than 3 RNA-seq samples. Using 622 

the filtered matrix, we built three initial gene co-expression networks by WGCNA, 623 

GGM and BC3NET. Based on this, we selected the co-expression links contained in 624 

more than one network of the three initial networks to obtain the final co-expression 625 

network. Although only the numbers of junction reads were adopted to measure the 626 

expression abundances of circRNAs, this method is simple and effective for building 627 

co-expression network, given the reads were distributed uniformly along circRNA. 628 
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 782 

Figure Legends 783 

Fig.1 Enrichment folds of different algorithms for co-expression network inference. A) Comparing to GGM with 784 

positive links. B) Comparing to WGCNA with positive links. C) Comparing with BC3NET with positive links. D) 785 

Comparing with GGM with negative links. E) Comparing with WGCNA with negative links. F) Comparing with 786 

BC3NET with negative links. In the legends, the RAW, FPKM, UQ, TMM, RLE and VST represent the networks 787 

obtained by the single RNA-seq dataset; INT indicates intra-method consensus networks established by integrating 788 

the predictions of different RNA-seq datasets, EBM denotes high-quality gene co-expression network obtained by 789 

integrating all intra-method consensus networks 790 

Fig.2 Performance evaluation of our network for predicting gene function. A) Receiver Operating Characteristics 791 

(ROC) curve. B) Precision-Recall (PR) curve. In the legends, Not-weighted indicates the evaluation parameters 792 

were calculated by the standard method of CAFA project; Weighted indicates the evaluation parameters were 793 

calculated by the weighted method of CAFA project 794 

Fig.3 Subnetworks derived from the gene-guide approach. The subnetworks include all other nodes within two 795 

layer connections from guide genes. A) OsMADS16 involved in flower development; B) OsCESA4 involved in cell 796 

wall biosynthesis. Within each subnetwork, red nodes represent the experimentally verified genes related to 797 

corresponding biological functions. Pink nodes indicate the genes whose Arabidopsis homologs are experimentally 798 

verified relating to the corresponding biological processes. Blue nodes represent potential function-related genes, 799 

and the gray nodes denote that the genes with unknown functions or annotated with irrelevant functions. The size 800 

of node is proportional to the number of connected genes 801 

Fig.4 Subnetworks derived from the known cis-regulatory motif-guide approach. A) WTTSSCSS combined with 802 

the E2F transcription factors involved in cell cycle. B) TTGACY combined with the WRKY transcription factors 803 

involved in stress response. Within each subnetwork, red nodes represent the experimentally verified genes related 804 

to corresponding biological functions. Pink nodes indicate the genes whose Arabidopsis thaliana homologs are 805 

experimentally verified to associate with the corresponding biological functions. Blue nodes denote potential 806 
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function-related genes. Gray nodes indicate that the genes with unknown functions or annotated with irrelevant 807 

functions. The size of node is proportional to the number of connected genes 808 

Fig.5 Co-expression subnetwork derived from guide-gene approach for XLOC_057324 associated with panicle 809 

development and fertility. Within the subnetwork, red nodes represent the experimentally verified genes related to 810 

corresponding biological functions; chrysoidine nodes represent transcription factors; pink nodes indicate the 811 

genes whose Arabidopsis thaliana homologues are experimentally verified to related to corresponding biological 812 

functions; blue nodes represent that the genes are potential function-related, and the gray nodes indicate that the 813 

genes are function unknown or annotated with unrelated functions 814 

Fig.6 Flowchart of high-quality RNA-seq-based gene co-expression network inference 815 
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