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Abstract Large scale forest inventories are often undertaken following a stratified ran-7

dom or systematic design. Yet the strata rarely correspond to the reporting areas of8

interest (domains) over which the country wants to report specific variables. The process9

is exemplified by a country aiming to use national forest inventory data to obtain aver-10

age biomass estimates per forest type for GHGI international reporting, where activity11

data (areas of land use or land use changes) and emission factors (carbon coefficients)12

are typically compiled from disparate sources and estimated using different sampling13

schemes. This study aims to provide a decision tree for the use of data obtained from14

forest surveys to draw conclusions about population sub-groups created after (and in-15

dependently of) the sample selection. While bias can arise whenever activity data and16

emission factors are calculated independently, it can be eliminated in case of a simple17

random or simple systematic design if properly weighted estimators are provided. This18

manuscript describes two unbiased estimators that can be used to estimate reporting-19

strata means, regardless of the sampling design adopted, and extends the result to the20

common situation in which the reporting-strata are spatially explicit, where a nested21

group estimator outperforms in terms of both bias and precision other more traditional22

estimators. From this estimator, an optimal sample allocation scheme is also derived.23
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2 Luca Birigazzi et al.

1 Introduction26

Country-specific estimates of carbon coefficients (aka emission factors) are required to27

compile national greenhouse gas inventories (GHGI) under the United Nations Frame-28

work Convention on Climate Change (UNFCCC) and, in the context of REDD+, for29

developing Forest Reference Levels (FRLs) and for the reporting of REDD+ results-30

based actions. To this end, in order to account for emissions from land use, land use31

change and forestry (LULUCF), different emission factors have to be estimated for each32

of a number of land use categories and of various other land subpopulations, typically33

defined according to climatic zone, forest type or management practices (cf. IPCC 2003,34

2006). Notice that these estimates are required to be unbiased and as precise as possible1.35

IPCC tier 3 methods, which, if well implemented, are supposed to be the most certain36

and reliable, require these forest carbon coefficients to be obtained from national forest37

inventories (NFI). Due to the intrinsic variability of biomes and land uses in most of the38

countries, sampling designs for NFIs tend to rely on stratification as a first step to reduce39

uncertainties in emission estimates (Köhl et al 2006; Maniatis and Mollicone 2010). But40

the subpopulations for which the emission factors are needed might differ from those41

designated at the planning phase of the forest inventory. That is, the requested reporting42

units or areas of interest for the emission factors might be identified after the definition of43

the sampling design and/or after the data collection has been carried out. These targeted44

subpopulations are often called domains of interest in the statistical literature (Cochran45

1977; Särndal et al 1992; Särndal and Lundström 2005; Köhl et al 2006; Gregoire and46

Valentine 2008; Mandallaz 2008; Lohr 2009; Schulz et al 2009; Thompson 2012). The47

lack of congruency between strata and domains usually results in a random and often48

small number of observations for each emission factor. The situation can be made even49

more complicated in the presence of complex forest inventory survey designs, often not50

optimized for all variables of interest involved in multipurpose inventories. In all these51

cases specific statistical approaches must be adopted in order to ensure that the estimates52

are precise and unbiased, very often requiring ancillary data or model-, rather than53

design-based inference (Schreuder et al 2004; Chanbers 2011). Similar issues might arise54

whenever estimates of forest carbon are required not only at the national level, but also55

for certain provinces or districts of the country (Rao and Molina 2015).56

Salient features of the estimation of emission factors for the LULUCF sector are that57

the domains are often defined spatially over a landscape and that their sizes are usually58

known but frequently obtained independently of the NFI. The emission factors, in this59

case, would consist of the average values of carbon or biomass for those specific areas. A60

detailed review of basic estimation methods for domains is provided in §10.3 of Särndal61

et al (1992). A compilation of domain estimators used for the analysis of the U.S.A.62

forest inventory data is presented in Bechtold and Patterson (2005) and for the Swiss63

National forest inventory by Mandallaz (2008).64

Here we aim to provide an overall vision of the different domain estimation techniques65

applicable to derive LULUCF emission factors from large scale forest inventories. The66

focus here is particularly on NFI data which are often available to/in REDD+ countries.67

1 From IPCC (2003): “Estimates should be accurate in the sense that they are systematically neither
over nor under true emissions or removals, so far as can be judged, and that uncertainties are reduced
so far as is practicable”
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.

Table 1 definitions of weights and proportions

Symbol Definition

Pd Nd/N
Qd 1 − Pd

Wh Nh/N
Phd Nhd/Nh

Qhd 1 − Phd

Whd Nhd/Nd

phd nhd/nh

fd nd/Nd

fh nh/Nh

Our results apply both to cases in which domain sizes are estimated within or inde-68

pendently of the NFI. In the case where the domains are known and spatially explicit69

we also derive an unbiased estimator that improves the standard errors typically associ-70

ated to classical π-weighted (i.e., Horwitz-Thompson) estimators, as well as the optimum71

sampling sizes per stratum derived from this estimator. Finally, we propose a decision72

tree, targeted particularly to countries aiming to report emission factor estimates from73

national forest inventories, to select the most appropriate domain mean estimator.74

2 General formulation for domain estimators75

Let the population of interest be denoted by P, and the size of P, as measured by the76

number of areal units of uniform size, be denoted by N , so that P = {u1, . . . , uk, . . . , uN}.77

Let P be partitioned into H non-overlapping subpopulations P1, . . . ,PH . These will be78

referred to as the sampling strata. Let Nh denote the size of Ph, with h = 1, . . . ,H79

such that N =
⋃H

h=1Nh. The population may also be partitioned alternately into D80

reporting strata, known widely in literature on survey sampling as domains, cf. Särndal81

et al (1992, Chap. 10). To this end, let Ud denote the dth domain. Let Nd denote the82

size of Ud, d = 1, . . . , D such that N =
⋃D

d=1Nd and let Pd = Nd/N denote the relative83

size of the domain Ud (Table 1). In this paper we address the estimation of the domain84

averages, Ȳd, for some variable on interest indicated by Y . Implicit in the above is that85

each population unit can be a member of a single sampling stratum and domain.86

Let sd define the part of the sample that happens to fall into Ud, so that: sd =87

s∩Ud =
⋃H

h=1(sh∩Ud). Using results that are elaborated in §5.8, 7.6, and 10.3 of Särndal88

et al (1992) (see also Cochran 1977; Mandallaz 2008; Thompson 2012), an approximately89

design-unbiased estimator for the domain mean, whether or not the domain size is known,90

is91

ỹsd =

∑
k∈sd

yk
πk

N̂d

(1)
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4 Luca Birigazzi et al.

where πk is the inclusion probability of the kth unit uk, and N̂d =
∑

k∈sd π
−1
k .92

The approximate variance of ỹsd is given by93

AV (ỹsd) =
1

N2
d

∑
k∈Ud

∑
l∈Ud

∆kl

(yk − ȳUd
πk

)(yl − ȳUd
πl

)
(2)

where ∆kl = πkl−πkπl is the covariance between the sample membership indicators. An94

estimator of AV (ỹsd) is95

V̂ (ỹsd) =
1

N̂2
d

∑
k∈sd

∑
l∈sd

∆̆kl

(yk − ỹsd
πk

)(yl − ỹsd
πl

)
. (3)

where ∆̆kl = (πkl−πkπl)π−1kl . Specific applications of these general formulas to the most96

common sampling designs are provided in the next sections. The underlying assumption97

is that the probability that sd is empty is negligible.98

In the following sections we will assess specific applications of these general formulas99

to the most common sampling designs: simple random and stratified random sampling.100

3 Simple Random Sampling101

Let us consider the case in which a simple random sampling (SRS) is carried out on the102

population P. That is, a sample s of size n is randomly selected from P. Let us define nd103

the size of the sample falling in the domain Ud. Under simple random sampling (where104

πk = n/N), given the event nd > 0, the estimator ỹsd (Eq. (1)), is approximately design-105

unbiased for the domain mean and corresponds to the domain sample mean, namely106

ȳsd =

∑
k∈sd yk

nd
. (4)

However, when the probability that nd = 0 is not negligible, the bias of ȳsd may be107

substantial. The same result applies also to the case in which a systematic sampling108

is carried out (with πk = 1/a, where a is the sampling interval between successively109

sampled units). From Eq. (2), the approximate variance of ȳsd is110

AV (ȳsd) =
( 1

n0d
− 1

Nd

)
S2
Ud (5)

where n0d = nh
Nd

N is the expected domain sample size and S2
Ud = (Nd−1)−1

∑
k∈Ud(yk−111

Ȳd)2 is the domain variance. Eq. (5), however, is likely to underestimate the variance of112

ȳsd , due the fact that, under a simple random sampling, the domain sample size nd is a113

random variable, such that nd ∼ B(n0d,
Nd

N ). Each time a sample of size n is drawn from114

the population, the number of sample units that fall in the domain Ud might differ (or115

even be zero). The random domain sample size results in a loss of precision, which is116

inversely proportional to sample size n and to the domain proportion Pd. Conditioning117

on nd > 0 provides a better approximation of the variance of ȳsd , namely118

AV ∗(ȳsd) =
( 1

n0d
− 1

Nd

)(
1 +

Qd

n0d

)
S2
Ud , (6)
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where Qd = 1−Pd, considering binomial probabilities, as shown in §10.4 of Särndal et al119

(1992). Notice that Eq. (6) requires the domain size to be known.120

The variance estimator in Eq. (3) becomes121

V̂ (ȳsd) =
( 1

nd
− 1

N̂d

)
S2
sd

(7)

where N̂d = Nnd/n and S2
sd

= (nd−1)−1
∑

k∈sd(yk−ȳsd)2 is the domain sample variance.122

4 Stratified Random Sampling123

Let us consider the case in which a stratified random sampling is carried out on the124

population P, based on the H sampling-strata. That is, a probability sample sh, of size125

nh, is independently selected from each Ph, according to a design ph(). The total sample126

set, denoted as s, will be composed as: s = s1 ∪ s2 · · · ∪ sH .127

Any stratum will intersect a certain number of domains. Let us define the intersection128

among the dth domain and the hth sampling-stratum as Ph ∩Ud = {k : k ∈ Ph ∧k ∈ Ud}129

and let Nhd denote the size of Ph ∩ Ud. We can now define the following proportions:130

Wh = Nh/N , which is the stratum weight, Whd = Nhd/Nd, which is the intersection131

weight within the domain, and Phd = Nhd/Nh, which is the relative size of the intersection132

within the stratum. The definitions of weights and proportion used in this paper are133

displayed in Table 1.134

4.1 Bias of ȳsd under stratified designs135

The arithmetic mean of Y for sd (Eq. (4)) is certainly one of the simplest estimator of136

the domain mean, but it may be significantly biased under stratified random or stratified137

systematic designs (Pacificador Jr 1997). A notable exception is constituted by stratified138

designs with sample allocation proportional to the size of the strata (Holt and Smith139

1979). In this case the estimator ỹsd (Eq. (1)) corresponds to the arithmetic sample140

mean ȳsd (Eq. (4)), as long as n >> 0, to avoid spurious rounding off effects due to141

limited allocated sample size. In general, under stratified designs, the magnitude of the142

bias of ȳsd will depend on the allocation of the sample units among the strata and on143

the homogeneity of the domains (Kish 1980). The development for the quantification of144

bias in domains under stratified random designs is provided in Appendix A).145

4.2 Estimators under unknown domain size146

Let denote shd the intersection of the domain Ud and the sample drawn in the stratum147

Ph, and nhd denote the size of this subsample. Under a stratified random sampling, with148

H strata intersecting D domains, Eq. (1) can be written as:149

ỹsd = ˆ̄ysd =

∑H
h=1

Nh

nh

∑
k∈shd

yk∑H
h=1

Nh

nh
nhd

, (8)
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6 Luca Birigazzi et al.

as shown in Särndal et al (1992, example 10.3.3).150

Let us call ỹsd in Eq. (8) π-estimator. It might be informative to re-define the right-151

hand side of Eq. (8) as152

ỹsd =
N
∑H

h=1Whphdȳhd

N
∑H

h=1Whphd
, (9)

where ȳhd = n−1hd

∑
k∈shd

yk is the arithmetic mean in shd. This reformulation makes153

more explicit that ỹsd is the ratio of an estimator of the population total of y in Ud to154

an estimator of Nd.155

An estimator of the variance of ỹsd is156

V (ỹsd) =
1

N̂2
d

H∑
h=1

N2
h

1− fh
nh

∑
k∈shd

(yk − ȳshd
)2 + nhd(1− phd)(ȳshd

− ˆ̄ysd)2

nh − 1
, (10)

where N̂d =
∑H

h=1
nhd

nh
Nh, as in Särndal et al (1992, example 10.3.3).157

4.3 Estimators under known domain size158

Spatially explicit domains: a nested group estimator159

In situations in which it is possible to classify each population unit into a domain, so160

that the size Nhd of each intersection is known, we propose an alternative estimator161

of domain means. In these cases, an unbiased estimator of the mean of the domain Ud162

can be obtained considering the domain Ud itself divided into further strata, given by163

its intersections with the sampling-strata, (which are Ud ∩ P1, . . . ,Ud ∩ PH), so that164

Ud =
⋃H

h=1(Ph∩Ud), and subsequently applying the usual stratified sampling estimator.165

The weight of each “nested stratum” is given by the ratio of the size of the intersection166

to the total size of the domain. This estimator for the mean of the domain Ud is ȳNG
d167

(NG for nested group):168

ȳNG
d =

H∑
h=1

Whdỹshd
=

1

Nd

H∑
h=1

Nhdỹshd
(11)

where Whd = Nhd/Nd and169

ỹshd
=

∑
k∈shd

yk
πk

N̂hd

(12)

is the π-weighted intersection sample mean, with N̂hd =
∑

k∈shd
π−1k . Eq. (11) is a170

special case of the post-stratified domain estimator (cf. Särndal et al 1992, Eq. 10.7.4171

and Remark 10.7.3) for stratified designs, in which the strata are used as post-strata.172

If a random or systematic sample has been selected in each stratum, the estimator173

ỹshd
in Eq. (12) is identical to the arithmetic sample mean ȳshd

= (
∑

k∈shd
yk)/nhd, and174

Eq. (11) becomes175

ȳNG
d =

1

Nd

H∑
h=1

Nhd

∑
k∈shd

yk

nhd
(13)
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It is worthwhile to notice that ȳNG
d requires nhd > 0, while the π-estimator - Eq. (9) -176

requires only nh > 0.177

As in the previous development in §4.2, it is informative to re-define the right-hand178

side of Eq. (13), which simplifies further into:179

ȳNG
d =

N
∑H

h=1WhPhdȳhd
Nd

, (14)

because it makes more evident that, unlike Eq. (9), ȳNG
d is not a ratio of two estimators,180

but rather a ratio of an estimator of the domain total to the actual size of the domain.181

Notice also that the sample estimator phd in the numerator of (9) is substituted here by182

the known value of the relative size Phd.183

The variance of ȳNG
d is184

V (ȳNG
d ) =

H∑
h=1

W 2
hdV (ỹshd

) =
1

N2
d

H∑
h=1

(N2
hdV (ỹshd

)), (15)

where V (ỹshd
) is the variance of the estimator ỹshd

.185

If a random sample has been selected in each stratum, V (ỹshd
) can be re-expressed186

by analogy to Eq. (6) as187

VSRS(ȳNG
d ) =

1

N2
d

H∑
h=1

(
N2

hd

( 1

n0hd
− 1

Nhd

)(
1 +

Qhd

n0hd

)
S2
hd

)
(16)

where n0hd = nhPh is the expected domain intersection sample size, Qhd = 1 − Ph and188

S2
hd = (Nhd − 1)−1

∑
k∈(Ud∩Ph)

(yk − ȳhd) is the intersection variance.189

By analogy to Eq. (7), an estimator of VSRS(ȳNG
d ) is190

V̂SRS(ȳNG
d ) =

1

N2
d

H∑
h=1

N2
hd

( 1

nhd
− 1

N̂hd

)
S2
shd

(17)

where S2
shd

= (nhd − 1)−1
∑

k∈shd
(yk − ȳshd

) is the intersection sample variance and191

N̂hd = Nhphd. It is worthwhile to notice that (17) requires at least nhd ≥ 2 to allow S2
shd

192

to be calculated.193

The considerations regarding the sample size of the post-stratified estimator also194

apply to Eq. (11). That is, none of the intersection sample sizes nhd should be too195

small. Särndal et al (1992, Remark 10.7.2) suggests a minimum sample size of at least196

10 observations in each intersection.197

Relative precision of the nested group and π- estimators198

Under stratified random sampling the approximate variance of the π-estimator shown in199

Eq. (2) takes the form200

AV ∗(ỹsd) =
1

N2
d

H∑
h=1

(
N2

hd

( 1

n0hd
− 1

Nhd

)(
1 +

Qhd

n0hd

)(
S2
hd +Qhd(ȳUd − ȳhd)2

))
(18)
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A proof is provided in the Appendix B.201

The variance of the nested group estimator is202

AV ∗(ỹNG
d ) =

1

N2
d

H∑
h=1

(
N2

hd

( 1

n0hd
− 1

Nhd

)(
1 +

Qhd

n0hd

)
S2
hd

)
(19)

which implies that AV ∗(ỹsd) ≥ AV ∗( ȳ
NG
d ) always. The smaller the domain and the larger203

the differences among the strata means, the larger the gain in precision due to the use of204

the nested group estimator is. The drawback is that the nested group estimator is more205

demanding in terms of sample size, as it requires to have at least one sample in each206

intersection Ph ∩ Ud.207

The minimum of the V (ȳNG
d ) for a certain domain Ud, given a fixed total sample size208

n, is obtained when:209

nh ≈
WhdShd/

√
Phd∑H

i=1WidSid/
√
Pid

(20)

Eq. (20) corresponds to the approximate optimum allocation for the nested estimator for210

the the domain Ud (cf. Cochran 1977, Chap.5), and contrasts to the traditionally used211

Neyman optimum allocation for stratified random sampling (Neyman 1934):212

nh ≈
WhdShd∑H
i=1WidSid

(21)

A proof on the development of Eq. (20) is provided in Appendix C.213

5 Numerical tests of estimators214

The properties of the above mentioned estimators were examined in a simulation study.215

We chose here a spatially explicit domain subject to stratified systematic sampling. Let216

us consider a population P consisting of 320 non-overlapping square units each with217

area 1 ha labeled k = 1, . . . , 320, so that P = {u1, . . . , uk, . . . , u320}. The population P is218

partitioned into 2 strata a and b, of size 150 and 170 ha, respectively. Let Y be the variable219

of interest. Values of Y have been randomly assigned, according to a normal distribution220

with mean and variance parameters as described in Table 2, to each population unit in221

the 2 strata. Further, let us assume that a random stratified sample s of size 35 has to be222

drawn without replacement from the population based on the two strata a and b. That223

is, a random sample sa of size na has to be selected from the stratum a and a random224

sample sb of size nb from the stratum b, so that na + nb = 35. The population has also225

been partitioned into 2 domains, A and B, of size 96 and 224 ha, respectively (Fig. 1).226

Population statistics are displayed in Table 2.227

The domain averages ȲA and ȲB were estimated from the sample s. The number228

of plots selected in strata a and b had not been initially defined and 16 different plot229

allocation strategies has been tested, with na ∈ (10, 25) and nb = n − na. For each230

allocation 105 independent sample replicates of n = 35 were drawn and from each of231

those samples the domain means were estimated. Given the large number of samples and232

allocation regimes, we simulated parallel code with the package doParallel (Revolution233
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Table 2 Statistics of strata and domains used in the simulation study

Population total
N = 320
s = 35

strata domains
Na = 150 NA = 96
Nb = 170 NB = 224
Ȳa = 15.6 ȲA = 19
Ȳb = 24 ȲB = 20.5
S2
a = 26.6 S2

A = 36.1
S2
b = 13.9 S2

B = 36.9

Analytics and Weston 2015) in R (R Core Team 2016), using a cluster of 16 CPU and 30234

GB of RAM provided by the FAO-hosted SEPAL platform (SEPAL 2016). We contrasted235

the following estimators:236

1. the domain sample arithmetic mean, Eq. (4)237

2. the π-estimator, Eq. (9)238

3. the nested group estimator, Eq. (14)239

The means of the 105 sample replicates, estimates for the 2 domains for each plot allo-240

cation and for each estimator are presented in Fig. 2.241

As expected, the arithmetic sample mean proves biased, whenever the sample alloca-242

tion is far from being proportional to the strata size (which corresponds to the allocation243

“16-19”). ỹsd and ȳNG
d are approximately unbiased. The MSE is defined as the sum of244

the variance and the squared bias. In our example, the nested group estimate presents245

smaller MSE than the π-weighted estimate in all allocation scenarios (Fig. 3), and both246

always smaller than the MSE for the arithmetic mean. The numerically obtained opti-247

mum allocation strategy, would correspond to “22-13”(π-weighted) vs. “19-16” (nested248

group) when minimizing MSE for the ”A” domain mean, and “21-14” for both estimators249

in the MSE minimization of the ”B” domain.250

Only by teasing apart the two components of the MSE, however, can one disentangle251

the role of bias and precision in each of the estimates. This becomes particularly relevant252

for REDD+ countries aiming to follow IPCC (2003) guidelines, recommending the min-253

imization of uncertainty (i.e., precision) as much as possible. Precision (i.e., variance)254

estimates in the numerical tests show that V (ȳNG
d ) is always smaller than V (ỹsd) (Fig.4).255

However, the arithmetic mean presents smaller variance values in those allocation strate-256

gies far from the optimum. Minimum variances for both π-weighted and nested group257

estimators match the MSE values and indicate that for these two estimators the vast258

majority of the MSE is due to variance (and hence, reinforcing the unbiasedness of these259

two estimators).260

6 Discussion261

The amount of information which large-scale environmental surveys (such as national262

forest inventories) are expected to produce has considerably increased over time (Mc-263

Donald 2003). In the case of GHG emissions reporting, this expectation might include264
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10 Luca Birigazzi et al.

Fig. 1 The area of study consists of a rectangular region of 320 ha, subdivided into 320 non-overlapping
square areas of 1 hectare. Sampling- strata a and b are divided by the solid line, while domains A, in
red and B, in green are divided by the dotted line. For illustration purposes, a simple random sample is
shown here independently drawn from each sampling-stratum, with allocation not proportional to the
size of the strata (in this a particular allocation na = 25, red dots, and nb = 10, blue dots).

the production of estimates for a certain number of domains of interest (such as land use265

categories) (Tubiello et al 2014), often identified after and independently of the forest266

inventory (IPCC 2003). But obtaining accurate and unbiased estimates for such do-267

mains is often a non trivial exercise, especially in the presence of complex survey designs268

(Lehtonen and Pahkinen 2004).269

Thus, when the domains are spatially explicit (i.e. each population unit is classified270

into a domain) and all the forest inventory sample units geo-referenced, it is always271

possible to assign automatically each of n sample units into a domain Ud, even when the272

information regarding the domains was not collected during the NFI. Often, however,273

the domains might not be spatially explicit and their sizes might have been estimated274

independently of the forest inventory, such as, for example, through an external, ancillary275

sample-based land use survey with a different sampling design. This can occur frequently276

during the preparation of a GHGI report, where activity data (areas of land use or land277

use changes) and emission factors (i.e., biomass, volume,..) are typically compiled from278

disparate sources. This method for the representation of land in tabular form falls within279
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Fig. 2 Means of the estimates for the domains A and B, by allocation and estimator. The grey dashed
horizontal line is the real mean of the domains

Fig. 3 Mean squared errors of the estimates for the domains A and B, by allocation and estimator.
Dotted green and orange vertical lines reflect the allocations at which the MSE of the domain mean
is minimized in the π- vs. nested group estimators, respectively. Black solid and dashed vertical lines
correspond to nested group (Eq. (20)) vs. Neyman (Eq. (21)) theoretical optimum allocations. The y-axis
is log-transformed for better visualization.

the IPCC definitions of approach 1 and approach 2, as described in IPCC (2003, Chap.280

2) and IPCC (2006, Vol. 4, Chap. 3), and it is widely used for the estimation of land281

use and land use changes. An example of this is the case in which the absolute sizes of282

land use categories are independently estimated through visual (or augmented visual)283

interpretation of a sample of remote imagery (Bey et al 2016).284

In this case, in order to estimate the domain averages it is first of all necessary to285

classify each of the n forest inventory sample units into one of the spatially-implicit286
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12 Luca Birigazzi et al.

Fig. 4 Variance of the estimates for the domains A and B, by allocation and estimator. Dotted green
and orange vertical lines reflect the allocations at which the variance of the domain mean is minimized
in the π- vs. nested group estimators, respectively. Black solid and dashed vertical lines as in Fig. 3. The
y-axis is log-transformed for better visualization.

domains Ud. To prevent any possible bias, re-classification needs to be done using the287

same methodology adopted to estimate the domain sizes. If, for example, these have been288

estimated through sample-based visual interpretation, then the n sample units need to289

be interpreted using the same type of imagery and, possibly, the same interpreters of the290

land use survey. The domain mean estimator to be used is the estimator ỹsd in Eq. (1),291

which under a simple random or systematic sampling corresponds to the domain sample292

mean Eq. (4) and under a stratified random or stratified systematic sampling takes the293

form of Eq. (9).294

In an attempt to offer a set of rules for the selection of adequate domain estimators, we295

propose a decision tree (Fig. 5) that aims to guide forestry academics and NFI assessment296

teams through each step depending on:297

1. the stratified nature of the NFI design298

2. the ancillary nature of the domain sizes299

3. whether the domains are spatially implicit or explicit300

4. whether the sampling (per stratum) is SRS or systematic301

Overall, π-weighted estimators should be considered whenever the sampling per stra-302

tum (∀H ≥ 1) does not follow SRS or systematic designs, or else when the domains303

are spatially implicit and independently estimated. Under a SRS or systematic design,304

when H = 1 or H > 1 the domain sample mean Eq. (4) or Eq. (9) are recommended,305

respectively. Finally, if H > 1, domain sizes are independent from the NFI and spatially306

explicit, nested group estimators outperform the others, using the π-weighted version307

(Eq. (11)) if the per stratum samples were not SRS or systematically taken.308

The use of nested estimators, thus, should ideally be known in order to facilitate309

allocation strategies previous to the design of the forest inventory. Notice that Eq. (20)310

keeps a striking similarity to the optimal allocation equation of Cochran (1977, p. 98)311
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Fig. 5 Decision tree for the selection of the adequate domain mean estimator

(Schreuder et al 1993). But instead, variables per stratum h are accounted on a per312

stratum/domain intersection hd, and Cochran’s costs of sampling a unit in stratum h are313

replaced by Phd. Hence, when the stratum is filled by the domain, Phd = 1 and optimum314

allocation corresponds to Neyman’s (21). Otherwise, Phd < 1 will effectively rescale the315

weight assigned to individual sampling units in the s tratum, akin to a reduction in cost316

per sampling unit.317

In the simulation exercise, Eq. (20) outperforms Neyman’s Eq. (21) for both do-318

mains as references. However, it is still an approximation, as shown in Appendix C,319

largely driven by the limitations imposed in the exercise, when nh is small. Although320

the situation under which the application of nested group estimators and the nested321

group optimal allocation strategy might seem rare, many countries find themselves in322

practice conducting international reporting where per ha. emission factors are calculated323

from stratified inventories, and the calculation of domain sizes comes from independent,324

spatially explicit sources. As shown above, this is where nested group estimators may325

provide opportunities to reduce both bias and sampling error, outperforming not only326

the often misused domain arithmetic means, but also the classical unbiased π-weighted327

estimators.328

While the nested group approach might seem the ideal one given its performance329

in our example, it is subject to several assumptions that often may not be as realistic.330

First, nhd ≥ 2 is a necessary condition to obtain a measure of precision; second, and331

most important, domain sizes are assumed to be error-free. This assumption, although332

often taken, is far from realistic, since spatially explicit obtained information always con-333

tains errors, even if only sampling ones. Despite this last assumption, most international334

reporting so far from countries to the UNFCCC has been known to observe it, at least335
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for static pictures (i.e., area changes are calculated with their errors). In such a case, the336

use of nested estimators might be the best option for REDD+ reporting.337

Acknowledgements The authors want to thank specially Becky Tavani and Julian Fox from the338

Forestry Department in FAO, and the whole UN-REDD program for their insights and continuous339

support in the preparation of this document.340

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 16, 2017. ; https://doi.org/10.1101/138131doi: bioRxiv preprint 

https://doi.org/10.1101/138131
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

Appendices341

A The bias of the domain sample mean under a random stratified sampling342

Similarly to §4, let us consider the case in which a stratified random sampling is carried343

out on the population P, based on the H sampling-strata. Let denote shd the intersection344

of the domain Ud and the sample drawn in the sampling-stratum Ph, and nhd the size345

of this sub-sample. The mean of Y for sd can be written as:346

ȳsd =

∑H
h=1

∑
k∈shd

yk

nd
=

∑H
h=1 nhdȳshd

nd
(22)

where ȳshd
is the sample mean of the sample drawn in the in the stratum Ph, and347

belonging to the domain Ud. The number nhd of sample units falling into Ph ∩Ud varies348

depending on the sampling strategy and on the sample allocation adopted. If a simple349

random or systematic sample is taken in each sampling-stratum the expected value of350

the number of units nhd that are in sd is given by:351

E(nhd) = Whdnh = Nhdfh (23)

where Whd = Nhd/Nh is the relative size of the intersection Ph ∩ Ud within the stratum352

Ph. The expected value of the number of sample units nd that happen to fall into the353

domain Ud can be expressed as a linear function of the expected number of sample units354

in each intersection:355

E(nd) =
H∑

h=1

E(nhd) =
H∑

h=1

Whdnh (24)

Denote by Ad the event E(nd) ≥ 1. If n is large enough Pr(Ad) is close to 1. Under356

the condition Ad, the expected value of ȳsd for the domain Ud is given by357

E(ȳsd |Ad) =

∑H
h=1WhdnhȲhd∑H

h=1Whdnh
(25)

We will now assume that Ad will certainly occur. Since the population mean of the358

domain Ud can be written as:359

Ȳd =

∑H
h=1NhdȲhd

Nd
(26)

the bias of the arithmetic mean ȳsd for the domain Ud therefore amounts to:360

BIAS(ȳsd) = E(ȳsd)− Ȳd =

∑H
h=1WhdnhȲhd∑H

h=1Whdnh
−
∑H

h=1NhdȲhd
Nd

(27)

Under a stratified random sampling with a sample allocation proportional to the size of361

the strata, where nh = nNh/N = Nhf , the arithmetic mean proves unbiased since362

E(ȳsd) =

∑H
h=1WhdNhfȲhd∑H

h=1WhdNhf
=

∑H
h=1NhdȲhd∑H

h=1Nhd

=

∑H
h=1NhdȲhd

Nd
= Ȳd (28)
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B A better approximation of the variance of the π-estimator under a363

stratified random sampling364

Under a random stratified sampling with H strata, indexed with the letter h, (where365

h = 1, . . . ,H), (2) can be re-expressed as366

AV (ỹsd) =
1

N2
d

H∑
h=1

(
∆kl

π2
k

[ ∑
k∈(Ph∩Ud)

(yk − ȳUd)
]2
− ∆kl −∆kk

π2
k

∑
k∈(Ph∩Ud)

(yk − ȳUd)2

)
(29)

and367

∆kl =



nh
Nh

(1− nh
Nh

), for k = l, (we can call it ∆kk)

nh(Nh − nh)

N2(Nh − 1)
, for k 6= l and k, l belonging to the same stratum

0, for k 6= l and k, l belonging to a different stratum

(30)

therefore368

AV (ỹsd) =
1

N2
d

H∑
h=1

( Nh − nh
nh(Nh − 1)

)(
Nh

∑
k∈(Ph∩Ud)

(yk−ȳd)2−
[ ∑
k∈(Ph∩Ud)

(yk−ȳd)
]2)

(31)

decomposing the variance we obtain:

AV (ỹsd) =
1

N2
d

H∑
h=1

( Nh − nh
nh(Nh − 1)

)(
Nh

[ ∑
k∈(Ph∩Ud)

(yk − ȳhd)2 +Nhd(ȳUd − ȳhd)2
]
−

[ ∑
k∈(Ph∩Ud)

(yk − ȳhd) +Nhd(ȳUd − ȳhd)
]2)

(32)
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hence

AV (ỹsd) =
1

N2
d

H∑
h=1

( Nh − nh
nh(Nh − 1)

)
(
Nh

[ ∑
k∈(Ph∩Ud)

(yk − ȳhd)2 +Nhd(ȳUd − ȳhd)2
]
−
[
Nhd(ȳUd − ȳhd)

]2)
=

1

N2
d

H∑
h=1

( Nh − nh
nh(Nh − 1)

)
(
Nh

∑
k∈(Ph∩Ud)

(yk − ȳhd)2
Nhd − 1

Nhd − 1
+Nhd(ȳUd − ȳhd)2(Nh −Nhd)

)
=

1

N2
d

H∑
h=1

( Nh − nh
nh(Nh − 1)

)(
Nh(Nhd − 1)S2

hd +Nhd(ȳUd − ȳhd)2(Nh −Nhd)
)

=

1

N2
d

H∑
h=1

(Nh − nh
nh

)(
NhPhdS

2
hd + Phd(ȳUd − ȳhd)2(Nh −Nhd)

)
=

1

N2
d

H∑
h=1

(1− fh
fh

)(
NhPhdS

2
hd + Phd(ȳUd − ȳhd)2(Nh −Nhd)

)
=

1

N2
d

H∑
h=1

(1− fh
nh

)(
N2

hPhdS
2
hd + Phd(ȳUd − ȳhd)2(N2

h −NhdNh
Nh

Nh
)
)

=

1

N2
d

H∑
h=1

(1− fh
nh

)(
N2

hPhdS
2
hd + Phd(ȳUd − ȳhd)2N2

hQhd

)
=

1

N2
d

H∑
h=1

(
N2

h

1− fh
nh

Phd

(
Qhd(ȳUd − ȳhd)2 + S2

hd

))
(33)

where Phd = Nhd

Nh
, Qhd = 1− Phd and fh = nh/Nh.369

By analogy with Särndal 10.3.15, (33) can also be expressed as:370

AV (ỹsd) =
1

N2
d

H∑
h=1

(
N2

hd

( 1

n0hd
− 1

Nhd

)
(Qhd(ȳUd − ȳhd)2 + S2

hd

))
(34)

where n0hd = nh
Nhd

Nh
.371

By conditioning on the domain sample size, similarly to the development in §10.4, of372

Särndal et al (1992), we get a closer approximation to V (ỹsd)373

AV ∗(ỹsd) =
1

N2
d

H∑
h=1

(
N2

hd

( 1

n0hd
− 1

Nhd

)(
1 +

Qhd

n0hd

)
(Qhd(ȳUd − ȳhd)2 + S2

hd

))
(35)
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C Optimum sample allocation for domain estimation under random374

stratified sampling375

Theorem : The sample sizes n1, . . . , nh, . . . , nH that minimize the V (ȳned) under a ran-376

dom stratified sampling, subject to the constraint n1 + · · · + nh + · · · + nH = n are377

approximated by378

nh ≈
WhdShd/

√
Phd∑H

i=1WidSid/
√
Pid

(36)

Proof Under a random stratified sampling, neglecting the finite population correction379

1/Nhd, (19) can be written as380

AV ∗(ỹNG
d ) =

H∑
h=1

W 2
hdS

2
hd(nhPhd +Qhd)

(nhPhd)2
=

H∑
h=1

W 2
hdS

2
hd(Phd(nh − 1) + 1)

(nhPhd)2
(37)

Where Qhd = 1 − Phd and Whd = Nhd/Nd. Under the condition nh >> 0, nh − 1 ≈ nh381

and (nhPhd + 1)/nhPhd ≈ 1. (37) therefore simplifies to382

AV ∗(ỹNG
d ) =

H∑
h=1

W 2
hdS

2
hd

nhPhd
(38)

The minimum of this function can be found using the method of Lagrange multipliers.383

The Lagrange function is:384

L(n1, . . . , nh, . . . , nH , λ) =
H∑

h=1

W 2
hdS

2
hd

nhPhd
+ λ

(
H∑

h=1

nh − n

)
(39)

For h = 1, . . . , h, . . . ,H, where λ is the Lagrange multiplier. The partial derivatives of385

this function are386

∂L

∂nh
= −W

2
hdS

2
hd

n2hPhd
+ λ (40)

By setting the partial derivatives of this function equal to zero we obtain387

nh =
1
2
√
λ

WhdShd√
Phd

(41)

By summing these equations over h:388

n ≈ 1
2
√
λ

H∑
h=1

WhdShd√
Phd

(42)

Thus,389

1
2
√
λ
≈ n∑H

h=1
WhdShd√

Phd

(43)

and390

nh ≈
WhdShd/

√
Phd∑H

i=1WidSid/
√
Pid

(44)

391
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