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Abstract 

The development of single cell RNA sequencing technologies has emerged as a powerful 
means of profiling the transcriptional behavior of single cells, leveraging the breadth of 
sequencing measurements to make inferences about cell type. However, there is still little 
understanding of how well these methods perform at measuring single cell variability for small 
sets of genes and what “transcriptome coverage” (e.g. genes detected per cell) is needed for 
accurate measurements. Here, we use single molecule RNA FISH measurements of 26 genes 
in thousands of melanoma cells to provide an independent reference dataset to assess the 
performance of the DropSeq and Fluidigm single cell RNA sequencing platforms. We quantified 
the Gini coefficient, a measure of rare-cell expression variability, and find that the 
correspondence between RNA FISH and single cell RNA sequencing for Gini, unlike for mean, 
increases markedly with per-cell library complexity up to a threshold of ~2000 genes detected. A 
similar complexity threshold also allows for robust assignment of multi-genic cell states such as 
cell cycle phase. Our results provide guidelines for selecting sequencing depth and complexity 
thresholds for single cell RNA sequencing. More generally, our results suggest that if the 
number of genes whose expression levels are required to answer any given biological question 
is small, then greater transcriptome complexity per cell is likely more important than obtaining 
very large numbers of cells. 
 
Introduction 
Single cell biology has exploded in recent years to touch many areas of biomedical research, 
stemming from a growing appreciation that individual cells may deviate from the population 
average [1–3]. Such deviations may arise from the mixture of different cell “types” or cell states 
within a given tissue, or may arise from probabilistic behavior within a single cell type. Two 
classes of expression profiling have emerged in single cell analysis. One is single cell RNA 
sequencing, which gives enormous breadth by measuring the entire cellular transcriptome [4,5]. 
Another is in situ hybridization approaches such as single molecule RNA FISH [6–8], which 
yields highly accurate RNA counts and localization data, but typically just for a more limited set 
of genes. 
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Single cell RNA sequencing has, in particular, emerged as a potent tool for classifying cells into 
different “types”, including rare cell types [9], owing to the fact that individual cell types vary in 
the expression of a large number of genes. This high dimensional redundancy allows the 
classification to tolerate a large degree of technical inaccuracy: for instance, many genes can be 
incorrectly read out as a zero [10], but the remaining genes will still give enough data to 
correctly classify the cell type. As such, reports have demonstrated that even relatively shallow 
coverage for most cells is sufficient for this application [11]. 
 
There are situations, however, in which cells may not necessarily separate into cell types with 
large numbers of expression differences, but instead may vary in the expression of just a few 
genes. Examples include rare-cell biology in otherwise clonal cell types, distinguishing more 
narrowly defined cell states such as cell cycle phase or stress responses, and discriminating 
very similar cell subtypes that differ only in the expression of a few genes. In those situations, 
the technical issues surrounding single cell RNA sequencing may have more consequences, 
but most previous studies [12–15] (with the notable exception of Grün et al. [16]) lacked the 
gold-standard reference needed to know what degree of data quality, such as degree of 
transcriptome coverage, is required in order to make robust biological inferences. 
 
Here, we compare high throughput single cell RNA sequencing to RNA FISH to make principled 
estimates of the quality of single cell RNA sequencing required to recapitulate important 
features of gene expression like rare-cell expression. Using a melanoma cell line in which we 
have measured 26 genes with RNA FISH in many thousands of cells as a model, we performed 
single cell RNA sequencing using both DropSeq and Fluidigm’s C1 mRNA Seq HT IFC 
platform. We found that while single cell RNA sequencing methods agree with RNA FISH for 
detecting average levels of expression, other aspects of single cell expression measurements 
(such as rare cell analysis) required subjecting single cell data to stringent quality control 
metrics for transcriptome coverage. We show that these metrics are also important for analyses 
of cellular states that involve several genes, such as cell cycle. 
 
Results 

 
First, we describe the three methods in our comparison. We performed RNA FISH on 
WM989-A6, a clonal isolate of the melanoma line WM989. This cell line exhibits drug resistance 
to vemurafenib at a frequency of around 1:2000 to 1:5000 cells. It also exhibits “jackpot” 
expression (i.e., rare cells with high levels of expression with the rest having very little) for a 
number of genes strongly associated with resistance to Vemurafenib, including EGFR, AXL, 
WNT5A, and NGFR, at frequencies between ranging from one in 50-500 cells (Shaffer et al. 
Nature, in press). We performed RNA FISH for 17 resistance markers and 9 
housekeeping/ubiquitously expressed genes in 7,000-88,000 cells, depending on the gene (Fig. 
1A).  
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We performed DropSeq on WM989-A6-G3, a clonal isolate of WM989, as per Macosko et al. 
[17]. DropSeq involves running cells through a microfluidic droplet maker that randomly 
produces droplets containing individual cells along with a barcoded RNA capture bead. Cells 
lyse within the droplet, and the RNA adheres to the oligonucleotides on the bead. These bead 
oligonucleotides contain two codes: one unique to the bead for cell identification, and one 
unique to each individual oligonucleotide to serve as a unique molecular identifier (UMI). The 
droplets in the emulsion are then broken and the beads pooled before reverse transcription 
occurs using the bead oligonucleotides as templates. We then pool the resulting cDNA for 
library construction and subsequent sequencing (Fig. 1B). We performed DropSeq on 
human/mouse cell mixtures to confirm that the method was able to robustly separate individual 
cells in our hands (Supp Fig. 1A). Based on the number of beads used for library construction, 
we expected to obtain roughly 8600 melanoma transcriptomes and the top 8600 barcodes had 
at least 5000 uniquely mapped reads per barcode.  We found the large number of remaining 
barcodes formed a bimodal distribution, with ~140,000 barcodes between 100-5000 uniquely 
mapped reads, and ~1.4 million barcodes with <100 uniquely mapped reads. These may 
correspond to background from free beads either from cells lysed in droplets without a bead or 
transferring from one bead to another, and from sequencing or PCR errors (Fig. 1C). For the 
remaining analysis we included only the top 8600 barcodes, with a median depth of 6,938 
uniquely mapped reads per cell and an interquartile range (IQR) of 5,553 reads. 
 
We also used Fluidigm’s C1 mRNA Seq HT chip on WM989-A6-G3 cells to generate single cell 
RNA sequencing data. This method uses microfluidics to load individual cells into 800 separate 
chambers, lyses the cells, and then performs SMARTer v3 chemistry for RNA amplification. It 
barcodes and pools the 800 wells into 20 groups of 40, and we generated sequencing libraries 
for each of the 20 groups separately (no UMIs are included as part of the protocol). We obtained 
brightfield images for most chambers after cell loading and excluded chambers that were either 
empty, had clumps of cells, or contained debris in addition to cells (Fig. 1D), leaving 340 
potential cells. Of those, we included in our analysis only chambers with more reads than empty 
chambers without cells, leaving us with data from 335 of the 800 possible chambers. These 
were sequenced to a  median depth of ~123,000 uniquely mapped reads per cell with an IQR of 
110,642 reads. 
 
We then analyzed the quality of the data from both the DropSeq and Fluidigm platforms. We 
found that as we increased our sequencing depth the number of new genes detected begins to 
plateau, which suggests that if were we to sequence our libraries more deeply, the majority of 
the reads would be from amplicons already sequenced (downsampling analysis in Supp. Fig. 
1B). As expected, we found generally high levels of expression for melanocyte specific genes 
such as Sox10, UCN2, MLANA, and DCT but negligible levels of markers for pancreas, heart 
and spleen (Supp. Fig 1C). Thus, we concluded that our single cell RNA sequencing libraries 
provided transcriptome measurements consistent with the melanocyte cell line (see also 
comparison to bulk RNA sequencing data; Fig. 1F). 
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While these bulk metrics provided some assurance in the quality of our DropSeq data, at the 
single cell level, we noted wide variability between transcriptome coverage in individual cells, 
with a small number of cells covered very highly (>5000 genes detected) and the majority 
covered at a shallow level (<1000 genes detected; Fig. 1E). This distribution of transcriptome 
coverage was markedly more uniform for the Fluidigm data, suggesting that the coverage 
variability in DropSeq data results from experimental factors such as variability between droplets 
or beads. 
 
It seems likely that per-cell transcriptome coverage  will affect estimates of population statistics 
such as mean or variability measures, or the ability to assign cells to specific cell states, but it is 
unclear how much transcriptome coverage  is needed for these applications. This raises the 
question of how stringently to filter cells in order to obtain sufficient quality for particular 
biological inferences, which is difficult to do without a ground truth reference. We therefore set 
about answering this question by analyzing subsets of the DropSeq data with different per-cell 
transcriptome coverage levels, and using RNA FISH as an independent gold standard. 
 
First, we compared the mean level of RNA detected across all cells by comparing unique 
molecular identifiers per million (in the case of DropSeq) or reads per million (in the case of 
Fluidigm) to average counts per cell from RNA FISH (Fig. 1F). Given that the mean is less 
dependent on single cell variability, we expected to find a general correspondence between 
RNA FISH and the RNA sequencing-based methods. We found that the correlation was fairly 
strong for both methods (DropSeq R = 0.61; Fluidigm R = 0.63), and this correlation was similar 
across a range of sequencing depths (Supp. Fig. 1D). 
 
Interestingly, we noted that despite the overall correspondence in mean transcript abundance 
between RNA FISH and RNA sequencing (see also [18,19]), the differences between the single 
cell RNA sequencing methods and RNA FISH were shared between both comparisons, and that 
these discrepancies were of similar magnitude and direction. This raises the question whether 
these expression differences result from differences in sample handling or from methodological 
differences between RNA FISH and RNA sequencing.  We compared the expression of these 
genes between DropSeq and Fluidigm (Fig. 1G), and found a much stronger correlation 
(R=0.95). Furthermore, the correlation between these methods and bulk RNA sequencing (also 
reads per million) was similarly high (DropSeq R = 0.94; Fluidigm R = 0.92), even though the 
bulk RNA sequencing was performed on RNA harvested directly from adherent cells as 
opposed to the dissociated cells used for DropSeq and Fluidigm (Fig. 1F). Given the radical 
differences in RNA isolation and library preparation between these three methods of RNA 
sequencing, we concluded that the differences between RNA FISH and RNA sequencing 
transcript level estimation likely stem from systematic biases in sequencing itself and not from 
biases introduced by the different protocols or sample handling. 
 
We next sought to compare the single cell distributions of transcript abundance as measured by 
either single cell RNA sequencing and RNA FISH. We first used the Kolmogorov–Smirnov (KS) 
statistic, which measures the deviation between two expression frequency distributions. We 
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calculated the KS statistic between the single cell datasets and RNA FISH for each gene (Supp. 
Fig. 2A). We found that the KS statistic improved slightly and continuously as the transcriptome 
coverage threshold increased, but there was no clear point demarcating a value above which 
the results were qualitatively more consistent (Supp. Fig. 2B).  
 
While KS provides a metric to compare distributions in general, it may not as effectively capture 
differences in specific features of distributions that may be of interest; thus, other metrics may 
provide a more sensitive point of comparison in certain contexts. Because we were specifically 
interested in detecting rare-cell expression patterns, we turned to the Gini coefficient, developed 
by Corrado Gini as a means of quantifying income inequality. In the context of single cell 
expression level [20], a Gini coefficient of zero signifies an equal distribution where all cells 
express exactly the same levels of a particular gene, whereas a Gini coefficient of one signifies 
the most extreme level of jackpot expression in which all the RNA is concentrated in a single 
cell while all the others have none. Intermediate Gini coefficients correspond to intermediate 
levels of rare-cell heterogeneity (Fig. 2A). 
 
The genes whose expression we analyzed by RNA FISH had expression Gini coefficients 
ranging from 0.29 to 0.98, with housekeeping genes such as GAPDH having a Gini coefficient 
of 0.33 while resistance markers like EGFR and WNT5A had high Gini coefficients of 0.76 and 
0.83. We then wondered how accurate single cell RNA sequencing measurements of Gini 
coefficients would be, given the technical sensitivity of single cell RNA sequencing. Indeed, we 
found that the Gini coefficients from both platforms were generally far higher than in RNA FISH; 
for instance, SOX10  has a Gini coefficient of 0.38 by RNA FISH, but has a Gini coefficient of 
0.91 by DropSeq and 0.51 by Fluidigm (Fig. 2A). 
 
Given that the Gini coefficients calculated from Fluidigm (which had higher mean library 
complexity as defined by coverage per cell) corresponded more closely to Gini coefficients from 
RNA FISH than did DropSeq (Fig. 2D,F,C), we reasoned that accuracy of Gini estimation may 
depend on transcriptome coverage . Single cell RNA sequencing is often plagued by so-called 
zero inflation, in which some cells artificially yield low or zero levels of many transcripts 
[10,21,22], which would likely inflate estimates of Gini. To test this hypothesis, for each of the 
genes for which we had RNA FISH data, we computed the Gini coefficients for Drop-seq 
samples binned by the number of genes detected per cell. We found that the Gini coefficient 
estimates for genes with low variability (e.g. SOX10) generally decreased as the number of 
genes detected per cell increased, while the Gini estimates for highly variable genes (e.g. 
EGFR) remained high (Fig. 2C). Overall, as the stringency threshold for transcriptome coverage 
increased, the correspondence with the Gini coefficients measured by RNA FISH increased 
(Fig. 2B), with the highest quality cells giving a similar correlation for both Gini coefficient and 
mean expression. Upon calculating the correlation coefficient between Gini coefficients as 
measured by single cell RNA sequencing vs. RNA FISH over a range of number of genes 
detected per cell, we found that the correspondence for DropSeq increased most until the 
number of genes detected per cell reached around 2000, but did not increase appreciably 
beyond that number (Fig. 2B). This suggests that a threshold for transcriptome coverage of 
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2000 genes detected per cell (for our DropSeq data) was sufficient for reasonably accurate 
quantification of rare-cell expression via single cell RNA sequencing. (Notably, cells in the 
Fluidigm dataset generally had more uniform (and uniformly higher) number of genes detected 
(Fig. 1E), and as expected, the Gini coefficients calculated from these data were more accurate 
(Fig. 2F).)  
 
The improvement of Gini coefficient estimates from stringently filtering the DropSeq data are 
driven by decreases in artificially high Gini coefficients; i.e., the lowering of Gini coefficients for 
genes that are relatively uniformly expressed as the transcriptome coverage  increases. This 
leads to the somewhat counterintuitive prediction that having a small number of cells with higher 
transcriptome coverage  leads to more accurate Gini coefficients for rare-cell expression than a 
large number of cells with shallow transcriptome coverage , because doing so reduces the false 
positive high Gini coefficient genes. We tested this by estimating the Gini coefficient for a range 
of sample sizes (number of cells) for cells binned by number of genes detected per cell (Fig. 
2G). We found that increased sample size did improve the similarity of our Gini estimate with 
smFISH estimate. We also found that using a large number of cells with low transcriptome 
coverage  (eg. n=2000 with 500-1,000 genes detected) still provided a worse estimate than 
using a small number of higher complexity cells (eg. n=50 cells with 1,500-2,000 genes 
detected). This suggests that having a pool of few high-transcriptome coverage  cells may yield 
more accurate Gini coefficients due to reduction of artificially high Gini coefficients that stem 
from the low transcriptome coverage  of shallow depth single cell RNA sequencing. 
 
Given this guidance for determining a threshold for whether to include a cell from the DropSeq 
data based on RNA FISH, we then proceeded to ask whether such a threshold on transcriptome 
coverage would be useful for cell-state determination, and whether such a threshold could be 
identified in a context in which RNA FISH data is not available, focusing on the cell cycle as a 
canonical example [17]. Our analysis consisted of classifying cells based on their expression of 
a panel of genes known to be associated with cell cycle [23]. We first classified our DropSeq 
cells for cell cycle phase (Fig. 3B, top). To assess our ability to detect biological signal, we also 
generated a null expectation, classifying cell cycle phase for randomly permuted data (Fig. 3B, 
bottom) (data permuted by, independently for every gene, randomly assigning transcript counts 
between all cells). We found no significant difference  between the two. To assess the 
relationship between transcriptome coverage and our ability to detect biological signal, we 
classified cells binned by number of genes detected per cell, and then we increased the 
stringency threshold and measured how signal emerged above the randomized control. We 
defined signal strength as the difference between how well a cell’s transcriptome correlated with 
the idealized signature of the assigned phrase and how well it correlated with the “opposite” 
phases (e.g., for a G1/S-assigned cell, how well it correlated with G1/S minus how well it 
correlated with G2 and G2/M phases) (Fig. 3D). We found that our ability to detect cell cycle 
phase improved with the number of genes detected per cell. Moreover, we again found that at a 
threshold of around 2000 genes detected, the signal strength significantly increased above 
randomized control (Fig. 3E), and the number of cells in each phase of the cell cycle reached 
more plausible values (Fig. 3A). The classification of cells differed much more from randomized 
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data when cells were thresholded above this stringency level (Fig. 3C), and fit more with the 
canonical view of the cell cycle, with most cells in G1 phase and a smaller number in G2 or M. 
An important consideration, however, is that the ability to classify the biological state of a cell 
likely depends on the number genes that mark a given state. Are higher transcriptome 
coverages required for more subtle biological states? To test this, we classified cell cycle phase 
using random subsets of phase marker genes, for a range of transcriptome coverages (genes 
detected per cell) (Fig. 3F). As expected, our ability to detect biological signal increased with the 
number of marker genes available, while for more subtle biological signals, higher transcriptome 
coverages were required to distinguish the signal from random. For example, distinguishing a 
cell cycle phase based on the expression of 30 marker genes requires a transcriptome 
coverage of >1500 genes/cell, while a cell state defined by 10 marker genes requires >4000 
genes/cell for the detection of any reliable signal (Fig. 3F). 
 
These results show that biological inferences of cell state—just as with rare-cell analysis—also 
require cells of sufficient transcriptome coverage, with a similar threshold level for stringency. 
 
Discussion 
Single cell RNA sequencing is a transformational tool for studying gene expression in single 
cells, but as yet, little guidance exists on what criteria on such datasets are required for making 
reliable inferences for different biological questions. Partly, this is because of a lack of 
complementary gold-standard data. Here, we have used large-scale single molecule RNA FISH 
datasets as a gold-standard, focusing in particular on the question of rare-cell variability in gene 
expression. We found that DropSeq data produced cells with a wide variety of transcriptome 
coverages, and that effective identification of rare-cell expression required limiting analysis to 
those cells with higher transcriptome coverage. Using these same quality thresholds, we were 
also able to more robustly classify cells by position in cell cycle. 
 
This work highlights the tradeoffs inherent to the analysis of single cell RNA sequencing data. 
With DropSeq (but also for other methods), the question arises as to how deep the 
transcriptome coverage for any one cell must be before including it in the analysis, because the 
vast majority of putative cells have very shallow transcriptome coverage, either due to amount 
of sequencing performed or inherent library complexity. In the context of the literature, our 
results suggest that these choices strongly depend on the biological question under 
consideration. Many applications of single cell RNA sequencing have been for the identification 
of different cell types in tissues, and for such questions, a shallow transcriptome coverage may 
be sufficient, essentially because cell types typically differ in the expression of hundreds or 
thousands of covarying genes, any subset of which are sufficient for classification [11]. Our 
results show that distinguishing more closely related cell types or cell states which differ by 
~1-30 genes, such as the position within cell cycle, requires higher transcriptome coverage for 
accurate determination. Similarly,  we found that even moderately accurate classification of a 
particular gene as expressing in a rare-cell manner (i.e., high Gini coefficient) requires 
considerably deeper transcriptome coverage per cell. In general, our results demonstrate that 
an accurate statement about the single cell variability of any particular gene or small subset of 
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genes requires higher transcriptome coverage than that needed for cell-type identification 
studies. 
 
How might one determine such a threshold? In our case, we were able to use single molecule 
RNA FISH data to provide a ground truth as a basis for comparison, but such data is typically 
not available to cross-reference against, and it is likely that the threshold may vary between 
sample types and even cell lines. We suggest a procedure in which one repeats the analysis 
while varying the stringency of the threshold for including cells in the analysis and then 
measuring the strength of the signal for the comparisons of interest (such as how distinct cell 
populations are compared to randomized data). If the cells are actively proliferating, then one 
could perform an analysis similar to that performed in Fig. 3 for cell cycle to help calibrate the 
threshold, while realizing that the ideal threshold may not be directly transferable because it will 
depend on factors such as the number of differentially expressed genes and magnitude of 
expression differences for each gene. 
 
In this vein, there are also new computational tools such as MAGIC [24] that aim to recover 
correlations from shallow-coverage cells in single cell RNA sequencing datasets, as well as 
tools like SAVER [25] (co-submitted manuscript) that are even able to recover distributions from 
shallow-coverage cells in single cell RNA sequencing datasets. SAVER is able to recover these 
distributions by training a prediction model across all cells regardless of coverage, thus yielding 
counts per cell based on a weighted average of the model prediction and the experimental 
observations. It remains to be seen how much these methods rely on the particulars of the 
distribution of transcriptome coverage across cells. It is also interesting to consider the 
possibility of both sequencing a few cells at very high coverage and a much larger number of 
cells at a shallower read depth to see if it is possible to recover more information from these 
combined datasets. 
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Methods 
Experimental methods 
Cell culture - We obtained WM989 melanoma cells from the lab of Meenhard Herlyn and derived 
A6 and A6-G3 subclones in our lab. We grew them in Tu2% media (78% MCDB, 20% 
Leibovitz’s L-15 media, 2% FBS, and 1.68mM CaCl2). We grew 3T3 murine cells in DMEM 
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media (10% FBS, 0.5% pen/strep), and murine JC4 suspension cells in IMDM media (10% FBS, 
2% pen/strep, 50ng/ml Kit ligand, 2 U/ml erythropoietin, 4.5 x 10^-5 M monothioglycerol). 
 
RNA FISH - For RNA FISH we seeded cells in two-well LabTek chambered coverglasses and 
cultured them to ~50-70% confluency. We performed single molecule RNA FISH and 
high-throughput microscopy scans as previously described [7] (and Shaffer et al. Nature in 
press). In short, we first fixed adherent cells with 4% formaldehyde in PBS for 10 min at RT and 
permeabilized with 70% EtOH at 4C overnight. We hybridized FISH probes (DNA 
oligonucleotides conjugated to fluorescent dyes) overnight at 37C, washed away unbound 
probes, and stained DNA with DAPI prior to acquiring a tiled grid of images. Note that in our 
imaging system, we measured expression in a single z-plane of the cell; thus, the exact 
numbers for each cell are not total mRNA counts per cell, but rather an amount proportional to 
the total. For iterative FISH, we stripped DNA probes and hybridized new ones as in Shaffer et. 
al. (Nature, in press) In short, after an initial round of imaging, we removed bound DNA probes 
using  60% formamide on 2X SSC during a 15 minutes incubation at 37C. We then removed the 
formamide with three 15-minute washes at 37. Finally, we washed one last time with wash 
buffer prior to adding a new set of DNA probes. 
 
Dropseq - We generated single cell suspensions by trypsinizing adherent cells with 0.05% 
trypsin-EDTA or by harvesting suspensions cells.  We passed all cells through a 40 micron filter 
and diluted them to 100 cells/ul in PBS-BSA. We carried out all subsequent steps as detailed by 
Macoscko et. al, protocol v3.1 (http://mccarrolllab.com/dropseq/).  In short, we loaded cells in 
PBS-BSA and barcoded beads (chemgenes Barcoded Bead SeqB, cat. No. 
MACOSKO-2011-10) in lysis buffer onto a droplet generating microfluidic device. After breaking 
the droplets, we pooled the beads into aliquots of ~60,000, reverse transcribed the RNA 
captured by the barcoded beads, and digested unbound poly-dT tails via exonuclease 
treatment. We PCR-amplified STAMPs (2000 beads per reaction), purified cDNA using AMPure 
beads and quantified the library via Agilent’s High Sensitivity DNA Chip. We then tagmented the 
resulting cDNA with nextera XT adapters and purified the final library with Ampure beads. We 
sequenced all libraries using Nextseq 500 with a custom Dropseq read 1 primer. 
 
Fluidigm - To prepare single cell suspensions, we dissociated WM989-A6-G3 cells as above. 
We immunostained the cells as per Shaffer et. al (Nature, in press). Briefly, we incubated cells 
for 1 hour at 4C with 1:200 mouse anti-EGFR antibody, clone 225 (Millipore, MABF120) in 0.1% 
BSA PBS. We then washed twice with 0.1% BSA-PBS and then incubated for 30 minutes at 4C 
with 1:500 donkey anti-mouse IgG-Alexa Fluor488 (Jackson Laboratories, 715-545-150). We 
washed the cells again with 0.1% BSA-PBA and incubated for 10 minutes with 1:500 anti-NGFR 
APC-labelled clone ME20.4 (Biolegend, 345107). After we washed the cells with 0.1% 
BSA-PBS and pelleted them, we resuspended them in Tu2%, passed them through a 35 micron 
filter, and diluted them to a final concentration of ~350 cells per ul in Tu2%. We prepared the 
samples and sequencing library according to the manufacturer’s instructions 
(https://www.fluidigm.com/products/c1-system). In short, we loaded and captured single cells on 
Fluidigm’s C1 integrated fluidic circuit and inspected the capture chambers via microscopy. We 
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then lysed the cells, barcoded the captured mRNA via RT with a barcoded primer, and amplified 
the resulting cDNA via PCR. Unlike DropSeq, this protocol uses no unique molecular identifiers 
to label RNA molecules. After we harvested the amplified cDNA, we tagmented the library using 
Nextera’s XT DNA sample preparation kit (following Fluidigm’s version of the protocol), purified 
the final library using Ampure beads and quantified using Agilent’s High Sensitivity DNA Chip. 
We sequenced the library using a Nextseq 500.  
 
 
Analysis methods 
Drop-seq alignment and quantification 
Initial Drop-seq data processing was performed using Drop-seq_tools-1.0.1 
(http://mccarrolllab.com/dropseq/), and following protocol described in 
seqAlignmentCookbook_v1.1Aug2015.pdf, accessed from the same site. Data were aligned 
using STAR version 2.4.2a, downloaded from github on Jan 21, 2016. Data were aligned to 
reference genome builds hg38 (Human) and mm10 (Mouse), and using reference transcriptome 
annotations Gencode21 (Human) and Refseq mm10 (Mouse), concatenated with ERCC 
sequences. Reference transcriptome annotations Gencode21 (Human) and Ensembl mm10 
release 83 (Mouse), concatenated with ERCC annotations. Briefly, reads with low-quality base 
in either cell or molecular barcode were filtered and reads were trimmed for contaminating 
primer or poly-A sequence. Sequencing errors in barcodes were inferred and corrected, as 
implemented by Drop-seq_tools-1.0.1. Uniquely mapped reads, with <= 1 insertion or deletion, 
were used in quantification. To account for differences in molecule recovery, cell measurements 
were normalized to UMI per million (UPM). 
  
Fluidigm alignment and quantification 
Fluidigm sequence data were demultiplexed using mRNASeqHT_demultiplex.pl 
(https://www.fluidigm.com/c1openapp/scripthub/script/2015-08/mrna-seq-ht-1440105180550-2 ). 
Demultiplexed data were processed in the same manner as Drop-seq data, with a few 
modifications: 5’ ends of reads were not trimmed, and reads (rather than UMI) were used for 
quantification. To account for differences in molecule recovery and sequencing depth, cell 
measurements were normalized to reads per million (RPM). 
  
Bulk sequencing alignment and quantification 
We sequenced mRNA in bulk from WM989-A6 populations as per Shaffer et. al. We isolated 
mRNA and built sequencing libraries using the NEBNext Poly(A) mRNA Magnetic Isolation 
Module and NEBNext Ultra RNA Library Prep Kit for Illumina. We sequenced the libraries either 
on a HiSeq 2000 or a NextSeq 500 to a depth of approximately 20 million reads. We then 
aligned the reads to hg19 and quantified reads per gene using STAR and HTSeq. 
  
FISH quantification 
All image analysis was performed as per Shaffer et. al. We developed a MATLAB analysis 
pipeline that segments nuclei of individual cells using DAPI images. The pipeline then identifies 
regional maxima as potential DNA FISH spots and assigns them to the nearest nuclei. We then 
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select a signal intensity threshold for each RNA FISH channel to differentiate background from 
RNA FISH signal. We then extract the position of every cell in the scan and the number of RNA 
molecules for each fluorescent channel. To match cells across subsequent hybridizations, we 
developed a software that shifts cells in the first hybridization to all potential candidates in the 
subsequent hybridization. It then chooses the best match as the one that minimizes the total 
distance for nearby cells. We then matched cells by proximity and discarded those cells that did 
not match uniquely to a nearby cell.  
  
Selecting quality single cell Drop-seq data 
Cell barcodes were classified as quality human cells, based on the following criteria: 1) Greater 
than 80% of species-specific transcripts were assigned to human, and at least 100 
species-specific transcripts were available for assignment. 2) The cell barcode was not assigned 
a synthesis error. The remaining barcodes were filtered to retain the expected number of cells. 
Based on experiment, we expected 8640 single human cells, and we retained the 8640 cell 
barcodes with largest read depth (Supplemental Table 1).   
 
Selecting quality single cell Fluidigm data 
The Fluidigm system allowed cells to be imaged before processing, and for images to be 
associated with sequencing data. In our automated setup, not all wells were imaged, and well 
numbers were not captured in images (though column identity on the chip was known). In order 
to use images to identify quality single cells, we first re-ordered visual annotations to best match 
read depth observed per well (so that images of empty wells had low depth compared to images 
with individual or multiple cells). Given re-ordered images, wells were classified as quality single 
cells if: 1) based on associated image, the well was annotated as containing a good, single cell, 
and 2) if the cell appeared to be distinct from wells annotated as empty by read depth. Both 
criteria were required (Supplemental Tables 2 and 3).  
 
Sufficiency of sequencing depth 
We wanted to ensure that our metric of library complexity (number of genes observed) did not 
reflect sequencing depth. To test whether the Drop-Seq and Fluidigm experiments were 
sequenced to a sufficient depth, we examined the relationship between experimental read depth 
and the average number of genes observed in single cells. To do this, we randomly and 
uniformly subsampled reads from the Drop-seq (or Fluidigm) read counts table, for a variety of 
experimental sequencing depths. We generated 10 random samples at each sequencing depth, 
and report the average number of observed genes, across cells and sample replicates. We 
generated random samples for an average depth per cell of 100, 500, and 1000 – 500,000 (step 
size of 1000) raw reads per cell. (For Drop-seq data, our experimental depth allowed testing 
depths up to 120,000 average raw reads per cell.) To identify the number of reads to subsample 
from the read count table, given these raw read depths per cell, we calculated the fraction of all 
sequenced reads that were assigned to the read count table. At each selected experimental 
depth, we used this fraction of reads to subsample the read counts table. For Dropseq data, 
11.2% of raw reads were uniquely assigned to genes in quality cells. In Fluidigm data, 29.3% of 
reads were uniquely assigned to genes in quality cells. 
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Tissue-marker gene expression 
We selected tissue marker genes for melanocytes, pancreas, heart, and spleen from TIGER 
(http://bioinfo.wilmer.jhu.edu/tiger/). For each tissue type the genes were selected for analysis 
based on the expression level in their respective tissue and their presence in both single cell 
RNA sequencing datasets.  
  
Comparison of average measurements 
We calculated mean ± 2 SEM for each measurement type. Two genes with FISH measurements 
were excluded (VGF and NGFR) due to unreliable FISH measurements. One additional gene 
(AXL) was not observed in the Fluidigm data, and was excluded from Fluidigm comparison. 
Pearson correlations were calculated over genes observed in both Drop-seq and Fluidigm and 
were calculated on a log 10 scale. 
  
Filtering and normalization for calculation of rare cell variability 
It has been shown that a portion of molecular variability across single cells is due to cell volume 
[18]. To focus on rare cell variability, we normalized smFISH cells to GAPDH, using GAPDH 
levels as a proxy for cell volume. Cells with <50 GAPDH molecules observed were filtered prior 
to normalization. For visualization, we scaled normalized values by 400 so that normalized 
counts were on roughly the same scale as single cell molecular counts. In order that sequencing 
data remain comparable to smFISH data, we filtered Drop-seq and Fluidigm cells with no 
observed GAPDH. We then scaled the (sequencing-depth normalized) Drop-seq and Fluidigm 
data so that the median GAPDH level across cells was 400, so that sequencing measurements 
were on a similar scale to smFISH measurements. 
  
Measure of rare cell variability 
Gini coefficients were calculated using the R package “ineq”. 
  
Effect of library complexity on Gini coefficient estimate 
To test the effect of library complexity on estimates of population statistics, we binned cells by 
library complexity, using the number of observed genes as our metric of complexity. We used 
bins ranging from 0 to 5500 observed genes, with a step size of 500 genes. Sample size (the 
number of cells in a bin) is expected to affect the estimate of the Gini coefficient. We controlled 
for sample size (number of cells) by randomly subsampling cells within a bin, to reach 50 cells 
per bin, prior to calculating the Gini coefficient. Random sampling was repeated 100 times per 
bin. So that normalization was consistent across all random subsamples, we normalized all cells 
to cellular GAPDH level. As previously, smFISH cells with <50 GAPDH molecules were 
excluded, as were Drop-seq and Fluidigm cells with no GAPDH observed. For each complexity 
bin, we calculated the Pearson correlation of Gini coefficient estimates calculated on Drop-seq 
data with those calculated using smFISH data. For each bin, we report the average correlation 
across subsample replicates ± 1 standard deviation. 
  
Effect of sample size (number of cells) on Gini coefficient estimate 
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To evaluate the effect of sample size on Gini coefficient estimates, we repeated the analysis 
described above for a variety of numbers of cells for each complexity bin. 
  
Cell cycle phase classification 
To assess our ability to detect biological expression patterns using Drop-seq and Fluidigm 
measurements, we assigned cell cycle phase to individual cells, following the approach used in 
Macosko et al. [17] and using cell cycle marker genes identified in Whitfield et al. [23]. The 
Macosko et al. approach involves the following steps: 1) Marker genes were filtered to exclude 
genes that do not cycle in melanoma cells. For each set of genes assigned to a particular cell 
cycle phase, the average expression profile was calculated across the data set. For each 
individual gene within that set, the correlation with this average profile was calculated. Genes 
with correlation <0.3, in either Drop-seq or Fluidigm data, were excluded. 2) Depth-normalized 
read counts were zero-adjusted and log 2 normalized. 3) For each cell and phase, a phase score 
was assigned by calculating the average normalized value across marker genes for that phase. 
4) Phase scores were z-normalized, first across cells within each phase, and then across 
phases within each cell. 5) Sample phase was assigned to each cell. To do this, a binary score 
profile was created for idealized cells at each phase and phase transition. The correlation of a 
cell’s normalized score profile with this set of idealized profiles was calculated. A cell was 
assigned a phase based on the maximum observed correlation. 
  

Effect of library complexity on cell cycle phase classification 
To test the effect of library complexity on cell phase classification, we binned cells by the 
number of observed genes as described above and, as above, we controlled for sample size 
(number of cells) by randomly subsampling cells within a bin, to reach 50 cells per bin. For each 
set of sampled cells, we classified cell cycle phase as described above. To generate a random 
expectation for cell cycle phase categorization, we generated 1000 random counts tables, 
shuffling counts across cell cycle marker genes for each sample. For each table, we proceeded 
with cell cycle phase classification as described above. We used the same sets of samples as 
used in test data, so that each tested population of cells was compared to a biologically and 
technically matched population with randomized expression profiles. 
  
To summarize the strength of biological signal, we calculated for each cell the best correlation 
with an idealized phase profile (the assigned phase for the cell) and the best correlation with an 
idealized phase profile for an “off” phase, or a cell cycle phase that does not neighbor the 
assigned phase. We report the difference between these correlations. To provide a 
population-level statistic, we calculate the average strength of biological system for each tested 
population (each randomly sampled set of 50 cells). To assess the significance of this statistic, 
we calculated the same statistic for each null (randomly shuffled) population, and report the 
fraction of times that a signal as large or larger is observed. Finally, we summarize these results 
across the randomly sampled populations (the random sets of 50 cells), reporting the average ± 
1 standard deviation across subsample replicates.  
 
Effect of number of marker genes on cell cycle phase classification 
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To evaluate the effect of the number of available marker genes, we repeated the analysis 
described above for a variety of numbers of genes. We randomly selected n  marker genes for 
each phase (n from 1 to 30), and then ran the analysis described above on that subset of 
genes. We repeated this 100 times for each n . For randomized data, we selected n  genes for 
each phase once, because the identity of the gene has been lost in randomizing the data. (This 
means each of the 1000 randomized replicates is essentially a different random gene set 
sample as well.) So, each of the 100 replicates of test data for a given n  are compared to the 
same null expectation. 
 
Figure Legends 

 

Figure 1. Gene expression estimates correlate between platforms despite differences 

probing scheme and transcriptome coverage. (A) Schematic of how single molecule RNA 
FISH (left), Fluidigm's C1 HT IFC (center), and DropSeq (right) estimate gene expression from 
individual cells. (B) Sequencing statistics for libraries built with DropSeq (green, n = 1 biological 
replicate) and Fluidigm (orange, n = 1 biological replicate). (C) Distribution of reads across all 
barcodes sequenced in DropSeq. (D) Distribution of reads across capture chambers in 
Fluidigm's platform. (E) Distribution of transcriptome coverage (# genes detected per cell) for 
DropSeq (top) and Fluidigm (bottom). (F) Correlation of averaged gene expression estimates 
across Fluidigm, DropSeq, and bulk RNA-seq. (G) Correlation of averaged gene expression 
estimates between DropSeq and Fluidigm. Error bars in (F,G) represent two times the standard 
error of the mean (SEM). 
 

Figure 2. Measurement of gene expression heterogeneity in scRNA-seq is highly 

dependent on transcriptome coverage. (A) The Gini coefficient measures a gene’s 
expression distribution and captures rare cell population heterogeneity. The Gini coefficient is 
often overestimated by scRNA. (B) Correlation between Gini coefficients measured through 
DropSeq and smFISH across different levels of transcriptome coverage (# genes detected per 
cell). Error bars represent ± 1 standard deviation across bootstrap replicates. (C) Gini coefficient 
for five genes measured by DropSeq (left y-axis) at different levels of transcriptome coverage as 
well as by smFISH (right y-axis). (D,E) Scatterplot of the correspondence between Gini 
coefficients for 26 genes measured by both DropSeq and smFISH. The correlation between 
estimates improves when only cells with high transcriptome coverage (>2,000 genes per cell) 
are included in the analysis. (F) Scatterplot of the correspondence between Gini coefficients for 
26 genes measured by Fluidigm and smFISH. (G) Correlation between Gini coefficient 
estimates measured by DopSeq and smFISH using different population sizes (# of cells) and 
levels of transcriptome coverage. Error bars represent ± 1 standard deviation across bootstrap 
replicates.  
 

Figure 3. Correct classification of single cells into multi-genic states is highly dependent 

on transcriptome coverage. (A) Percent of cells assigned to a cell cycle phase (M/G1, G1/S, 
S, G2, or G2/M) at different levels of transcriptome coverage (# genes detected per cell). (B, C) 
Correlation of a cell’s gene expression signature (columns) with each of the cell cycle phases 
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(rows) for the DropSeq dataset (top) as well as for a null model (bottom) where the expression 
level of all genes in a given cell were randomly shuffled across cells. We did this analysis 
including either all cells (B) or only cells with a high transcriptome coverage (C). (D) Signal 
Strength allows us to measure how strongly and uniquely a cell correlates with a given cell cycle 
phase. (E) Signal strength across different levels of transcriptome coverage for DropSeq 
(orange) and a null model of randomized DropSeq data (orange). Error bars represent ± 1 
standard deviation across bootstrap replicates. (F) p-value of signal strength at different levels 
of transcriptome coverage using a different number of genes to characterize the phase. Bar 
height indicate mean across bootstrap replicates. Error bars represent ± 1 standard deviation 
across bootstrap replicates. 
 
Supplemental Figure 1. (A) Scatterplot representing the number of human and mouse 
transcripts associated with each cell barcode in the DropSeq dataset. (B) Sequencing coverage 
measured by the number of genes detected per cell as a function of the number of reads 
obtained for each cell for DropSeq (left) and Fluidigm (right). (C) Gene expression estimates of 
tissue-marker genes for DropSeq (left) and Fluidigm (right). (D) Correlation of average gene 
expression estimates between DropSeq and smFISH at different levels of transcriptome 
coverage (# genes detected per cell) using four different population sizes (50, 250, 500, and 
2000). Not all population sizes are available at all levels of transcriptome coverage. Error bars 
represent  ± 1 standard deviation across bootstrap replicates.  
 

Supplemental Figure 2. (A) Comparison of the gene expression distribution 
(Kolmogorov-Smirnov statistic) for five genes (LMNA, SOX10, MITF, EGFR, and WNT5A) 
measured by DropSeq and smFISH. We measured the KS statistic across different levels of 
transcriptome coverage (# genes detected per cell). Unless otherwise indicated, at each level of 
transcriptome coverage the KS test was repeated 100 times, each time randomly sampling 50 
cells from the population. The distribution of KS values across bootstrap replicates is depicted 
as a boxplot.  (B) Median KS statistic between DropSeq and smFISH of the 26 genes listed in 
Fig. 1A across varying degrees of transcriptome coverage. Bar height indicates the average 
across bootstrap replicates. Error bars represent  ± 1 standard deviation across bootstrap 
replicates. 
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