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Abstract 17 

Personally familiar faces are processed more robustly and efficiently than unfamiliar 18 

faces. The human face processing system comprises a core system that analyzes the 19 

visual appearance of faces and an extended system for the retrieval of person-20 

knowledge and other nonvisual information. We applied multivariate pattern analysis 21 

to fMRI data to investigate aspects of familiarity that are shared by all familiar 22 

identities and information that distinguishes specific face identities from each other. 23 

Both identity-independent familiarity information and face identity could be decoded 24 

in an overlapping set of areas in the core and extended systems. Representational 25 

similarity analysis revealed a clear distinction between the two systems and a 26 

subdivision of the core system into ventral, dorsal and anterior components. This 27 

study provides evidence that activity in the extended system carries information about 28 

both individual identities and personal familiarity, while clarifying and extending the 29 

organization of the core system for face perception. 30 

 31 

Keywords: personally familiar faces; mvpa; decoding; brain networks; core and 32 
extended systems; representational similarity analysis.  33 
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Introduction 34 

A wide and distributed network of brain areas underlies face processing. The model 35 

by Haxby and colleagues (Gobbini & Haxby, 2007; Haxby & Gobbini, 2011; Haxby, 36 

Hoffman, & Gobbini, 2000) posited a division between a core system involved in the 37 

processing the visual appearance of faces—comprising the Occipital Face Area (OFA), 38 

the Fusiform Face Area (FFA), and the posterior Superior Temporal Sulcus (pSTS)—39 

and an extended system, comprising parietal, frontal, and subcortical areas, involved 40 

in inferring socially relevant information from faces, such as direction of attention, 41 

intentions, emotions, and retrieval of person knowledge (Gobbini, 2010; Gobbini & 42 

Haxby, 2007; Haxby & Gobbini, 2011; Haxby et al., 2000).  43 

The definition of the core system has been extended to include areas in the anterior 44 

fusiform gyrus (the anterior temporal face area, ATFA; Collins & Olson, 2014; Rajimehr, 45 

Young, & Tootell, 2009), the anterior superior temporal sulcus (aSTS-FA; Carlin, 46 

Calder, Kriegeskorte, Nili, & Rowe, 2011; Duchaine & Yovel, 2015; Pitcher, Dilks, Saxe, 47 

Triantafyllou, & Kanwisher, 2011), and the inferior frontal gyrus (IFG-FA; Duchaine & 48 

Yovel, 2015; Guntupalli, Wheeler, & Gobbini, 2017; J. V. Haxby et al., 1994). For 49 

example, in a recent fMRI neural decoding study with visually familiar faces (Guntupalli 50 

et al., 2017), we showed that the representation of face identity is progressively 51 

disentangled from image-specific features along the ventral visual pathway. While 52 

early visual cortex and the OFA represented head view independently of the identity of 53 

the face, we recorded an intermediate level of representation in the FFA in which 54 

identity was emerging but was still entangled with head view. The human face 55 

processing pathway culminated in the right ATFA and IFG-FA where we recorded a 56 

view-invariant representation of face identity.  57 

While both unfamiliar and familiar faces effectively activate the core system (Duchaine 58 

& Yovel, 2015;  & Haxby, 2006; Guntupalli et al., 2017; Natu & O’Toole, 2011; Pitcher 59 

et al., 2011), familiar faces activate the extended system more strongly than unfamiliar 60 

faces (Bobes, Lage Castellanos, Quiñones, García, & Valdes-Sosa, 2013; Cloutier, 61 

Kelley, & Heatherton, 2011; Gobbini & Haxby, 2007; Natu & O’Toole, 2011; Taylor et 62 

al., 2009). Personally familiar faces recruit Theory of Mind (ToM) areas such as the 63 
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medial prefrontal cortex (MPFC) and the temporo-parietal junction (TPJ), because they 64 

are more strongly associated with person knowledge (Cloutier et al., 2011; Gobbini & 65 

Haxby, 2007; Gobbini, Leibenluft, Santiago, & Haxby, 2004); they activate the 66 

precuneus and the anterior temporal cortices, suggesting retrieval of long-term 67 

episodic memories; they modulate the activity in the amygdala and insula, suggesting 68 

an increased emotion processing (Gobbini & Haxby, 2007; Gobbini et al., 2004; Natu 69 

& O’Toole, 2011). Because the core and extended systems have been mostly studied 70 

separately, we lack a clear understanding of how personal familiarity, consolidated 71 

through repeated interactions, affects the representations in the core system, and how 72 

core and extended systems interact to create the known behavioral advantages for 73 

personally familiar faces. 74 

The behavioral literature on face processing (Bruce, Henderson, Newman, & Burton, 75 

2001; A. M. Burton, Wilson, Cowan, & Bruce, 1999; Gobbini et al., 2013; Ramon, 76 

Vizioli, Liu-Shuang, & Rossion, 2015; Visconti di Oleggio Castello, di Oleggio Castello, 77 

Wheeler, Cipolli, & Gobbini, 2016; Visconti di Oleggio Castello, Guntupalli, Yang, & 78 

Gobbini, 2014; Visconti di Oleggio Castello & Gobbini, 2015) suggests that, despite 79 

the subjective impression of efficient or “expert” perception of natural faces (Diamond 80 

& Carey, 1986), only familiar faces are detected and recognized more robustly and 81 

efficiently, in stark contrast with the surprisingly inefficient identification of unfamiliar 82 

faces. Recognition of personally familiar faces is highly accurate even when images 83 

are severely degraded, while recognition of unfamiliar faces is markedly impaired by 84 

variation in head position or lighting, even with good image quality (Bruce et al., 2001; 85 

A. Mike Burton, Jenkins, & Schweinberger, 2011; A. M. Burton et al., 1999; Hancock, 86 

Bruce, & Burton, 2000; Jenkins & Burton, 2011). Detection of personally familiar faces 87 

is facilitated even in conditions of reduced attentional resources and without 88 

awareness (Gobbini et al., 2013).  89 

The representations of familiar and unfamiliar faces may differ in multiple ways. 90 

Familiar identities could have more robust, individually-specific representations, which 91 

are learned and consolidated over the course of personal interactions. Alternatively, 92 

familiar face representations could be enhanced with attributes that are similar across 93 

many personally familiar faces. For example, personally familiar faces (especially those 94 
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used in the present and our previous experiments that are faces of close relatives of 95 

personal friends) are associated with person-knowledge and emotional attachment 96 

that lead to social interactions that are different from the interactions with strangers, 97 

and these attributes may be shared across many familiar—one may be more open 98 

and unguarded with family and personal friends (Gobbini et al., 2004).  99 

Here we applied multivariate pattern analyses (MVPA; Haxby et al., 2001; Haxby, 100 

Connolly, & Guntupalli, 2014), including MVP classification (MVPC) and 101 

representational similarity analysis (RSA; Kriegeskorte & Kievit, 2013) with two goals in 102 

mind. First, we wanted to dissociate familiarity information from identity information in 103 

the core and extended systems. Second, we wanted to investigate the relationships 104 

among core and extended face processing areas by examining the similarities of their 105 

representational spaces using second-order representational geometry (Guntupalli et 106 

al., 2016; Kriegeskorte & Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 2008).  107 

We first derived independent neural measures of identification and familiarity. To 108 

prevent any effect of familiarity information in identity decoding, we performed identity 109 

classification separately for familiar and unfamiliar faces. To control for the effect of 110 

identity-specific visual information in familiarity decoding, we trained classifiers to 111 

distinguish familiar from unfamiliar faces, and tested them on left-out identities. The 112 

results replicated the distinction between the representations of personally familiar 113 

and unfamiliar faces in the extended system that was previously revealed only with 114 

univariate analysis (Gobbini & Haxby, 2007), showing that this effect captured factors 115 

that were common across familiar faces and invariant across identities. 116 

To unravel the representational structure of the face processing network, we 117 

investigated the relationships among the areas of the core and extended system 118 

uncovered by the classification analyses. Using the approach used by Guntupalli et al. 119 

(2016) (see also Kriegeskorte et al., 2008), we studied the similarities between 120 

representational geometries (Kriegeskorte & Kievit, 2013) in different face-processing 121 

areas (second-order representational geometry). This analysis revealed clear 122 

distinctions between the core system and the extended system, supporting the model 123 

by Gobbini & Haxby (2007), Haxby & Gobbini (2011), Haxby et al. (2000). In addition, 124 
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the results support the extension of the core system to more anterior areas, such as 125 

the ATFA, the aSTS-FA  and IFG-FA (Collins & Olson, 2014; Duchaine & Yovel, 2015; 126 

Fairhall & Ishai, 2007; Guntupalli et al., 2017; Rajimehr et al., 2009), and reveal a finer 127 

subdivision of this system into ventral, dorsal, and anterior components. 128 

Results 129 

In this experiment, we investigated the face processing network while participants 130 

performed an oddball-detection task with faces of friends and strangers (see Figure 1). 131 

We first investigated which areas responded more strongly to familiar faces than 132 

unfamiliar ones with a standard GLM analysis. Because familiarity information 133 

(whether a face is a familiar one) is necessarily confounded with identity information 134 

(who that person is), we next used MVPC to dissociate which areas of the core and 135 

extended system encode identity-independent familiarity information (familiar vs. 136 

unfamiliar classification across identities), and which parts of the network encode 137 

identity information. We performed two classification analyses using different cross-138 

validation schemes to control for the effect of identity on the representation of general 139 

familiarity and to control for the effect of familiarity on the representation of identity. 140 

For the familiarity classification, we employed a leave-two-identities-out cross-141 

validation scheme, where the classifier was trained on six faces (three familiar, three 142 

unfamiliar) to distinguish between familiar and unfamiliar faces, and tested on two left-143 

out identities. This cross-validation scheme reduced the effect of identity information 144 

(see Supplementary Figures 1 and 2). For the identity classification, we decoded the 145 

four familiar faces and the four unfamiliar faces separately to eliminate the effect of 146 

familiarity information in the classification of identity information. Finally, we 147 

investigated the network structure derived from the similarities of representations to 148 

investigate relationships among areas in the core and extended system. 149 

 150 
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Figure 1: Slow event-related fMRI design. During each trial, images were presented in 

sequences of three pictures of the same identity (normal trial) or two different identities 

(oddball trials) in front-view or 30-degree profile views.  Subjects engaged in an oddball-

detection task to ensure that they paid attention to each stimulus.  

GLM 151 

In the univariate analysis contrasting Familiar > Unfamiliar we found significant 152 

activation in bilateral MTG/STS extending along the full length of the right STS. 153 

Additionally, we found significant clusters in the bilateral precuneus and bilateral 154 

MPFC, as well as in the right IFG. Familiar faces also evoked stronger responses in 155 

the left mid fusiform gyrus and the right anterior fusiform gyrus near the locations of 156 

the FFA (Grill-Spector & Weiner, 2014; Weiner et al., 2013) and ATFA (Collins & Olson, 157 

2014). For the contrast Unfamiliar > Familiar we found only one significant cluster in 158 
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the right inferior parietal lobule encroaching on the TPJ. Figure 2 shows the resulting 159 

statistical maps projected on the surface. 160 

 161 

 

Figure 2. Cluster-corrected (p < .05) z-values for the univariate contrast Familiar > 

Unfamiliar. Abbreviations: IPL: inferior parietal lobule; mFus: middle fusiform gyrus; aFus: 

anterior fusiform gyrus; TPJ: temporo-parietal junction; MTG/STS: middle temporal 

gyrus/superior temporal sulcus; Precun: precuneus; MPFC: medial prefrontal cortex; IFG: 

inferior frontal gyrus. 
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MVPA 162 

Familiarity Classification 163 

The results of searchlight MVPC of identity-independent familiarity largely overlapped 164 

with the univariate maps, showing significant classification in the bilateral MTG/STS, 165 

mid and anterior right fusiform gyrus, right IFG, TPJ, precuneus, and MPFC (Figure 3).  166 

Surprisingly, small patches of cortex in early visual cortex also showed significant 167 

MVPC of identity-independent familiarity. We further investigated MVPC in early visual 168 

cortex with additional analyses on probabilistic ROI masks from Wang, Mruczek, 169 

Arcaro, & Kastner (2015), and found statistically significant decoding performance in 170 

V2 and V3 (see Supplementary Methods and Supplementary Figure 7). Since testing 171 

was performed on left-out familiar and unfamiliar identities, and all pictures were taken 172 

with the same equipment and settings, it is unlikely that this result was due simply to 173 

low-level features that distinguished familiar from unfamiliar faces. To test this further, 174 

we extracted features from the layers C1 and C2 of the HMAX model (Riesenhuber & 175 

Poggio, 1999; Serre, Wolf, Bileschi, Riesenhuber, & Poggio, 2007) and performed the 176 

same classification analysis, and found that decoding performance was not 177 

statistically significant (accuracy with C1 features 52%, p = 0.66; accuracy with C2 178 

features 49%, p = 0.95; see Supplementary Methods and Supplementary Figure 8). 179 
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Figure 3. Searchlight maps for the Familiarity classification projected onto the surface. Maps 

were thresholded at a z-TFCE score of 1.65, corresponding to p < 0.05 one-tailed (corrected for 

multiple comparisons). Abbreviations: mFus: middle fusiform gyrus; aFus: anterior fusiform gyrus; TPJ: 

temporo-parietal junction; MTG/STS: middle temporal gyrus/superior temporal sulcus; Precun: 

precuneus; MPFC: medial prefrontal cortex; IFG: inferior frontal gyrus. 

 180 
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Identity Classification 181 

The identity classification analysis showed that identity could be decoded in many of 182 

the same areas as identity-independent familiarity (Figure 4). Significant classification 183 

was found in the MPFC and precuneus, and in the bilateral MTG/STS, TPJ, and IFG. 184 

The area in the precuneus with significant identity classification, however, was quite 185 

dorsal, whereas that for significant familiarity classification was ventral and included 186 

the posterior cingulate. Identity classification was significant in bilateral visual cortex 187 

starting in EV and extending to occipital, posterior, and mid fusiform cortices. 188 

Although MVPC of familiar identities showed a weak trend towards higher accuracies 189 

than for unfamiliar identities in the IFG and MTG/STS (Supplementary Figures 4, 5, 190 

and 6), these differences were not significant despite the large number of subjects. 191 
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Figure 4. Searchlight maps for the Identity classification. The classification was run 

separately for familiar and unfamiliar identities (4-way), and the resulting maps were averaged. 

Maps were thresholded at a z-TFCE score of 1.65, corresponding to p < 0.05 one-tailed 

(corrected for multiple comparisons). Abbreviations: OccFus: occipital fusiform gyrus; pFus: 

posterior fusiform gyrus; mFus: middle fusiform gyrus; TPJ: temporo-parietal Junction; 

MTG/STS: middle temporal gyrus/superior temporal sulcus; dPrecun: dorsal precuneus; 

MPFC: medial prefrontal cortex; IFG: inferior frontal gyrus. 
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ROI Analysis and Second-order Representational Geometry 192 

We investigated the relationships among the areas uncovered by the classification 193 

analysis as a second-order, inter-areal representational geometry. We selected 30 194 

spherical ROIs (see Methods for how they were selected, Figure 5 for their location, 195 

and Supplementary Table 1 for their MNI coordinates) and computed a cross-196 

validated representational dissimilarity matrix (Henriksson et al., 2015) in each ROI. 197 

We then constructed a distance matrix quantifying the similarity of these RDMs 198 

between all pairs of ROIs. Then, we computed an MDS solution to visualize the 199 

geometry of this inter-ROI matrix. Figure 6 shows the results of a 2D MDS. 200 

Supplementary Figure 10 shows the distance matrix, and Supplementary Figures 11 201 

and 12 show the full MDS solution. 202 

The 2D solution captured relationships among areas in the ventral portion of the core 203 

system in the first dimension, and relationships among areas in the dorsal and anterior 204 

parts of the core system and areas in the extended system in the second dimension. 205 

The first dimension showed a progression from EV areas to the posterior, mid, and 206 

anterior fusiform areas. Extended system areas were all at the distant end of the first 207 

dimension, as were the areas in the dorsal part of the core system (MTG/STS) and the 208 

IFG. The second dimension captured distinctions among these extended and core 209 

system areas, with the precuneus areas clustered together at one end, the MPFC and 210 

TPJ in the middle, and the dorsal and anterior core system areas at the other end.  211 

We replicated this second-order RSA on an independent fMRI dataset collected while 212 

different subjects watched a full-length audiovisual movie, Raiders of the Lost Ark 213 

(Haxby et al. 2011; Guntupalli et al. 2016). This naturalistic stimulus contained a rich 214 

variety of dynamic faces that rapidly became familiar while the plot unfolded. The 215 

inter-ROI similarity matrix and MDS plot replicated the results based on 216 

representational geometry for the eight faces in the experiment (Figure 6). The results 217 

tend to be more clearly defined for the movie data, probably due to the dynamic 218 

videos, the larger data set, and hyperalignment of the data. Contributions from scene 219 

context, language, music, and narrative structure might also play a role (Huth, de 220 

Heer, Griffiths, Theunissen, & Gallant, 2016; Simony et al., 2016). The 2D solution 221 
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cleanly captured distinctions in the ventral core system in the first dimension and in 222 

the extended, dorsal core, and anterior core systems in the second dimension, with 223 

remarkably similar placement of ROIs on each of these dimensions between task data 224 

and movie data.  225 

We quantified the similarity of the within-system RDMs by running a linear mixed-226 

effect model on the correlation values and contrasting within-systems correlations 227 

with between-systems correlations. We found a clear distinction between the core and 228 

extended systems in terms of similarity of representational geometries. For the task 229 

data, the correlations within the extended system were significantly higher than the 230 

between-system correlations (estimate of the contrast “Within Extended > Between” 231 

0.0993 [0.0875, 0.1111] 95% confidence interval, t-value = 16.36), while the 232 

correlations within the core system were not significantly different from the between-233 

system correlations (estimate of the contrast “Within Core > Between” 0.0044  234 

[-0.0043, 0.0130], t-value = 1.00). For the movie data, both contrasts were significant: 235 

within-core vs. between 0.0678 [0.0619, 0.0738], t-value = 22.47; and within-extended 236 

vs. between 0.1479 [0.1398, 0.1565], t-value = 35.07. Supplementary Tables 2 and 3 237 

show the full parameter estimates for both models, while Supplementary Tables 4 and 238 

5 report additional statistics on the subsystems. 239 
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Figure 5. Spherical ROIs used to analyze the similarity of representational geometries. 

Top row shows left sagittal slices; middle row shows right sagittal slices; bottom row shows 

axial slices. Regions are color coded according to the system they belong to. Grey dotted 

lines between ROIs indicates that they were contiguous but not overlapping (see Methods 

for details). 

 240 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2017. ; https://doi.org/10.1101/138297doi: bioRxiv preprint 

https://doi.org/10.1101/138297
http://creativecommons.org/licenses/by/4.0/


 16 
 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2017. ; https://doi.org/10.1101/138297doi: bioRxiv preprint 

https://doi.org/10.1101/138297
http://creativecommons.org/licenses/by/4.0/


 17 
 

Figure 6. Similarity of neural representations in ROIs derived from familiarity and identity 

decoding. Top panel and middle panel show MDS solutions based on the task data (A) and the 

hyperaligned movie data (B) (Guntupalli et al., 2016; Haxby et al., 2011) (see Methods section 

for more details). The color of the labels indicates the system to which the ROI belongs to (see 

Figure 5 for their location and Supplementary Table 1 for the MNI coordinates). With both 

datasets the MDS solution shows the hierarchy from early visual cortex to ventral core system 

(first dimension, x-axis), as well as a segregation between the precuneus, theory of mind areas, 

and areas of the anterior and dorsal core system (second dimension, y-axis). Panel (C) shows 

the proposed division of the core system into dorsal, ventral, and anterior portions. 

Representation of identity and gaze in the anterior core areas are disentangled from variations 

in head view (Carlin, Rowe, Kriegeskorte, Thompson, & Calder, 2012; Guntupalli et al., 2017).  

  241 
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Discussion 242 

In this experiment we investigated how familiar and unfamiliar faces are represented in 243 

the distributed neural system for face perception. We distinguished between familiarity 244 

information, abstracted from the visual appearance of the faces, and the identification 245 

of individual faces, controlling for the added information of personal familiarity. These 246 

analyses revealed an extensive network of areas that carry information about face 247 

familiarity and identity, replicating previous studies that used univariate analyses, but 248 

providing more details about the type of information present in those areas. We then 249 

analyzed the second-order representational geometry of this extensive network, 250 

revealing a clear distinction between the core and the extended systems for face 251 

perception and a new subdivision of the areas in the core system.  252 

The results suggest that the core system for face perception can be separated into 253 

ventral, dorsal, and anterior subsystems. The ventral core system consists of fusiform 254 

areas extending from the occipital lobe to the anterior ventral temporal lobe. The 255 

dorsal system extends from the posterior MTG/STS to anterior lateral temporal 256 

cortex. The representations in the dorsal core system did not appear to have strong 257 

similarities with those in the ventral core system, consistent with the functional 258 

distinction between dorsal and ventral areas suggested by O’Toole, Roark, & Abdi 259 

(2002) and Pitcher et al. (2011). The anterior areas in the fusiform gyrus, the anterior 260 

MTG/STS, and the IFG may be the convergence of the ventral and dorsal pathways in 261 

which representations of faces become invariant to facial attributes such as head 262 

position (Carlin et al., 2011; Guntupalli et al., 2017) and perhaps other social 263 

attributes. For example, the right anterior STS plays a role in the representation of the 264 

dangerousness of animals (Connolly et al., 2016) and may play a role in the 265 

representation of social impressions, such as trustworthiness and aggressiveness 266 

(Todorov, Gobbini, Evans, & Haxby, 2007). 267 

We teased apart neural responses due to factors that are shared by familiar faces 268 

from factors that are specific to familiar and unfamiliar identities. To separate identity-269 

independent familiarity information from identity-specific visual information, we 270 

employed a cross-validation scheme in MVPC of face familiarity in which we tested 271 
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the classifier on identities that were not included in the training data. To investigate 272 

identity-specific information that was independent of familiarity, we tested MVPC of 273 

familiar and unfamiliar identities separately.   274 

We found reliable decoding of identity-independent familiarity in extended system 275 

areas that showed stronger responses to familiar faces in univariate analyses, such as 276 

theory of mind areas (precuneus, TPJ, and MPFC), consistent with previous reports 277 

(Gobbini & Haxby, 2007; Natu & O’Toole, 2011). Importantly, MVPC of familiarity was 278 

designed to test for a familiarity effect that was not specific to familiar individuals, 279 

revealing that this network does carry such identity-independent information about the 280 

familiarity of faces. Both the univariate and MVPC results expand the areas reported 281 

previously to include additional areas that are components of the dorsal and anterior 282 

core system for face perception in the MTG/STS, anterior fusiform cortex, and IFG. 283 

We suspect that our relatively large sample size made it possible to identify this more 284 

extensive network. 285 

Unexpectedly, we found significant decoding of familiarity information in early visual 286 

cortex while controlling for identity information. Additional ROI decoding analyses in 287 

early visual areas (Wang et al., 2015) revealed that familiarity information could be 288 

decoded in V2 and V3 (see Supplementary Material). Low-level image differences did 289 

not seem to explain this finding: familiar and unfamiliar faces were indistinguishable 290 

using features extracted from the HMAX model (Riesenhuber & Poggio, 1999; Serre et 291 

al., 2007). Recent studies have shown that feedback information from higher-order 292 

visual areas to early visual cortex carries fine-grained information about the category 293 

of the stimuli being observed (Morgan, Petro, & Muckli, 2016; Muckli et al., 2015), 294 

suggesting that feedback processes might have contributed to the significant 295 

familiarity decoding in early visual areas. However, future studies with paradigms 296 

designed to address the nature of these feedback processes are needed to further 297 

test this possibility. 298 

In addition to identity-independent familiarity, the same network carries information 299 

about specific identities. We tested for this type of information with separate MVPC 300 

analyses of four familiar identities and four unfamiliar identities. By not including 301 
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familiar and unfamiliar identities in the same analysis, we could test for identity-302 

specific neural patterns that were not dependent on familiarity. Again, this network 303 

was more extensive than that reported in previous studies (e.g. Anzellotti, Fairhall, & 304 

Caramazza, 2013; Guntupalli et al., 2017; Kriegeskorte, Formisano, Sorger, & Goebel, 305 

2007; V. S. Natu et al., 2010; Nestor, Plaut, & Behrmann, 2011), most probably due to 306 

the larger number of subjects and, perhaps, the inclusion of personally familiar faces. 307 

Importantly, this network included the IFG, consistent with Guntupalli et al. (2017), and 308 

extended into the MTG/STS, TPJ, precuneus, and MPFC.  309 

Identity decoding was also found in early visual cortex and the posterior ventral core 310 

system, likely reflecting to some extent image-specific information. In Guntupalli et al. 311 

(2017) we showed that view-dependent representation of faces was the dominant 312 

factor in early visual cortex and the OFA. We did not find a significant difference in 313 

MVPC of familiar identities as compared to MVPC of unfamiliar identities, despite the 314 

large number of subjects in this study. There was a nonsignificant trend towards 315 

higher MVPC accuracies for familiar identities in the IFG and MTG/STS, but more work 316 

is needed to establish whether these trends are real. 317 

Conclusions 318 

Our results revealed new structure in the distributed system for face perception, 319 

suggesting that the core system can be subdivided into ventral, dorsal, and anterior 320 

components based on differences of representations. The anterior portion of the core 321 

system may be the point at which the ventral and dorsal pathways converge to 322 

generate view-independent representations of identity and of socially-relevant visual 323 

information, such as direction of attention. Identity-independent information about 324 

familiarity could be decoded in extended system areas such as the TPJ, precuneus, 325 

and MPFC, as well as in dorsal and anterior core system areas such as the MTG/STS, 326 

anterior fusiform cortex, and IFG. In sum, these results reveal new information about 327 

how face perception, one of the most highly developed and socially relevant visual 328 

functions, is realized in an extensive distributed system involving cortical fields in 329 

occipital, temporal, parietal, and prefrontal cortices. 330 
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Materials and Methods 331 

Participants 332 

Thirty-three young adults participated in the experiment (mean age 23 y.o. +/- 3.33 333 

SD, 13 males). They were recruited from the Dartmouth College community and all 334 

had normal or corrected-to-normal vision. Prior to the imaging study we took pictures 335 

of four friends for each participant to use as familiar stimuli. Some of these friends 336 

also were study participants (pictures of 76 individuals were taken as familiar stimuli). 337 

Photos of unfamiliar individuals were collected at the University of Vermont 338 

(Burlington) using the same camera and lighting conditions. Prior to participation in 339 

the fMRI study, subjects were screened for MRI compliance and provided informed 340 

consent in accordance with the Committee for the Protection of Human Subjects at 341 

Dartmouth College. 342 

Stimuli 343 

The stimuli for the fMRI experiment were pictures portraying different familiar and 344 

unfamiliar identities: four friends’ faces, four unknown faces, and the subject’s own 345 

face. For each identity we used three images with different head orientations: frontal 346 

view and 30-degree profiles to the left and right with gaze towards the camera. All 347 

photos on both sites (Dartmouth College and University of Vermont) were taken using 348 

the same consumer-grade digital camera in a dedicated photo-studio room with black 349 

background and uniform lighting. 350 

Each familiar face was matched with an unfamiliar individual face, similar in age, 351 

gender and ethnicity. Twenty-seven images (9 individuals, 3 head positions) were 352 

used in the experimental design per each subject. Stimuli were presented to the 353 

subjects in the MRI scanner using a projection screen positioned at the rear of the 354 

scanner and viewed through a mirror mounted on the head coil.  355 

The original high-resolution digital images were cropped to include the face from the 356 

top of the head to the neck visible under the chin, centered on the face. Images were 357 
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scaled to 400x400 pixels. Images subtended approximately 10x10 degrees of visual 358 

angle. 359 

Procedure 360 

The stimuli were presented using a slow event-related design while subjects were 361 

engaged in a simple oddball task (Figure 1). A typical trial consisted of three different 362 

images of the same individual, each presented for 500 ms with no gap. On catch 363 

trials, one of the three images was of a different individual. The order of head 364 

orientations within trials was randomized. The task was included to make sure that 365 

subjects paid attention to the identity of the faces. Before entering the scanner, 366 

subjects had a short practice session with each condition (one trial for each of 9 367 

identities, one blank trial, and one catch trial) to be familiarized with the design and the 368 

stimuli.  369 

The order of the events was pseudo-randomized to approximate a first-order 370 

counterbalancing of conditions (Aguirre, 2007). A functional run comprised 48 trials: 371 

four trials for each of the nine individuals (four familiar, four unfamiliar and self), four 372 

blank trials, four oddball and four buffer trials (three at the beginning and one at the 373 

end). The buffer trials were added to optimize the trial order and were discarded from 374 

the analysis. Each run had 10 seconds of fixation at the beginning (to stabilize the 375 

hemodynamic response) and at the end (to collect the response to the last trials). 376 

Each session consisted of 11 functional runs, resulting in 396 non-oddball trials (44 for 377 

each of the nine identities). 378 

Image acquisition 379 

Brain images were acquired using a 3T Philips Achieva Intera scanner with a 32-380 

channel head coil. Functional imaging used gradient-echo echo-planar-imaging with 381 

SENSE reduction factor of 2. The MR parameters were TE/TR = 35/2000 ms, Flip 382 

angle = 90˚, in-plane resolution = 3×3 mm, matrix size of 80×80 and FOV = 240×240 383 

mm. 35 axial slices were acquired with no gap covering the entire brain except the 384 

most dorsal portion (Supplementary Figure 9). Slices were acquired in the Philips-385 

specific interleaved order (slice step of 6, i.e., ceiled square root of total number of 386 
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slices). Each of the 11 functional runs included 154 dynamic scans with 4 dummy 387 

scans for a total time of 316 seconds per run. After the functional runs a single high-388 

resolution T1-weighted (TE/TR = 3.7/8.2 ms) anatomical scan was acquired with a 3D-389 

TFE sequence. The voxel resolution was 0.938×0.938×1.0 mm with a bounding box 390 

matrix of 256×256×160 (FOV = 240×240×160 mm). 391 

Image preprocessing 392 

All preprocessing steps were run using a Nipype workflow (version 0.11.0; FSL version 393 

5.0.9) (K. Gorgolewski, Burns, Madison, & Clark, 2011; Jenkinson, Beckmann, Beh-394 

rens, Woolrich, & Smith, 2012), which also used functions from SciPy (Jones, Oli-395 

phant, & Peterson, 2001) and NumPy (van der Walt, Colbert, & Varoquaux, 2011). We 396 

modified the preprocessing pipeline fmri_ants_openfmri.py and adapted it for our 397 

analyses. The modified version is available at https://www.github.com/ 398 

mvdoc/famface. All the preprocessing analyses were run on a computing cluster 399 

running Debian Jessie with tools provided by the NeuroDebian repository (Halchenko 400 

& Hanke, 2012).  401 

Preprocessing Steps 402 

We used a standard FSL preprocessing pipeline (FEAT) as implemented in Nipype 403 

(nipype.preprocess.create_featreg_preproc), using a FWHM smoothing of 6 mm, a 404 

highpass filter at 60 s cutoff, and the first volume of the first run as a reference for EPI 405 

alignment. After motion correction, the BOLD time-series were masked with a dilated 406 

gray-matter mask, smoothed, and then high-pass filtered. The preprocessed data 407 

were then used for a GLM and MVPA analysis, with additional preprocessing steps as 408 

described in the following sections. 409 

Template Registration 410 

Each subject’s data (functional or second-level betas) were resliced into the MNI 411 

template with 2 mm isotropic voxel size. First, a reference volume was created by 412 

cmputing a median temporal SNR volume across functional runs. Then, we computed 413 

an affine transformation registering this median tSNR volume to the subject’s 414 

aatomical scan using FSL’s FLIRT tool (Jenkinson, Bannister, Brady, & Smith, 2002), 415 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2017. ; https://doi.org/10.1101/138297doi: bioRxiv preprint 

https://doi.org/10.1101/138297
http://creativecommons.org/licenses/by/4.0/


 24 
 

and the transformation was improved using the BBR cost function. A second non-416 

linear transformation registering the subject’s anatomical image to the MNI template 417 

was computed using ANTs (Avants, Tustison, & Song, 2009) with default parameters. 418 

The affine and nonlinear transformations were then combined to reslice the reference 419 

volume and all the functional volumes and second-level betas into the MNI template. 420 

Results from this registration pipeline were visually inspected for each subject. 421 

MVPA Preprocessing 422 

First, we resliced the bold time-series into the MNI template using a combination of 423 

linear and nonlinear transformations (see Template Registration section). Then, we 424 

extracted beta parameters associated with each condition for each run using 425 

PyMVPA’s fit_event_hrf_model (Hanke et al., 2009) function based on NiPy’s 426 

functionality (Millman & Brett, 2007). Additional nuisance regressors comprised motion 427 

estimates, artifacts (volumes were marked as artifact if their intensity exceeded three 428 

standard deviations of the normalized intensity), and noise estimates. To obtain noise 429 

estimates we used the CompCor method (Behzadi, Restom, Liau, & Liu, 2007). In 430 

brief, we performed a GLM on the BOLD timeseries in the voxels belonging to each 431 

subject’s white-matter mask projected in MNI space. The regressors of this GLM were 432 

the motion estimates and volumes marked as artifacts. We then performed PCA on 433 

the residuals, and took the first 5 components as noise estimates.  434 

GLM analyses 435 

The first-level and second-level analyses (fixed effect) for each subject were 436 

performed in the subject’s individual space, and the results were then projected into a 437 

standard template (FSL’s MNI152, 2 mm isotropic, see details in the Template 438 

Registration section). These analyses followed a standard FSL pipeline as 439 

implemented in Nipype (nipype.estimate.create_modelfit_workflow and 440 

nipype.estimate.create_fixed_effects_flow). A standard GLM analysis was performed 441 

separately for each run to extract beta values associated with each condition and the 442 

planned contrasts. Additional nuisance regressors comprised motion estimates, 443 

artifacts (volumes were marked as artifact if their intensity exceeded three standard 444 
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deviations of the normalized intensity), and first-order derivatives. A second-level 445 

analysis was performed to obtain per-subject statistical maps associated with each 446 

condition and contrast using FSL’s FLAMEO (fixed-effect model). The statistical maps 447 

were then resliced into the MNI152 template (see details above), and a third-level 448 

analysis was performed across subjects using FSL’s FLAMEO (mixed-effect model). 449 

The resulting z-stat maps were then corrected for multiple comparisons using FSL’s 450 

cluster routine, with a voxel z-threshold set at 2.3, and cluster p-value of p = .05. The 451 

Nipype pipeline we used for third-level analysis can be found at 452 

https://www.github.com/mvdoc/famface1. 453 

MVPA analyses 454 

Classification methods 455 

MVPC was implemented in Python using PyMVPA (Hanke et al., 2009) 456 

http://www.pymvpa.org). GLM betas were estimated within each run for each 457 

condition (see MVPA Preprocessing section). For all analyses we kept only the betas 458 

for the four familiar and the four unfamiliar identities, discarding trials where subjects 459 

saw their own face, or responded to an oddball presentation. The betas were then z-460 

scored within each run (separately for each voxel) and used as features for 461 

classification. We used Linear C-SVM as a classifier, as implemented in LIBSVM 462 

(Chang & Lin, 2011). The C parameter was set to the PyMVPA default, which scales it 463 

according to the mean norm of the training data. 464 

Cross-validation 465 

We used a leave-one-out (LOO) scheme for cross-validation. The splitting unit was 466 

dependent on the type of classification (familiarity or identity). For familiarity 467 

classification, we cross-validated across pairs of identities. We trained the classifier 468 

on three familiar and three unfamiliar identities, and tested on the left-out identities. 469 

This resulted in 16 cross-validation splits that allowed us to control for identity 470 

information (see Supplementary Figures 1 and 2 for a comparison of leave-one-run-471 

                                                
1 We thank Satrajit Ghosh and Anne Park for sharing the original pipeline. 
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out and leave-two-identities-out cross-validation schemes). For identity classification, 472 

we cross-validated across runs, resulting in a leave-one-run-out scheme (11 splits). To 473 

remove the effect of familiarity on classification of face identity, we performed identity 474 

classification independently for familiar and unfamiliar identities, and averaged the 475 

resulting accuracy maps.  476 

Searchlight 477 

We used sphere searchlights (Kriegeskorte, Goebel, & Bandettini, 2006) to extract 478 

local features for classification. We selected a 5-voxel radius (10 mm), and moved the 479 

searchlight sphere across the voxels belonging to a union mask in which at least 26 480 

subjects (~80%, arbitrarily chosen) had fMRI coverage (see Supplementary Figure 9), 481 

as well as selecting only gray- and white-matter voxels in the cerebrum. For each 482 

center voxel in this mask, we selected nearby voxels contained in a sphere, and used 483 

them as features for classification. The classifier’s accuracy was stored in the central 484 

voxel, and the process was repeated for every voxel. 485 

Statistical assessment 486 

To determine statistical significance for the MVPC analyses, we performed 487 

permutation testing (Stelzer, Chen, & Turner, 2013) coupled with Threshold-Free 488 

Cluster Enhancement (TFCE, (Smith & Nichols, 2009), as implemented in 489 

CoSMoMVPA (Oosterhof, Connolly, & Haxby, 2016). For each subject and each 490 

classification analysis, we computed a null distribution by randomly permuting the 491 

labels and performing classification. For identity classification analysis, we randomly 492 

shuffled the identity labels within each run, and performed classification. This 493 

procedure was repeated 20 times for each subject. For familiarity analysis, we 494 

randomly permuted the familiarity labels across the entire experiment. This was 495 

repeated exhaustively, resulting in 35 permutations (see Supplementary Materials for a 496 

short proof that only 35 unique permutations are possible in this case). To create a 497 

null distribution of TFCE values for each voxel, permutation maps were randomly 498 

sampled and averaged across subjects, and this process was repeated 10,000 times. 499 

Note that we selected a smaller number of permutations than suggested by (Stelzer et 500 

al., 2013) (100 per subject) because of the large number of subjects we had: with 33 501 
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subjects, the number of possible average maps for identity classification was 2033 and 502 

for familiarity classification was 3533. 503 

Similarity of neural representations within ROIs  504 

Second-order Representational Similarity Analysis 505 

We defined ROIs based on the searchlight results for both the familiarity and identity 506 

classification. Thirty spherical ROIs were centered on voxels selected manually at or 507 

near peak values, with a 10 mm radius (five voxels). Voxels belonging to more than 508 

one ROI were assigned to the ROI with the closest center (Euclidean distance), 509 

resulting in some contiguous but not overlapping ROIs (see Figure 5). On average, 510 

ROIs contained 412 voxels at a 2 mm isotropic resolution (SD: 73 voxels).  511 

For each ROI we computed a cross-validated representational dissimilarity matrix 512 

(RDM) (Henriksson, Khaligh-Razavi, Kay, & Kriegeskorte, 2015) between the eight 513 

identities (four familiar faces, four unfamiliar faces). First, we z-scored the beta 514 

estimates within each run, which were computed as described in the MVPA 515 

Preprocessing section. Then, we divided all runs into two partitions of six and five 516 

runs, and averaged the beta values within each partition. The data between these two 517 

partitions were correlated (Pearson correlation) to obtain an 8x8 matrix of 518 

dissimilarities between pairs of identities. Note that because correlations were 519 

computed between data from two different partitions, the diagonal could be different 520 

from one. This process was repeated for every possible combination of runs, yielding 521 

462 RDMs that were averaged to obtain a final RDM for each ROI and each subject. 522 

The final RDMs were made symmetrical by averaging them with their transpose. All 523 

averaging operations were performed on Fisher-transformed (r-to-z) correlation 524 

values, then mapped back to correlation using the inverse transformation.  525 

We used these final RDMs to compute pairwise distances between ROIs for each 526 

subject individually using correlation distance. The resulting 33 distance matrices (one 527 

for each subject) were averaged to obtain a group-level distance matrix. This distance 528 

matrix was used to compute a three-dimensional MDS solution, using classical MDS 529 

as implemented in R (cmdscale) interfaced in Python using rpy2 (Gautier, 2008).  530 
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Comparison with movie data 531 

To investigate the reproducibility of the network formed by the ROIs defined above, 532 

we computed between-subject correlation distances across these ROIs using 533 

hyperaligned data from a different study, in which eleven participants watched 534 

“Raiders of the Lost Ark” (Guntupalli et al., 2016; Haxby et al., 2011). Since data were 535 

functionally aligned with hyperalignment (Guntupalli et al., 2016; Haxby et al., 2011), 536 

we performed a between-subject analysis instead of a within-subject analysis, where 537 

distances between pairwise ROIs were computed across subjects, replicating the 538 

approach in (Guntupalli et al., 2016). Additional details on the experimental paradigm 539 

and scanning parameters can be found in the Supplementary Material. 540 

Because data were in two different resolutions of the same template (task: MNI 2 mm; 541 

movie: MNI 3 mm), center coordinates of the spherical ROIs were recalculated 542 

assigning the closest voxel in MNI 3 mm using Euclidean distance. The median 543 

displacement was 1.41 mm (min: 1 mm, max: 1.73 mm). As described above, 544 

spherical ROIs were drawn around these center voxels using a radius of 9 mm (3 545 

voxels) to account for the different voxel size. Overlapping voxels were assigned to 546 

the ROI with the closest center, resulting in possibly contiguous but not overlapping 547 

ROIs. On average ROIs contained 100 voxels (SD: 20 voxels). 548 

The movie data were masked selecting only white- and gray-matter voxels, and 549 

divided into two parts for cross-validation. For each of the two parts, whole-brain 550 

searchlight hyperalignment parameters were derived from one part of the movie, and 551 

the second part was projected into the common model space in functional alignment 552 

(Guntupalli et al., 2016; Haxby et al., 2011). The aligned data were z-scored, and 553 

timepoint-by-timepoint RDMs were computed in each ROI for each subject 554 

individually, yielding a 1322 x 1322 RDM within each ROI (1336 x 1336 for the second 555 

fold of hyperalignment). Following the analysis in (Guntupalli et al., 2016) we estimated 556 

a distance matrix between ROIs while cross-validating across subjects. For each pair 557 

of ROIs, the correlation between their RDMs was computed for all 55 pairs of 558 

subjects, and averaged to compute the cross-validated correlation between those 559 

ROIs. This process resulted in two 30x30 cross-validated distance matrices (one for 560 
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each hyperalignment fold), which were made symmetrical by averaging them with their 561 

transpose, and finally averaged together to obtain one final 30x30 matrix. All 562 

averaging operations were computed on Fisher-transformed (r-to-z) correlation values, 563 

then mapped back to correlation using the inverse transformation. Finally, a 564 

dissimilarity index (D) was computed for each pair of ROIs to normalize the correlation 565 

according to the maximum possible correlation within each ROI (Guntupalli et al., 566 

2016): 567 

𝐷"#$%	∙	"#$( = 1 −
𝑟"#$%∙"#$(
𝑟"#$% ∙ 𝑟"#$(

 568 

The final matrix containing dissimilarity indices was then used to compute an MDS 569 

solution as described previously. 570 

Differences between core and extended system representational geometries 571 

In order to quantify differences in representational geometries between areas of the 572 

core and extended systems, we divided the pairwise distances between ROIs in the 573 

upper triangular RDM into within-system and between-system cells, and converted 574 

them back to correlations (by subtracting them from 1). Then, we ran a Linear Mixed-575 

Effect Model on the correlations using lme4 (Bates, Maechler, Bolker, & Walker, 2014), 576 

fitting a linear model of the form 577 

𝑟-,/ = 	𝛽1 + 	𝛽%𝐶-,/ + 𝛽(𝐸-,/ + 𝑧-	, 578 

where 𝑖 = 1…𝑁	indicates either the subjects for task data (𝑁	 = 	33) or the pairwise 579 

subjects for hyperaligned movie data (𝑁 = 55); 𝑗	 = 	1	. . . 465 indicates the index of the 580 

pairwise correlations between ROIs, 𝐶-,/ and 𝐸-,/ indicate whether 𝑟-,/ is a within-581 

system correlation for the core or extended system respectively, 𝛽0, 𝛽%, 𝛽(		are fixed-582 

effects parameters, and 𝑧- are the subject-level random effects. Using this model, 583 

𝛽1corresponds to the contrast “Within Core > Between”, and 𝛽2to the contrast “Within 584 

Extended > Between”. After fitting, we performed parametric bootstrapping to obtain 585 

95% bootstrapped confidence intervals on the model parameters. 586 
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Visualization 587 

Volumetric results were visualized using Nilearn (Abraham et al., 2014), and projected 588 

on template surfaces using AFNI and SUMA (Cox, 1996; Saad, Reynolds, Argall, 589 

Japee, & Cox, 2004).  590 

Data and code availability 591 

Non-thresholded statistical maps can be found on neurovault.org (K. J. Gorgolewski 592 

et al., 2015) at the following URL: http://neurovault.org/collections/NEUNABLT. All 593 

data can be found at http://datasets.datalad.org/?dir=/labs/gobbini/famface/data2. 594 

The code used for the analyses is available at the following GitHub repository: 595 

https://www.github.com/mvdoc/famface. 596 
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