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 20	

Abstract 21	

 22	

Antibiotic resistance constitutes one of the most pressing public health concerns. 23	

Antimicrobial peptides of multicellular organisms are considered part of a solution to 24	

this problem, and AMPs produced by bacteria such as colistin are last resort drugs. 25	

Importantly, antimicrobial peptides differ from many antibiotics in their 26	

pharmacodynamic characteristics. Here we implement these differences within a 27	

theoretical framework to predict the evolution of resistance against antimicrobial 28	

peptides and compare it to antibiotic resistance. Our analysis of resistance evolution 29	

finds that pharmacodynamic differences all combine to produce a much lower 30	

probability that resistance will evolve against antimicrobial peptides. The finding can 31	

be generalized to all drugs with pharmacodynamics similar to AMPs. 32	

Pharmacodynamic concepts are familiar to most practitioners of medical 33	

microbiology, and data can be easily obtained for any drug or drug combination. Our 34	

theoretical and conceptual framework is therefore widely applicable and can help 35	

avoid resistance evolution if implemented in antibiotic stewardship schemes or the 36	

rational choice of new drug candidates.   37	

  38	
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 39	

 40	

Antibiotic resistance is prevalent (1) and evolves quickly. It takes only a few years 41	

from the introduction of a new antibiotic to the clinic until resistant strains emerge(2). 42	

Prudent use and the introduction and development of novel antibiotics are currently 43	

considered to be the most effective ways to tackle resistance evolution(3). The 44	

prediction of when and how antibiotic resistance evolves and spreads is notoriously 45	

difficult, but would be extremely informative for antibiotic stewardship and the 46	

development of new drugs. 47	

Amongst the new drugs under development are antimicrobial peptides (AMPs)(4). 48	

AMPs are peptides that have spatially explicit hydrophobic and cationic residues(5). 49	

Note that for example polymixins (including colistin) are usually subsumed under 50	

antibiotics, also fall into this category as they are AMPs of bacterial origin(6),(7). One 51	

of the alleged advantages of AMPs is that bacterial resistance would evolve much 52	

more slowly than against antibiotics(5, 8), a highly desirable property(9).  53	

We have recently demonstrated that AMPs from multicellular organisms affect 54	

growing bacterial populations differently from antibiotics, i.e. they differ in their 55	

pharmacodynamics (or dose-response relationship)(10). A similar observation has 56	

been reported for colisitin a last resort drug to treat Pseudomonas infections(11) 57	

.Pharmacodynamic characteristics of susceptible and resistant bacterial strains can be 58	

used to illustrate the selection of resistance under treatment with range of 59	

dosage(12).Such application is based on the concept of the ‘mutant selection window’ 60	

(MSW, Fig 1)(13, 14).  The MSW has been successfully applied in animal models, 61	

demonstrating its value to understand resistance emergence in vivo(15). 62	
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The width of the mutant selection window is partly determined by the steepness of the 63	

pharmacodynamic curve (see Fig 1). Importantly the concentration range between no 64	

killing and maximal killing is much narrower for AMPs than antibiotics, resulting in a 65	

much steeper curve. The maximum killing rate of AMPs is much higher than of 66	

antibiotics, as reflected in quicker killing time(16). Another difference relevant to the 67	

evolution of resistance is the finding that many antibiotics increase mutation rates of 68	

bacteria(17, 18),(19), but the AMPs tested so far do not show such an effect as they 69	

do not elicit bacterial DNA damage responses (17, 18).   70	

Here we use a pharmacodynamics approach that has been widely used to describe 71	

sigmoid dose-response relationships (20, 21),(22, 23) to study the evolution of 72	

resistance of a homogeneous population. Our work uses the formulation of 73	

pharmacodynamic function from Regoes et al(20). We particularly explored how the 74	

steepness of the pharmacodynamic curve (described by the the Hill coefficient κ), 75	

together with other pharmacodynamic parameters determine the probability of 76	

resistance evolution(20). The potential importance of the Hill coefficient κ is often 77	

overlooked  in many pharmacodynamic models, where it simply set to 1 for all 78	

drugs(24). Recent work includes the Hill coefficient (25, 26), indicating the 79	

importance of this pharmacodynamic parameter. 80	

We use this approach with different parameter values for κ, derived from empirical 81	

data, as this allows us to calculate the size of the mutant selection window that 82	

generalizes over all possible resistant strains. Gullberg et al. demonstrated(14) that 83	

resistant mutants are already under positive selection below the MIC (minimum 84	

inhibitory concentration) of the susceptible strain. We therefore use the mutant 85	

selection concentration (MSC, Fig 1A) as the lower boundary, not the MIC of the 86	

sensitive strain that was used previously(12, 13). Using empirical parameter estimates 87	
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for AMPs and antibiotics, we show that the probability of resistance evolution against 88	

AMPs (or any drug with similar pharmacodynamics properties) is much lower than 89	

for antibiotics. We therefore provide a robust and generalizable predictive framework 90	

for studying the evolution of drug resistance. This is particularly useful to apply when 91	

new drugs are introduced, i.e. before resistance has evolved.  92	

 93	

 94	

Results 95	

 96	

The mutant selection window (Fig 1) shows the concentration of an antimicrobial 97	

under which susceptible strains are suppressed, but resistant strains can still grow(13). 98	

We show that the lower bound of the mutant selection window (MSC) can be 99	

calculated based solely on the pharmacodynamics of the susceptible strains and the 100	

costs of resistance (Fig 1A, Fig 2A, equation 3). The cost is defined here as the 101	

reduction of growth rate in a drug free environment.   102	

 103	

The pharmacodynamics of AMPs and antibiotics differ significantly(10): the 104	

pharmacodynamic curves of AMPs are much steeper as captured by a higher Hill 105	

coefficient κ (see Fig 2A); the step from a concentration with no effect to a killing 106	

concentration is therefore much smaller. This feature is likely due to a higher number 107	

of “hits” that AMPs need to deliver to bacteria to kill them and perhaps cooperative 108	

binding of AMPs molecules to the cell membrane(27). This results in a narrower 109	

MSW for AMPs than antibiotics The MSW opens at lower concentrations when the 110	

costs of resistance are low. Our re-analysis of data on antibiotic resistance against a 111	

variety of antibiotics in a number of different bacterial species (data from(28)) shows 112	
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that the upper bound of the MSW correlates with the cost of resistance (Fig 2B). 113	

Taken together we are now in a position to estimate the size of the MSW for any 114	

drug, if estimates of pharmacodynamic parameters based on the sensitive strains, 115	

including the MIC, the maximum effect and the steepness of the pharmacodynamics 116	

curve are available (Fig 1A, Fig 2C).   117	

 118	

Next we wanted to explore if the differences between AMPs and antibiotics in the 119	

width of the MSW correlated with different probabilities of drug resistance evolution 120	

within a host. A further difference between AMPs and antibiotics is that some 121	

antibiotics increase mutagenesis but AMPs do not(17, 18). We incorporated this 122	

difference in addition to the difference in the steepness of the pharmacodynamics 123	

relationship into a stochastic model describing bacterial replication and evolution 124	

under selection pressure from AMPs. We consider two cases here: (a) do resistant 125	

mutants emerge (answering this question requires a stochastic model) and (b) do 126	

resistant mutants drive the susceptible strains to extinction?  127	

 128	

We find that resistance emerges with a much higher probability for the parameter 129	

settings of antibiotics (top row Fig 3B) than for AMPs in our simulations (bottom row 130	

Fig 3B, Fig 3A). All intermediate cases, where we simulated changes in one or two of 131	

the parameters κ mutation rate and maximum effect, also reduce the probability of 132	

resistance emergence compared to ‘pure’ antibiotics.  133	

We also find that resistant mutants are much more likely to drive the susceptible 134	

bacterial populations to extinction under antibiotic than under AMP treatment (Fig 3 135	

B). Again, this result also holds when we study intermediate cases. In summary, our 136	

results show that the application of drugs with low κ, mutation elevation and low 137	
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maximum effect, i.e. characteristics found in most common antibiotics, inherently 138	

bears a high risk of causing the evolution of resistance.   139	

We have shown before(10) that combinations of AMPs have higher κ and lower MICs 140	

than individual AMPs. This also results in differences in resistance selection and the 141	

extinction of susceptible strains, consistent with the results above.  142	

 143	

Day et al (29) provided an approach to calculate a resistance hazard: a measure that 144	

combines the time of resistance emergence and its selection within a host. We 145	

calculated similar resistance hazard for AMPs in comparison to antibiotics. The 146	

simulation results show (Fig 3C) that the hazard is much higher and the concentration 147	

range much wider under antibiotic treatment than under AMP treatment. Also, when 148	

resistance evolves, it emerges earlier in the antibiotic scenario than in the AMP 149	

scenario at low concentrations (Fig 3D). In certain concentrations (for example, 150	

around MIC in our simulation), resistance emerges earlier in AMP than in antibiotics 151	

(Fig 3D). Time of emergence is mostly affected by κ and mutation rate:  higher κ and 152	

lower mutation rate, the latter more important when population sizes are small, confer 153	

delayed resistance emergency (Fig S4).  154	

 155	

 156	

Discussion 157	

Our predictions suggest that AMPs, or in fact any antimicrobial drug with similar 158	

pharmacodynamics, are much less likely to select drug-resistant mutants than 159	

antimicrobials with antibiotic-like characteristics. Our theory is blind to the molecular 160	

mechanism of action but  captures the dynamically relevant aspects of action.  161	
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We assume that pharmacodynamics and mutagenic properties of AMPs are 162	

significantly different from antibiotics. This assumption is based on limited data of 163	

AMPs in the literature(10, 17). More experiments with a variety of antimicrobial 164	

peptides are needed to determine if AMP like characteristics can be indeed 165	

generalized and if these characteristics are significant different from antibiotics. 166	

 167	

In the light of our results, increasing κ and/or the maximum effect are desirable for 168	

any drug as well as advantageous to hosts managing their microbiota using AMPs. 169	

Our model therefore provides useful information for the development of new 170	

antimicrobial drugs: higher κ and maximum effect will impose much weaker selection 171	

on the bacteria to evolve resistance in lower concentrations, and clear the bacterial 172	

population more quickly in higher concentration which will, in turn, reduce the 173	

probability of resistance emergence. Currently mostly AMPs display these properties, 174	

but it is likely that new antibiotics that target the cell membrane or wall display 175	

similar pharmacodynamics.  176	

 177	

The smaller MSW under AMPs is a direct consequence of the steeper 178	

pharmacodynamic functions(10). It is important to note that this relationship hinges 179	

on the realization that the window opens at the concentration at which the resistant 180	

strains have a higher growth rate than the sensitive strain, well below the MIC of the 181	

sensitive strain(14). Thus, a high Hill coefficient (κ) would constitute a promising 182	

characteristic of new antimicrobials. The other characteristics in which AMPs differ 183	

from antibiotics – mutagenesis and maximum effect – affect mostly the time until 184	

resistance emerges, but not the size of the MSW. Because this time becomes shorter 185	
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with higher population sizes, these characteristics may have less significance for 186	

clinical infections (30). 187	

 188	

We find that time to resistance emergence in AMPs is longer than in antibiotics when 189	

the concentration is low (subMIC). Around MIC resistance against AMPs seems to 190	

emerge quicker than against antibiotics (FIG D). This counterintuitive result is 191	

explained by the fast removal of the sensitive strains caused by the combination of 192	

high κ and low psimin and is not related to the mutation rate per se. Overall the 193	

probability of resistance emergence is lower for AMPs as higher concentrations 194	

quickly remove the sensitive population. Chevereau et al.(31) reached a different 195	

conclusion using a different modeling approach. They modeled the 196	

pharmacodynamics only for positive growth and continuously adjusted the drug 197	

concentration to maintain the overall growth rate at half of the maximal in the 198	

simulation. In this scenario, drugs with sensitive dose-response would facilitate 199	

evolution due to the wide distribution of fitness, a scenario that seems unlikely in real 200	

antimicrobial treatment. 201	

 202	

One recommendation derived from our modeling approach is that drugs that show 203	

pharmacodynamics resembling AMPs should be good candidates for slowing the 204	

evolution of resistance. Interestingly, combinations of AMPs result in increased κ, 205	

which our model predicts to bear lower risks of evolution of resistance(10). It is often 206	

argued that combination therapy reduces resistance evolution (but also see (32)), as it 207	

is supposedly more difficult to evolve resistance against more than one mechanism at 208	

a time. Our approach indicates that combination therapy might even prove effective if 209	
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there are mutations that confer complete cross-resistance to the drugs in the 210	

combination.  211	

 212	

It has been proposed that bacterial resistance evolution against AMPs is highly 213	

unlikely (5, 8). Yet, in vitro experimental evolution has demonstrated that resistance 214	

to AMPs can arise (33–35) and AMP-resistance mechanisms have been characterized 215	

(36). Against antibiotics, resistance can increase the MIC by 2-3 orders of magnitude 216	

in a relatively small bacterial population(37), a range that has not been observed for 217	

AMPs. Though AMPs provide promising leads for drug development (4), their 218	

conserved killing mechanisms also argue for caution. In their paper ‘arming the 219	

enemy’, Bell et al.(38) discussed the high likelihood of cross-resistance against, for 220	

example, human AMPs. This problem has hardly been studied. Our analysis suggests 221	

how one could reap the benefits of AMPs without arming the enemy: we should rely 222	

on agents with AMP-like pharmacodynamics. This in principle can be adopted 223	

without using AMPs themselves. 224	

 225	

Pharmacodynamic estimates can be easily and routinely obtained from time-kill 226	

curves. This can also be achieved for drug combinations(10). A report by the 227	

Leopoldina, the German National Academy of Sciences, recently recommended to 228	

use new drugs only in combination to avoid fast resistance evolution(39). The 229	

scientific support for this notion is limited and controversial(32, 40, 41). In clinical 230	

situations pharmacodynamic approaches can provide a first informed guess. Also, the 231	

risk of resistance evolution based on the pharmacodynamics of drug candidates will 232	

be a useful additional criterion to develop new drugs.  We would also like to note that 233	

the concept of the mutant selection window has been applied to understand antiviral 234	
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resistance evolution(42), and hence our approach has the potential to inform antiviral 235	

resistance research and ultimately treatment as well.  236	

In order to generate predictions on resistance evolution based on pharmacodynamics, 237	

one of our main goals of the project, we made a number of simplifying assumptions.  238	

The pharmacodynamics are based on data of initial killing only. Moreover, we 239	

assume homogeneous populations over time and space.  Expanding the framework to 240	

integrate tolerance and resistance is possible but would require pharmacodynamic 241	

estimates and additional functions. Another possible extension of our work would be 242	

to include pharmacodynamic estimates of resistant strains that change over time due 243	

to compensatory mutations and to cross resistance or collateral sensitivity when 244	

exposed to combinations of antimicrobials. Finally, we assumed the same 245	

pharmacokinetics for all cases in our study. As AMPs are currently rarely used 246	

(Colistin being the notable exception), future empirical work will inform realistic 247	

parameter estimates for pharmacokinetics. In all cases however, the basis of any 248	

analysis concerning resistance evolution is the influence of individual 249	

pharmacodynamic parameters, for which we provide a framework.   250	

 251	

  252	

 253	

 254	

Materials and Methods  255	

For the parameterization of the predictive models, we used two main sources. The 256	

pharmacodynamic parameters are taken from one of our own studies that determines 257	

pharmacodynamics for AMPs and antibiotics under standardized conditions(10). In 258	

short, time kill experiments with different AMP concentrations were conducted and 259	
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the slopes of the linear regressions were used to calculate the parameters of the 260	

pharmacodynamic function. Here, we only took into account the intial kill rates and 261	

assumed a homogeneous population structure. The estimates of mutation rates again 262	

are from our own comparative study on mutagenesis under AMP and AB 263	

treatment(17) . 264	

 265	

 Calculation of the size of the mutant selection window 266	

The size of the mutant selection window (MSW) depends on the lower and upper 267	

bound of the MSW and is calculated as  268	

.= R
MSW

MICsize
MSC

  (0) 269	

The lower bound of the MSW is the concentration for which the net growth rate of the 270	

resistant strain is equal to the net growth rate sensitive strain and is called the minimal 271	

selective concentration (MSC). The upper bound of the MSW is the MIC of the 272	

resistant strain (MICR) (Fig 1 A). 273	

To analytically describe the MSW, we use the pharmacodynamic (PD) function 𝜓(𝑎),  274	

which mathematical describes the net growth rate with a Hill function:  275	

( ) ( )

( )( )
( ) /

/
/

κ

κ

ψ ψ

ψ ψ
ψ

ψ ψ

= −

−
= −

−

max

max min
max

min max

a d a

a MIC
a MIC

  (0) 276	

 277	

((10, 20, 21)). Here, a is the antimicrobial drug concentration, ψ(a = 0) = ψmax, d(a) is 278	

the effect of the antimicrobial with the dose a,  and ψ(a → ∞) = ψmin . Therefore, the 279	

maximal effect Emax is Emax = ψmax − ψmin. The parameter 𝑀𝐼𝐶 denotes the 280	

concentration that results in zero net growth (this definition differs from the "official" 281	

MIC definition by Mouton et al (43)). The Hill coefficient κ describes the steepness of 282	

the curve; functions with higher κ describe steeper curves (Fig 2A). For illustration of 283	
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the pharamcodynamic parameters see  Fig S3).  Cost of resistance 𝑐 is included as a 284	

reduction of the maximum growth rate of the resistant strain in absence of 285	

antimicrobials with c = 1-ψmax,R /ψmax,S  (Fig 1A, 2A).  The pharamcodynamic 286	

function can be described for both a drug susceptible strain S and a drug-resistant 287	

strain R, with ψS(a) and ψR(a) , respectively. The MSC is calculated as ψS(a) = ψR(a). 288	

We assume that the net growth rate of the resistant strain below the MSC is, for any 289	

given concentration a, with 0 < a < MSC, approximately at the same level as without 290	

antimicrobials and therefore we set ψR(a) ≈ ψR,approx (illustrated in Fig 2A).   With 291	

ψR,approx. = ψmax,R =  ψmax,S (1−c) , we are able to describe the net growth rate of the 292	

resistant strain with the net growth rate of the sensitive strain ψmax,S and the costs of 293	

resistance c: ψR(a) ≈ ψR,approx=  ψmax,S (1−c). This is valid because >>R SMIC MIC  and 294	

assuming 𝜅! >≈ 𝜅!. The analytic solution of the MSC is 295	

1

1

κ
ψ

ψ ψ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠− +

s

min,S

max,S m

/

s
in,S( c

c
MSC MI

)
C .  (0) 296	

  297	

Analysis	of	the	relationship	between	cost	of	resistance	c	and	MICR	298	

Data(44)	determining	relationship	between	fitness	of	resistant	strains	and	299	

MICR/MICS	was	re-analyzed.	The	dataset	contained	information	about	increase	of	300	

MIC	due	to	resistance	and	fitness	of	the	resistant	strain.	The	dataset	summarizes	301	

cases	of	bacterial	resistance	to	antibiotics.	Similar	data	for	AMPs	have	been	302	

compiled	recently(30)	but	are	yet	too	scarce	to	include	in	the	following	analysis.	303	

We	therefore	assumed	similar	relationships	for	both	antibiotics	and	AMPs.	304	

We	calculated	cost	of	resistance	c	as	c	=	1	–	fitness,	using	n=	128	observations	305	

compiled	in	the	mentioned	dataset.		Fitting	a	log10	transformed	linear	regression	306	

to	the	data	resulted	in	the	parameterized	function	log10(MICR/MICS)	=	2,59	*	c	+	307	
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1,65,	(R2	=	0.22).	The	data	was	then	resampled	with	using	bootstrapping	to	(i)	308	

determine	the	95%	confidence	interval	of	log-linear	regression	of	the	data	as	309	

interval,	where	95	%	of	the	regression	fall	into	(see	fig.	2B)	and	(ii)	to	include	the	310	

variance	of	the	data	when	determining	the	size	of	the	mutant	selection	window	311	

(MSW)(see	fig.	2C).	For	the	latter,	the	given	dataset	was	fitted	to	the	mentioned	312	

log-linear	regression	200	times,	resulting	in	200	parameter	sets	for	the	313	

regression.	Each	parameter	set	was	then	used	to	calculate	the	size	of	the	MSW	314	

depending	on	the	cost	of	resistance.		The	95%	confidence	interval	was	then	315	

calculated	as	the	interval,	in	which	95%	of	the	calculated	size	of	the	MSW	are	in	316	

for	a	given	cost. 317	

 318	

Model of evolution and prediction of resistance 319	

To study resistance evolution we used a mathematical model that incorporates 320	

pharmacodynamics (PD) and pharmacokinetics (PK) and captures population 321	

dynamics of bacterial populations under treatment with antimicrobial drugs(20). We 322	

ran stochastic simulations to calculate the probability of resistance emergence, the 323	

probability of the resistant strain, the time to resistance emergence and the risk of 324	

resistance (the resistance hazard(29)).  325	

 326	

To simulate treatment, we consider a patient harboring 106 susceptible bacteria. 327	

Bacterial mutation rates are assumed to depend on the antimicrobial used for 328	

treatment (antibiotics or AMPs). When a resistant strain arises it is assumed to have 329	

an MIC ten-fold that of susceptible wild-type strain. For simplicity, we only consider 330	

one type of mutant. Antimicrobials are administered every day (see Supplement for 331	

pharmacokinetics), and treatment lasts one week.  332	
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The population dynamics of the susceptible and resistant strains is captured in the 333	

following system of differential equations:  334	

 335	

( ) [ ]

[ ]

1 1

1 1 .

n

S n

S S

R R

dS S Rr S d d S
dt K
dR S R S Rr R r S d d R
dt K K

µ

µ

+⎛ ⎞= − −⎜ ⎟
⎝ ⎠

+ +⎛ ⎞ ⎛ ⎞= − + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎝ ⎠

− +

⎠

 336	

 (0) 337	
 338	

Where S represents the wild-type strain and R represents the resistant strain. The 339	

maximum net growth rate ψmax is the difference between  the replication rate r and the 340	

intrinsic death rate dn:  ψmax = r-dn. µ is the mutation rate.  341	

 342	

To include the change of antimicrobial concentrations over time (pharmacokinetics) 343	

into our mode, we define the death rate to be dependent on the time-dependent 344	

antimicrobial concentration a(t):  345	

( )( ) ( ) ( )( )
( )( )
max min

i

min max

a t / MIC
d a t , i S ,R

a t / MIC /

κ

κ

ψ ψ

ψ ψ

−
= =

−
 (0)  346	

	347	
We assume a time-dependent pharmacokinetic function a(t) of the following form 348	

(see also Fig S2): 349	

( )[ ( 1) ] [ ( 1) ]( ) , 1, 2, 3τ τ− − − − − −= − =
−∑ Ke ak t n k t na

n a e

Dka t e e n
k k

  350	

 (0) 351	
 352	

Here, ka is the absorption rate, and ke is the decay rate. D is the dose given each time, 353	

n is the number of doses, τ is the dosing frequency. We define the treatment dose as  354	

the average concentration in the course of treatment:  355	

1 ( )= ∫a a t dt
t

  (0) 356	

 357	
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We implemented the model in Equation 4 stochastically using the Gillespie 358	

algorithm(45), which allowed us to monitor how frequently mutants arise. Parameters 359	

were selected based on empirical data as stated above. The net growth rate of wild-360	

type  in the absence of antimicrobials was set as 1. Mutants suffer fixed or resistant-361	

level related costs (see Fig 2). κ of AMPs and antibiotics were set as  5 and 1.5, 362	

respectively (10). ψmin for AMPs is fixed as -50 hour-1; and for antibiotics is fixed as -363	

5 hour-1. Mutation rates in AMPs are assumed to be three times lower than in 364	

antibiotics, in accordance with our empirical estimates (17). All the parameters and 365	

their values are listed in Table S1. All the pharmacokinetic parameters are the same in 366	

different simulations (see Fig S2). For each set of parameters, cohorts of five hundred 367	

infected individuals were simulated. Successful treatment is defined as complete 368	

clearance of both sensitive and resistant strains at the end of the one-week treatment. 369	

For each cohort, we calculate the probability of treatment success as the proportion of 370	

individuals in whom treatment was successful. In each individual, we score the time 371	

of emergence of resistance strains, and estimate the resistance hazard based on the 372	

average probability of treatment success and the population size of bacteria over time. 373	

The hazard function can be written as,  374	

1( , ) ( , ) ( ) ( ) ,S R RH a t S a t p a a dt
Kt

ψ→= ∫   (0) 375	

where K is the capacity, S denotes population size of sensitive strain and pS→R is 376	

probability of a treatment developing resistance, which is calculated from the results 377	

of simulations, ψR is the growth rate of resistant strain. Our hazard function calculates 378	

the average proportion of resistant population under certain treatment dose and 379	

duration.  380	

 381	

Implementation 382	
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The analysis was performed in R (v. 3.1.3&v. 3.2.2) (46) using RSTUDIO (v. 383	

0.98.1103&0.99.903) 35. The code is available upon request.  384	
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Fig 1. The revised mutant selection window and pharmacodynamic parameters. 527	

(a) The mutant selection window (MSW) is defined as the antimicrobial concentration 528	

range in which resistant mutants are selected (13). Following (14), we determine the 529	

MSW using net growth curves of a susceptible strain S and a resistant strain R. 530	

Mathematically, net growth is described with the pharmacodynamic function 𝜓(𝑎) 531	

((20), see Materials and Methods and Fig S3 for details). In short, the function 532	

consists of the four pharamcodynamic parameters:  net growth in absence of 533	

antibicrobials 𝜓!"#,  net growth in the presence of  a dose of antimicrobials, which 534	

effects the growth maximal, 𝜓!"#, the MIC and the parameter κ, which describes the 535	

steepness of the pharamcodynamic curve. Here, the two pharmacodynamics functions 536	

𝜓!(𝑎) (continuous pink line) and 𝜓!(𝑎) (dotted black line) describe the net growth 537	

of the S and R, respectively, in relation to the drug concentration a. Cost of resistance 538	

𝑐 is included as a reduction of the maximum growth rate of the resistant strain 539	

𝜓!"#,!, with 𝑐 = 1− 𝜓!"#,!/𝜓!"#,!.  Note that with this definition, cost of 540	

resistance is expressed as reduction in net growth rate in absence of antimicrobials (a 541	

= 0). The lower bound of the MSW is the concentration for which the net growth rate 542	

of the resistant strain is equal to the net growth rate of the sensitive strain and is called 543	

the minimal selective concentration (MSC) (see Materials and Methods for analytic 544	

solution, see Fig S1 for how the MSC is influenced by pharamcodynamic parameters 545	

os the sensitive strain). The upper bound is given by the MIC of the resistant strain 546	

MICR. We calculate the size of the MSW as : 𝑠𝑖𝑧𝑒(𝑀𝑆𝑊) = !"!!
!"#

.  (b) The 547	

boundaries of the MSW applied to the pharmacokinetics of the system. 548	

 549	

 550	
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 551	

 552	

Fig 2. The mutant selection window for arbitrary mutant strains. The two 553	

boundaries of the MSW, MSC and MIC!, are influenced differently by the 554	

pharmacodynamic parameters of the sensitive strain S and the resistant strain R. (a) 555	

The lower boundary of the MSW (MSC) depends primarily on the pharmacodynamic 556	

parameters of the sensitive strain, assuming that the net growth rate of the resistant 557	

strain below the MSC is approximately at the same level as without antimicrobials: 558	

𝜓!(𝑎) ≈ 𝜓!"#,!(1− 𝑐) = 𝜓!,!""#$%, for 0 < 𝑎 < 𝑀𝑆𝐶 (𝜓!: dotted black line; 559	

𝜓!,!""#$%:continuous black line) (see Materials and Methods for details). The effect 560	

of each of the four pharamcodynamic parameters and of the cost of resistance on the 561	
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MSC is depicted in Fig S1. We plotted the pharmacodynamic function 𝜓!(𝑎) of two 562	

sensitive strains with varying 𝜅 values: 𝜓!,! 𝑎  representative for Abs with a small  𝜅  563	

(κ = 1.5, pink) and 𝜓!,! 𝑎  representative for AMPs with a large 𝜅  (𝜅 = 5, blue). 564	

Increasing the 𝜅 value results in increasing the MSC (MSC! (pink) <MSC!(blue)).  (b) 565	

The upper boundary of the MSW is per definition the 𝑀𝐼𝐶!, which is linked to its 566	

fitness cost, i.e. the upper boundary 𝑀𝐼𝐶! increases with costs 𝑐 (data from(44)). 567	

Here, the log-linear regression and the 95% confidence interval are plotted. See 568	

materials and methods for details of the statistics. (c) The relationship between cost of 569	

resistance, other pharmacodynamic parameters, and the size of the MSW is complex. 570	

We show that because both boundaries of the MSW – the MSC and the MIC! – are 571	

influenced by costs of resistance c, the lowest MSW window size is achieved at 572	

intermediate cost of resistance c.  We plotted the size of the MSW (line) and the 95% 573	

confidence intervals for both AMP-like and AB-like pharmacodynamics, with 574	

𝜓!"#,! = 1, 𝑀𝐼𝐶! = 1, 𝜓!"#,!,!" = −5, 𝜓!"#,!,!"# = −50, 𝜅!,!" = 1.5 and 575	

𝜅!,!"# = 5.  𝜓!"#,! was calculated using the relationship log10(MICR/MICS)	=	2,59	*	576	

c	+	1,65	.	 577	

  578	

 579	
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 580	

 581	

Fig 3. Evolution of drug resistance determined by pharmacodynamics.  582	

(a) At high dose antimicrobials achieve maximal effects and rapidly kill most of the 583	

population, preventing resistance evolution (left). At medium dose, the sensitive strain 584	

will not be eliminated immediately, and resistant mutants emerge (central). At low 585	
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dose, the sensitive strain will not be removed, the mutants emerge as well, but will not 586	

quickly reach equilibrium due to substantial fitness costs (right, resistant: pink, 587	

susceptible: blue),  (b) Simulations comparing the range from ‘pure’ antimicrobials 588	

peptides (AMP) to  ‘pure’ antibiotics (AB) by altering µ, ψmin and κ. We find that the 589	

probabilities of treatment failure (left), of failure caused by resistant strains (middle) 590	

and of resistance emergence are always higher under the AB-scenario than the AMP-591	

scenario. A successful treatment requires less AMP than AB. (c) Following (29) we 592	

calculate the resistance hazard as the time-averaged proportion of mutants in a patient 593	

under a particular treatment dose. We find that AMPs are much less likely to select 594	

for resistance across concentrations than antibiotics (inset graph: a log-scale view). 595	

(d) Time to resistance is much longer under AMP than AB treatment when the  596	

average concentration is below MIC, but shorter around MIC and equal in higher 597	

concentrations (inset graph). The parameters are: 𝜓!"#,! = 1, 𝜓!"#,! = 0.9, 598	

𝜅!" = 1.5, 𝜅!"# = 5, 𝜓!"#,!" = −5, 𝜓!"#,!"# = −50, 𝑀𝐼𝐶! = 10, 𝑀𝐼𝐶! =599	

𝑀𝐼𝐶! ∗ 10[!.!" ∗(!!"#,!!!!"#,!) ! !.!"]. 𝜇!" = 10!!, 𝜇!"# = 3 ∗ 10!!, 𝑘! =600	

0.5 , 𝑘! = 0.2, 𝑑! = 0.01, 𝜏 = 1/24.  601	

.  602	

 603	

 604	
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