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 14	

Abstract 15	

 16	

Antibiotic resistance constitutes one of the most pressing public health concerns. 17	

Antimicrobial peptides are considered part of a solution to this problem, because they 18	

are new agents that add to our repertoire. Importantly, antimicrobial peptides differ 19	

fundamentally from antibiotics in their pharmacodynamic characteristics. Here we 20	

implement these differences within a theoretical framework to predict the evolution of 21	

resistance against antimicrobial peptides and compare it to antibiotic resistance. Our 22	

analysis of resistance evolution finds that pharmacodynamic differences all combine 23	

to produce a much lower probability that resistance will evolve against antimicrobial 24	

peptides. The finding can be generalized to all drugs with pharmacodynamics similar 25	

to AMPs. Pharmacodynamic concepts are familiar to most practitioners of medical 26	

microbiology, and data can be easily obtained for any drug or drug combination. Our 27	

theoretical and conceptual framework is therefore widely applicable and can help 28	

avoid resistance evolution if implemented in antibiotic stewardship schemes or the 29	

rational choice of new drug candidates.   30	

  31	
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 32	

Antibiotic resistance is prevalent 1 and evolves quickly. On average it takes two years 33	

from the introduction of a new antibiotic to the clinic until resistant strains emerge. 34	

Prudent use and the introduction and development of novel antibiotics are currently 35	

considered to be the most effective ways to tackle resistance evolution2. The 36	

prediction of when and how antibiotic resistance evolves and spreads is notoriously 37	

difficult, but would be extremely informative for antibiotic stewardship and the 38	

development of new drugs. 39	

Amongst the new drugs under development are antimicrobial peptides (AMPs)3. One 40	

of the alleged advantages of AMPs is that bacterial resistance would evolve much 41	

more slowly than against antibiotics4,5, a highly desirable property6.  42	

We have recently demonstrated that AMPs affect growing bacterial populations 43	

differently from antibiotics, i.e. they differ in their pharmacodynamics7. 44	

Pharmacodynamic characteristics of susceptible and resistant bacterial strains can be 45	

used to predict the evolution of resistance8. Such predictions are based on a concept 46	

called the ‘mutant selection window’ (MSW, Fig 1)9,10.  The MSW has been 47	

successfully applied in animal models, demonstrating its value to understand 48	

resistance emergence in vivo11. 49	

The width of the mutant selection window is partly determined by the steepness of the 50	

pharmacodynamic curve (see Fig 1). Importantly the concentration range between no 51	

killing and maximal killing is much narrower for AMPs than antibiotics, resulting in a 52	

much steeper curve. The maximum killing rate of AMPs is much higher than of 53	

antibiotics, as reflected in quicker killing time12 (see also Fig S1). Another difference 54	

relevant to the evolution of resistance is the finding that many antibiotics increase 55	

mutation rates of bacteria13,14, but AMPs do not show such an effect13,14.   56	
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Here we build on a theoretical framework to study pharmacodynamics15,16. We use an 57	

approach that explicitly models the steepness of the curve15, which is not incorporated 58	

in many other pharmacodynamic models17. We use this approach as this allows to 59	

calculate the size of the mutant selection window that generalizes over all possible 60	

resistant strains. Gullberg et al. demonstrated10 that resistant mutants are already 61	

under positive selection below the MIC (minimum inhibitory concentration) of the 62	

susceptible strain. We therefore use the mutant selection concentration (MSC, Fig 1A) 63	

as the lower boundary, not the MIC of the sensitive strain that was used previously8,9. 64	

We show, based on empirically estimated parameters that the probability of resistance 65	

evolution against AMPs, defined by pharmacodynamic properties only, is much lower 66	

than for antibiotics. We therefore provide a robust and generalizable predictive 67	

framework for studying the evolution of drug resistance. This is particularly useful to 68	

apply when new drugs are introduced, i.e. before resistance has evolved.  69	

 70	

 71	

Results 72	

 73	

The mutant selection window (Fig 1) shows the concentration of an antimicrobial 74	

under which susceptible strains are suppressed, but resistant strains can still grow9. 75	

We show that the lower bound of the mutant selection window (MSC) can be 76	

calculated based solely on the pharmacodynamics of the susceptible strains and the 77	

costs of resistance (Fig 1A, Fig 2A, equation 3). The cost is defined here as the 78	

reduction of growth rate in a drug free environment.   79	

 80	
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The pharmacodynamics of AMPs and antibiotics differ significantly7: the 81	

pharmacodynamic curves of AMPs are much steeper as captured by a higher Hill 82	

coefficient κ (see Fig 2A); the step from a concentration with no effect to a killing 83	

concentration is therefore much smaller. This feature is likely due to a higher number 84	

of “hits” that AMPs need to deliver to bacteria to kill them and perhaps cooperative 85	

binding of AMPs molecules to the cell membrane18. This results in a narrower MSW 86	

for AMPs than antibiotics The MSW opens at lower concentrations when the costs of 87	

resistance are low. Our re-analysis of data on antibiotic resistance against a variety of 88	

antibiotics in a number of different bacterial species (data from19) shows that the 89	

upper bound of the MSW correlates with the cost of resistance (Fig 2B). Taken 90	

together we are now in a position to estimate the size of the MSW for any drug, if 91	

estimates of pharmacodynamic parameters based on the sensitive strains, including 92	

the MIC, the maximum effect and the steepness of the pharmacodynamics curve are 93	

available (Fig 1A, Fig 2C).   94	

 95	

Next we wanted to explore if the differences between AMPs and antibiotics in the 96	

width of the MSW correlated with different probabilities of drug resistance evolution 97	

within a host. A further difference between AMPs and antibiotics is that antibiotics 98	

increase mutagenesis but AMPs do not13,14. We incorporated this difference in 99	

addition to the difference in the steepness of the pharmacodynamics relationship into 100	

a stochastic model describing bacterial replication and evolution under selection 101	

pressure from AMPs. We consider two cases here: (a) do resistant mutants emerge 102	

and (b) do resistant mutants drive the susceptible strains to extinction?  103	

 104	
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We find that resistance emerges with a much higher probability for the parameter 105	

settings of antibiotics (top row Fig 3B) than for AMPs in our simulations (bottom row 106	

Fig 3B, Fig 3A). All intermediate cases, where we simulated changes in one or two of 107	

the parameters kappa, mutation rate and maximum effect, also reduce the probability 108	

of resistance emergence compared to ‘pure’ antibiotics.  109	

We also find that resistant mutants are much more likely to drive the susceptible 110	

bacterial populations to extinction under antibiotic than under AMP treatment (Fig 3 111	

B). Again, this result also holds when we study intermediate cases (Fig S4). In 112	

summary our results show that the application of drugs with low κ, mutation elevation 113	

and low maximum effect, i.e. characteristics found in most common antibiotics, 114	

inherently bears a high risk of causing the evolution of resistance.   115	

We have shown before7 that combinations of AMPs have higher κ and lower MICs 116	

than individual AMPs. This also results in differences in resistance selection and the 117	

extinction of susceptible strains, consistent with the results above.  118	

 119	

Day et al 20 provided an approach to calculate a resistance hazard: a measure that 120	

combines the time of resistance emergence and its selection within a host. We 121	

calculated similar resistance hazard for AMPs in comparison to antibiotics. The 122	

simulation results show (Fig 3C) that the hazard is much higher and the concentration 123	

range much wider under antibiotic treatment than under AMP treatment. Also, when 124	

resistance evolves, it emerges earlier in the antibiotic scenario than in the AMP 125	

scenario at low concentrations (Fig 3D). Time of emergence is mostly affected by κ 126	

and mutation rate:  higher κ and mutation rate confer delayed resistance emergency 127	

(Fig S5).  128	
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Increasing κ and/or the maximum effect are hence desirable for any drug as well as 129	

advantageous to hosts managing their microbiota using AMPs. Our model therefore 130	

provides useful information for the development of new antimicrobial drugs: higher κ 131	

and maximum effect will impose much weaker selection on the bacteria to evolve 132	

resistance, i.e. will be less likely to cause the evolution of resistance. Currently mostly 133	

AMPs display these properties, but it is likely that new antibiotics that target the cell 134	

membrane or wall display similar pharmacodynamics.  135	

 136	

 137	

Discussion 138	

 139	

For the purpose of our approach, we employed theory that is blind to the molecular 140	

mechanism of killing. Instead we focused on differences between AMPs and 141	

antibiotics that seem to be rather generalizable: pharmacodynamics and mutagenesis. 142	

Our model predictions clearly show that AMPs, or in fact any antimicrobial drug with 143	

similar pharmacodynamics, are much less likely to select drug-resistant mutants than 144	

antibiotics because of the smaller size of the MSW. 145	

The smaller MSW under AMPs is a direct consequence of the fact that their 146	

pharmacodynamics functions are steeper7. It is important to note that this relationship 147	

hinges on the realization that the window opens at the concentration at which the 148	

resistant strains have a higher growth rate than the sensitive strain, well below the 149	

MIC of the sensitive strain10. Thus, a high Hill coefficient (κ) would constitute a 150	

promising characteristic of new antimicrobials. The other characteristics in which 151	

AMPs differ from antibiotics – the mutagenesis and the maximum effect – affect 152	

mostly the time until resistance emerges, but not the size of the MSW. Because this 153	
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time becomes shorter with higher population sizes, these characteristics may have less 154	

significance for clinical infections 21. 155	

 156	

One recommendation derived from our modeling approach is that drugs that show 157	

pharmacodynamics resembling AMPs should be good candidates for slowing the 158	

evolution of resistance. Interestingly, combinations of AMPs result in increased κ, 159	

which our model predicts to bear lower risks of evolution of resistance. It is often 160	

argued that combination therapy reduces resistance evolution (but also see 22), as it is 161	

supposedly more difficult to evolve resistance against more than one mechanism at a 162	

time. Our approach indicates that combination therapy might even prove effective if 163	

there are mutations that confer complete cross-resistance to the drugs in the 164	

combination.  165	

 166	

It has been proposed that bacterial resistance evolution against AMPs is highly 167	

unlikely 4,5. Yet, in vitro experimental evolution has demonstrated that resistance to 168	

AMPs can arise 23–25 and AMP-resistance mechanisms have been characterized 26. 169	

Against antibiotics, resistance can increase the MIC by 2-3 orders of magnitude in a 170	

relatively small founder population, a range that has not been observed for AMPs. 171	

Though AMPs provide promising leads for drug development 3, their conserved 172	

killing mechanisms also argue for caution. In their paper ‘arming the enemy’, Bell et 173	

al. 27 discussed the high likelihood of cross-resistance against, for example, human 174	

AMPs. This problem has hardly been studied. Our analysis suggests how one could 175	

reap the benefits of AMPs without arming the enemy: we should rely on agents with 176	

AMP-like pharmacodynamics. This in principle can be done without using AMPs 177	

themselves. 178	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 23, 2017. ; https://doi.org/10.1101/138107doi: bioRxiv preprint 

https://doi.org/10.1101/138107


	 9	

 179	

Pharmacodynamic estimates can be easily and routinely obtained. This can also be 180	

achieved for drug combinations7. A report by the Leopoldina, the German National 181	

Academy of Sciences, recently recommended to use new drugs only in combination 182	

to avoid fast resistance evolution28. The scientific support for this notion is limited 183	

and controversial22,29,30. In clinical situations pharmacodynamic approaches can 184	

provide a first informed guess. Also, the risk of resistance evolution based on the 185	

pharmacodynamics of drug candidates will be a useful additional criterion to develop 186	

new drugs.  We would also like to note that the concept of the mutant selection 187	

window has been applied to understand antiviral resistance evolution31, and hence our 188	

approach has the potential to inform antiviral resistance research and ultimately 189	

treatment as well.  190	

 191	

 192	

Materials and Methods  193	

To inform the parameterization of the predictive models, we used two main sources. 194	

The pharmacodynamic parameters are from our own study determining  195	

pharmacodynamics for AMPs and antibiotics under standardized conditions7. The 196	

estimates of mutation rates again are from our own comparative study on mutation 197	

rates under AMP and AB treatment13 . 198	

 199	

 Calculation of the size of the mutant selection window 200	

The size of the mutant selection window (MSW) depends on the lower and upper 201	

bound of the MSW and is calculated as  202	

.= R
MSW

MICsize
MSC

  (1) 203	
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The lower bound of the MSW is the concentration for which the net growth rate of the 204	

resistant strain is equal to the net growth rate sensitive strain and is called the minimal 205	

selective concentration (MSC). The upper bound of the MSW is the MIC of the 206	

resistant strain (MICR) (Fig 1 A) . 207	

To analytically describe the MSW, we use the pharmacodynamic (PD) function 𝜓(𝑎),  208	

which mathematical describes the net growth rate with a Hill function:  209	

( ) ( )

( )( )
( ) /

/
/

κ

κ

ψ ψ

ψ ψ
ψ

ψ ψ

= −

−
= −

−

max

max min
max

min max

a d a

a MIC
a MIC

  (2) 210	

 211	

(7,15,16). Here, a is the antimicrobial drug concentration, ψ(a = 0) = ψmax, d(a) is the 212	

effect of the antimicrobial with the dose a,  and ψ(a → 0) = ψmin . Therefore, the 213	

maximal effect Emax is Emax = ψmax − ψmin. The parameter 𝑀𝐼𝐶 denotes the 214	

concentration that results in zero net growth (this definition differs from the "official" 215	

MIC definition by Mouton et al 32). The Hill coefficient κ describes the steepness of 216	

the curve; functions with higher kappa describe steeper curves (Fig 2A). For 217	

illustration of the pharamcodynamic parameters see  Fig S3).  Cost of resistance 𝑐 is 218	

included as a reduction of the maximum growth rate of the resistant strain in absence 219	

of antimicrobials with c = 1-ψmax /ψmin (Fig 1A, 2A).  The pharamcodynamic function 220	

can be descirbed for both a drug susceptible strain S and a drug-resistant strain R, with 221	

ψS(a) and ψR(a) , respectively.The MSC is calculated as ψS(a) = ψR(a). We assume 222	

that the net growth rate of the resistant strain below the MSC is approximately at the 223	

same level as without antimicrobials and therefore set ψR(a) ≈ ψmax,S(1−c) = ψR,approx , 224	

for0 < a < MSC (illustrated in Fig 2A).  This is valid because >>R SMIC MIC  and 225	

𝜅! >≈ 𝜅!. The analytic solution of the MSC is 226	
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1

1

κ
ψ

ψ ψ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠− +

s

min,S

max,S m

/

s
in,S( c

c
MSC MI

)
C .  (3) 227	

  228	

Model of evolution and prediction of resistance 229	

To study resistance evolution we used a mathematical model that incorporates 230	

pharmacodynamics (PD) and pharmacokinetics (PK) and captures population 231	

dynamics of bacterial populations under treatment with antimicrobial drugs15. We ran 232	

stochastic simulations and calculated the probability of resistance emergence, the 233	

probability of the resistant strain, the time to resistance emergence and the risk of 234	

resistance (the resistance hazard20).  235	

 236	

To simulate treatment, we consider a patient harboring 106 susceptible bacteria. 237	

Bacterial mutation rates are assumed to depend on the antimicrobial used for 238	

treatment (antibiotics or AMPs). When a resistant strain arises it is assumed to have 239	

an MIC ten-fold that of susceptible wild-type strain. For simplicity, we only consider 240	

one type of mutant. Antimicrobials are administered every day (see Supplement for 241	

pharmacokinetics), and treatment lasts one week.  242	

The population dynamics of the susceptible and resistant strains is captured in the 243	

following system of differential equations:  244	

(1 ) 1 [ ( , ) ]

1 1 [ ( , ) ] ,

µ

µ

+⎛ ⎞= − − − +⎜ ⎟
⎝ ⎠

+ +⎛ ⎞ ⎛ ⎞= − + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

s s n

r s r n

dS S Rr S d a t d S
dt K
dR S R S Rr R r S d a t d R
dt K K

  245	

 (4) 246	
 247	

Where S represents the wild-type strain and R represents the resistant strain. r is the 248	

replication rate, µ is the mutation rate. d(a,t) is the killing rate of antibiotics or AMPs, 249	

which is in essence described in equation 2, but is now time dependent, with  250	
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( )( )
( )

( ) /
(

( , )
/) /

κ

κ

ψ ψ

ψ ψ

−

−
= max min

min max

a t MIC
a t MIC

d a t   (5) 251	

	252	
since we include time dependent pharmacokinetic function a(t) (Fig S2): 253	

( )[ ( 1) ] [ ( 1) ]( ) , 1, 2, 3τ τ− − − − − −= − =
−∑ Ke ak t n k t na

n a e

Dka t e e n
k k

  254	

 (6) 255	
 256	

Here, ka is the absorption rate, and ke is the decay rate. D is the dose given each time, 257	

n is the number of doses, τ is the dose frequency. We use the average concentration in 258	

the course of treatment to represent the dose level of treatments. Then we calculate 259	

the average concentration,  260	

1 ( )= ∫a a t dt
t

  (7) 261	

 262	

We implemented the model in Equation 3 stochastically using the Gillespie algorithm 263	

33, which particularly allowed us to monitor how frequently mutants arise. Parameters 264	

were selected based on empirical data as stated above. The  net growth rate of wild-265	

type  in the absence of antimicrobials was set as 1. Mutants suffer fixed or resistant-266	

level related costs (see Fig 2). κ of AMPs and antibiotics were set as  5 and 1.5, 267	

respectively 7. ψmin for AMPs is fixed as -50 hour-1; and for antibiotics is fixed as -5 268	

hour-1. Mutation rates in AMPs are 10 times lower than in antibiotics 13. All the 269	

parameters and their values are listed in Table S1. All the pharmacokinetic parameters 270	

are the same in different simulations (see Fig S2). For each set of parameters, cohorts 271	

of five hundred patients were simulated. Successful treatment is defined as complete 272	

clearance of both sensitive and resistant strains at the end of the one-week treatment. 273	

For each cohort of patients, we calculate the probability of treatment success as the 274	

proportion of individuals in whom treatment was successful. In each individual, we 275	
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score the time of emergence of resistance strains, and estimate the resistance hazard 276	

based on the average probability of treatment success and the population size of 277	

bacteria over time. The hazard function can be written as,  278	

1( , ) ( , ) ( ) ( ) ,S R RH a t S a t p a a dt
Kt

ψ→= ∫   (7) 279	

where K is the capacity, S denotes population size of sensitive strain and pS→R is 280	

probability of a treatment developing resistance, which is calculated from the results 281	

of simulations, ψR is the growth rate of resistant strain. Our hazard function calculates 282	

the average proportion of resistant population under certain treatment dose and 283	

duration.  284	

 285	

Implementation 286	

The analysis was performed in R (v. 3.1.3&v. 3.2.2) 34 using RSTUDIO (v. 287	

0.98.1103&0.99.903) 35. The code is available upon request.  288	

 289	

 290	
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401	

402	
Fig 1. The revised mutant selection window and pharmacodynamic parameters. 403	

(a) The mutant selection window (MSW) is defined as the antimicrobial concentration 404	

range in which resistant mutants are selected 9. Following 10, we determine the MSW 405	

using net growth curves of a susceptible strain S and a resistant strain R. 406	

Mathematically, net growth is described with the pharmacodynamic function 𝜓(𝑎) 407	

(15, see Materials and Methods and Fig S3 for details). In short, the function consists 408	
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of the four pharamcodynamic parameters:  net growth in absence of 409	

antibicrobials 𝜓!"#,  net growth in the presence of  a dose of antimicrobials, which 410	

effects the growth maximal, 𝜓!"#, the MIC and the parameter κ, which describes the 411	

steepness of the pharamcodynamic curve. Here, the two pharmacodynamics functions 412	

𝜓!(𝑎) (continuous pink line) and 𝜓!(𝑎) (dotted black line) describe the net growth 413	

of the S and R, respectively, in relation to the drug concentration a. Cost of resistance 414	

𝑐 is included as a reduction of the maximum growth rate of the resistant strain 415	

𝜓!"#,!, with 𝑐 = 1− 𝜓!"#,!/𝜓!"#,!.  Note that with this definition, cost of 416	

resistance is expressed as reduction in net growth rate in absence of antimicrobials (a 417	

= 0). The lower bound of the MSW is the concentration for which the net growth rate 418	

of the resistant strain is equal to the net growth rate of the sensitive strain and is called 419	

the minimal selective concentration (MSC) (see Materials and Methods for analytic 420	

solution). The upper bound is given by the MIC of the resistant strain MICR. We 421	

calculate the size of the MSW as : 𝑠𝑖𝑧𝑒(𝑀𝑆𝑊) = !"!!
!"#

.  (b) The boundaries of the 422	

MSW applied to the pharmacokinetics of the system. 423	

 424	

 425	

 426	

 427	

 428	

 429	

 430	

 431	
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435	
Fig 2. The mutant selection window for arbitrary mutant strains. The two 436	

boundaries of the MSW, MSC and MIC!, are influenced differently by the 437	

pharmacodynamic parameters of the sensitive strain S and the resistant strain R. (a) 438	

The lower boundary of the MSW (MSC) depends primarily on the pharmacodynamic 439	

parameters of the sensitive strain, assuming that the net growth rate of the resistant 440	

strain below the MSC is approximately at the same level as without antimicrobials: 441	

𝜓!(𝑎) ≈ 𝜓!"#,!(1− 𝑐) = 𝜓!,!""#$%, for 0 < 𝑎 < 𝑀𝑆𝐶 (𝜓!: dotted black line; 442	

𝜓!,!""#$%:continuous black line) (see Materials and Methods for details). The effect 443	

of each of the four pharamcodynamic parameters and of the cost of resistance on the 444	

MSC is depicted in Fig S1. We plotted the pharmacodynamic function 𝜓!(𝑎) of two 445	

sensitive strains with varying 𝜅 values: 𝜓!,! 𝑎  representative for Abs with a small  𝜅  446	

(κ = 1.5, pink) and 𝜓!,! 𝑎  representative for AMPs with a large 𝜅  (𝜅 = 5, blue). 447	
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Increasing the 𝜅 value results in increasing the MSC (MSC! (pink) <MSC!(blue)).  (b) 448	

The upper boundary of the MSW is per definition the 𝑀𝐼𝐶!, which is linked to its 449	

fitness cost (data from 19), i.e. the upper boundary 𝑀𝐼𝐶! increases with costs 𝑐 450	

( )10  3.05 1.62= +R

S

MIC
MIClog c  R2 = 0.22) (c) The relationship between cost of resistance, 451	

other pharmacodynamic parameters, and the size of the MSW is complex. Here we 452	

show that both boundaries of the MSW, MSC and MIC!, are influenced by costs and 453	

resulting, the lowest MSW window size is achieved at intermediate cost of resistance. 454	

Parameters used are: 𝜓!"#,! = 1, 𝜓!"#,! = −1, 𝜅! = 5.5 (black), 𝜅! = 2.5 (red), 455	

𝜅! = 1.5 (blue), 𝜅! = 0.5 (green), 𝑀𝐼𝐶! = 10, and ( )10  3.05 1.62= +R

S

MIC
MIClog c . 456	

 457	

 458	

 459	
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 475	

Fig 3. Evolution of drug resistance determined by pharmacodynamics.  476	

(a) At high dose antimicrobials achieve maximal effects and rapidly kill most of the 477	

population, preventing resistance evolution (left). At medium dose, the sensitive strain 478	

will not be eliminated immediately, and resistant mutants emerge (central). At low 479	

dose, the sensitive strain will not be removed, the mutants emerge as well, but will not 480	

quickly reach equilibrium due to substantial fitness costs (right, resistant: pink, 481	

susceptible: blue),  (b) Simulations comparing the range from ‘pure’ antimicrobials 482	

peptides (AMP) to  ‘pure’ antibiotics (AB) by altering µ, ψmin and κ. We find that the 483	

probabilities of treatment failure (left), of failure caused by resistant strains (middle) 484	

and of resistance emergence are always higher under the AB-scenario than the AMP-485	

scenario. A successful treatment requires less AMP than AB. (c) Following 20 we 486	

calculate the resistance hazard as the time-averaged proportion of mutants in a patient 487	

under a particular treatment dose. We find that AMPs are much less likely to select 488	

for resistance across concentrations than antibiotics (Inset graph: bacterial counts 489	

corresponding to the hazards). (d) Time to resistance is much longer under AMP than 490	

AB treatment. The parameters are: 𝜓!"#,! = 1, 𝜓!!",! = 0.9, 𝜅!" = 1.5, 𝜅!"# =491	
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5, 𝜓!!",!" = −5, 𝜓!!",!"# = −50, 𝑀𝐼𝐶! = 10, 𝑀𝐼𝐶! = 100,. 𝜇!" = 10!!, 492	

𝜇!"# = 10!!, 𝑘! = 0.5 , 𝑘! = 0.2, 𝑑! = 0.01, 𝜏 = 1/24.  493	

 494	
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