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Abstract

In this paper we study the problem of predicting the producibility of recombinant proteins in
filamentous fungi, especially T. reesei, using machine learning methods. We train supervised and
semi-supervised support vector machines with protein sequences, represented by their amino acid
composition as well as protein family and domain information. Our results indicate, somewhat
surprisingly, that quite modest amount of proteins with experimental data are required to build a
state-of-the-art classifier and that additional unlabeled sequences in semi-supervised models do
not bring increased predictive performance. Our experiments in cross-species prediction show that
models trained for the filamentous fungus A. niger protein dataset can be generalized to predict
protein producibility in T. reesei, and vice versa, without sacrificing too much accuracy, regardless
of their approximately 500 millions years of divergence. However, predictors trained on E. coli and
S. cerevisiae datasets gave variable performance when applied to the filamentous fungi datasets,
indicating that while protein producibility prediction can be generalized accross related species,
fully generic prediction tools applicable to any protein production host may not be realistic to
achieve.
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1 Introduction
Industrial recombinant protein production has wide applications in life sciences, medicine and in-

dustry. Microbial hosts capable of producing high amounts of proteins are needed to make protein

production economically viable. Filamentous fungi species are highly suitable as hosts for industrial

recombinant protein due to their inexpensive growth requirements and innate ability to secrete pro-

teins in large quantities. In filamentous fungus Trichoderma reesei, for example, the production of

some endogenous proteins can be as high as 100 g/L [1]. However, recombinant protein production

experiments are prone to fail, in which case no recombinant protein product is detectable in the

extracellular medium. In order to increase the success rate of laboratory experiments, it is of strong

interest to develop a computational tool that takes a protein sequence of interest as input, and

returns a prediction of its success or failure of production in the intended host species. Such tools

preemptively identify problematic sequences and recommend promising candidates for production

from sequence databases.
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Computational methods for protein producibility have been developed since 1991, when Wilkin-

son and Harrison introduced a statistical measure to estimate the expected solubility of proteins

upon expression in E. coli [2], and several tools are currently available for recombinant protein

production in E. coli. These tools are trained to predict protein solubility upon expression because

this is a significant point of failure for protein experiments in E. coli. The prominence of E. coli as

a production host, and the ready availability of large datasets of protein sequences with an experi-

mentally verified solubility status, have contributed to a proliferation of such methods [3], some of

which have been implemented as publicly available webtools [4]. Two recent and high-performing

methods include PROSO II [5] and ccSOL omics [6]. PROSO II implements a two-level logistic

regression classifier trained on the output from a Parzen window and k-mer features, while the

ccSOL omics model uses Fourier coefficients and an artificial neural network classifier.

The first computational results for recombinant protein production in fungal host cells have only

appeared in the last decade, to predict protein expression in the yeasts Pichia pastoris [7] and Sac-

charomyces cerevisiae [8], and protein secretion in the filamentous fungus Aspergillus niger [9, 10].

Van den Berg et al. [9] compared 9 different classifiers and found that Linear Discriminant Analysis

(LDA) and Support Vector Machines (SVMs) yielded the highest performances on a dataset of

homologous sequences tested in A. niger [9]. In a subsequent work, van den Berg et al. demon-

strated a classifier performance of 85% Area Under Curve (AUC) on homologous sequences, and

75% AUC on heterologous sequences in A. niger [10]. They combined a linear kernel SVM with

an extensive comparison of sequence-based features, including features calculated from the DNA

sequence, amino acid sequence, predicted solvent accessibility, and predicted secondary structure.

The authors implemented a linear kernel SVM trained on amino acid composition as a publicly

available webtool, HIPSEC [1].

In this paper, we tackle the problem of predicting protein production in an important industrial

protein production host, Trichoderma reesei, which is a filamentous fungus, like A.niger. Building on

van den Berg’s work predicting protein producibility in A. niger, we train Support Vector Machines

(SVMs) using amino acid composition features on datasets collected from A. niger and T. reesei.

Besides the amino acid composition, we explore other representations of proteins, namely, protein

family and domain information. The motivation is to study whether the proteins contain conserved

protein domains whose presence is correlated with their producibility.

We additionally seek to use information from unlabeled protein homologs to improve producibility

classification. The concept of using unlabeled data in combination with a limited labeled dataset

is broadly termed semi-supervised learning, and has been successful in a range of applications

including natural language processing and text classification [11]. These methods are of special

interest for the case of training protein producibility predictors because labeled data is expensive

and time-consuming to collect, but millions of unlabeled protein sequences are instantly available

from online databases. In this work, we report experiments on a semi-supervised extension of SVMs,

the Transductive SVM (TSVM) [12, 13].

[1]http://helix.ewi.tudelft.nl/hipsec/home.py
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2 Methods
2.1 Data

We used three different datasets of protein sequences, aligned by the host species in which they

were tested for protein producibility.

• The Aspergillus niger dataset [9, 10] consists of 345 homologous sequences (178 positives, 167

negatives) tested for successful secretion. Each sequence was inserted into a vector with the

strong glucoamylase promoter (PGlaA), and the modified cells were grown in shake flasks,

filtered, and put on SDS-PAGE gel, where the detection of a visible band in the gel was

defined as successful production [9]. To avoid sequence redundancy, BLASTCLUST [14] was

used to cluster sequences with greater than 40% identity, and only one sequence from each

class was kept for each cluster.

• The Trichoderma reesei datasets consist of both heterologous and homologous sequences and

are internal to VTT Technical Research Centre of Finland Ltd. The heterologous dataset of

sequences tested in the host T. reesei consists of 19 sequences (10 positives, 9 negatives) from

a variety of species. These were tested at different times over the course of many years, with

different experimental protocols. The homologous T. reesei dataset consists of 31 sequences

(31 positives, 0 negatives) expressed under the same experimental protocol and deemed to

be successfully produced according to their detection in protein gels. These sequences were

selected for their high likelihood of being secreted according to previous proteomics exper-

iments [15], and include known highly produced cellulases such as CBHI and CBHII. For

model training, the heterologous and homologous sequences were combined. The heterolo-

gous, homologous, and combined T. reesei datasets were individually clustered using CD-HIT

[16, 17] using a 60% sequence identity threshold. One sequence from each class was kept from

each cluster. The CD-HIT filtered T. reesei dataset with both heterologous and homologous

sequences contains 49 sequences (40 positives, 9 negatives).

• The Saccharomyces cerevisiae dataset consists of 2000 homologous sequences (1000 positive,

1000 negative) originally from [18] and BLASTCLUST [14] filtered by [8]. These sequences

come from an analysis of the yeast proteome, wherein each ORF was tagged with a high-

affinity epitope and expressed from the natural chromosomal location. Proteins expressed

during log-phase growth were then measured through immunodetection of the common tag.

After BLASTCLUST filtering, the sequences were ordered by the detected levels of protein

molecules and the top and bottom 1000 were respectively given positive and negative labels.

For the training of a semi-supervised prediction model one uses a combination of labeled and

unlabeled data. For unlabeled sequences we used two data sources:

• The UniProt SwissProt database from October of 2013, consisting of over 500,000 unlabeled

protein sequences, was used for preliminary experiments for finding good cut-off levels for se-

quence similarity. We used the Basic Local Alignment Search Tool (BLAST) [19] [20] to search

for unlabeled sequences with varying degrees of sequence similarity to the labeled sequences.

We used the E-value score returned by BLAST as the measure of sequence similarity. E-value
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represents a corrected P -value of the sequence similarity score, that is, the likelihood to find

as high sequence similarity as the observed value by random. The correction counteracts the

multiple testing of a query sequence against a large sequence database.

We performed a BLAST of the A. niger dataset against the UniProt SwissProt sequences,

and selected all sequences that were within a BLAST E-value of 10 to the labeled dataset.

This returned 19,845 sequences. A histogram of these sequences by BLAST E-value to the

closest labeled sequence is shown in Figure 1. There are a greater number of proteins with

weaker homology to the labeled sequences, as shown by the increase in number of sequences

as the E-value increases.

• The UniProt TrEMBL database, which contains over 54 million sequences, was used as the

data source for the main experiment with semi-supervised models, queried with sequence

similarity cut-off levels established with the SwissProt dataset.

2.2 Feature representations

We represented each protein sequence by its normalized amino acid composition. Define ni as the

number of times that amino acid i occurs in the input protein sequence. Using the 20 standard

amino acids, each feature vector can be defined as x ∈ R20 = (x1, . . . , x20) where the features

xi = ni/
∑20
j=1 nj denote the relative frequency of the amino acids.

In addition, we used the InterProScan tool [2] [21] to build a feature representation based on

protein-specific signatures, to test for the efficacy of protein family and domain information in

predicting protein production in A. niger and T. reesei. We used all InterProScan signatures that

were detected in at least two labeled proteins in the union of the A. niger and T. reesei combined

datasets, which amounted to 391 signatures. A binary feature vector x ∈ {0, 1} = {x1, . . . , x391}
was constructed for each protein sequence by placing a 1 if the signature was detected in the protein,

and a 0 otherwise.

2.3 Support Vector Machines

We applied support vector machines (SVMs) to classify protein sequences because they have been

shown to perform favorably for predicting producibility in filamentous fungi when compared to

other methods [9]. In our experiments, the SVMs were trained with the Scikit-Learn [22] package.

The SVM is a widely used pattern recognition model that learns a linear decision surface through

a feature representation of the input data points. The SVM objective is to minimize a combination

of the training error, which describes the model’s fit of the data, and a regularization term, to avoid

overfitting. The objective can be alternatively interpreted as maximizing the minimum distance,

called the margin, between examples of either class, whilst allowing some outliers (examples too

close to the other class).

[2]http://www.ebi.ac.uk/Tools/pfa/iprscan5/
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The formal definition of the SVM from [23] is as follows. We are given a set of L training pairs

L = {(x1, y1), . . . , (xL, yL)},x ∈ Rn, y ∈ {−1, 1}. An SVM learns a decision function

f(x) = 〈w, φ(x)〉+ b (1)

where φ(·) is the chosen feature map and 〈·, ·〉 denotes the inner product. To return a binary

prediction, the value of the function (1) is thresholded at zero. The weights w and the intercept b

are learned by solving

min
w,ξ

1

2
||w||2 + C

L∑
i=1

ξi (2)

s.t. yif(xi) ≥ 1− ξi, i = 1, . . . , L

ξi ≥ 0, i = 1, . . . , L

In the above equations, ξi is the hinge loss function H on sample i, defined as

H(yif(xi)) = max(0, 1− yif(xi))

The parameter C in the above optimization problem represents a trade-off between the margin,

controlled by ||w||, and the size of the error terms ξi. Optimization is carried out over the quadratic

programming problem formed from the dual form of the function, resulting from the Lagrangian

[23]. Introducing the dual variables {αi, . . . , αL}, the learned decision function can equivalently be

written

f(x) =
L∑
i=1

yiαi〈φ(xi), φ(x)〉+ b.

In fact, the inner product of the feature vectors 〈φ(xi), φ(x)〉 is the only input needed to learn the

decision function. This inner product can be calculated directly via the kernel function. The choice

of kernel defines the shape of the learned decision function in the input space. In this work we

experimented with the following kernels:

• The linear kernel, defined by the inner product of the original real-valued vectors:

κ(x, z) =
n∑
i=1

xizi = 〈x, z〉.

The feature map implicitly used for calculating the linear kernel is the same as the original

vector, or equivalently, φ(x) = x.
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• The RBF kernel, also known as the Gaussian kernel, is defined as

κ(x, z) = exp
(
−γ||x− z||2

)
,

where the parameter γ > 0 controls to the width of the Gaussian distribution: large values

correspond with “peaky” Gaussians, while small values of γ produce wider Gaussian kernels.

• A polynomial kernel with degree k is defined as

κ(x, z) = 〈x, z〉k,

where the integer parameter k ≥ 1 controls the shape of the decision boundary: large values

of k allow more complicated decision boundaries than small values.

2.4 Semi-supervised SVM models

We investigated the application of a semi-supervised SVM model, the transductive SVM (TSVM)

[13], to the problem of predicting successful protein production in filamentous fungi. The TSVM

extends the SVM framework to make use of unlabeled examples to improve generalization accuracy

based on the premise that there are “gaps” between the data points belonging to different labeled

classes. This echoes the reasoning behind the margin maximization performed by the original SVM

model, but the TSVM extends the idea by using unlabeled data points to locate where to place the

decision boundary so as to maximize the distance between classes. In practice, this principle takes

the form of an additional term in the optimization function that penalizes decision functions that

place unlabeled data points in the margin, close to the decision boundary.

With the addition of U unlabeled examples U = {xL+1, . . . , xL+U}, and keeping the same notation

as used for the fully-supervised SVM (Equation 2), the objective function can be formulated as

min
w,ξ

1

2
||w||2 + C

L∑
i=1

ξi + C∗
L+U∑
i=L+1

ξ∗i (3)

s.t. yif(xi) ≥ 1− ξi, i = 1, . . . , L

|f(xi)| ≥ 1− ξ∗i , i = L+ 1, . . . , L+ U

ξi ≥ 0, i = 1, . . . , L

ξ∗i ≥ 0, i = L+ 1, . . . , L+ U

We used the TSVM implementation by Collobert et al. [13] [3].

[3]http://mloss.org/software/view/19/

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 16, 2017. ; https://doi.org/10.1101/138560doi: bioRxiv preprint 

https://doi.org/10.1101/138560
http://creativecommons.org/licenses/by/4.0/


Dykstra et al. Page 7 of 18

2.5 Evaluation metrics

To evaluate the predictive performance of models, we used two evaluation metrics:

• Balanced accuracy, calculated by taking the average of the True Positive Rate (TPR, the

fraction of positive examples correctly predicted to be positive) and True Negative Rate (TNR,

the fraction of negative examples correctly predicted to be negative): 0.5 · (TPR + TNR).

The equal weighting of accuracy within each class is useful for evaluating on data with an

unbalanced number of examples from each class, as is the case with the combined T. reesei

dataset.

• Area Under ROC Curve (AUC), which measures the accuracy of the model f(x) ≥ σ to

classify the data when the threshold σ of the decision function is varied. Alternatively, AUC

can be seen as measuring the model’s ability to correctly order or rank the sequences. An AUC

of around 0.5 means the classifier ranks the output no better than a random ordering and 1.0

means the classifier perfectly ranks the output sequences so that they can be separated by

true class.

3 Results
3.1 Comparison with Existing Tools

In order to assess the generalization performance of predictors across different species of industrial

protein producers, we tested the performance of different models, some of which are available as

webtools, to predict class labels for the A. niger, T. reesei, and S. cerevisiae datasets, for which the

resulting accuracies are shown in Table 1. Predictions from PROSO II, ccSOL omics, and HIPSEC

were gathered directly from the publicly available websites for these tools. For PROSO II, positive

and negative labels were taken directly from the output, and for ccSOL omics and HIPSEC the

returned predictions were respectively thresholded at 50 and 0. The T. reesei SVM and S. cerevisiae

SVM models refer to linear kernel SVMs that we trained on the respective datasets, using the amino

acid composition of the sequences as training features. SVM parameters were set by a 5-fold cross-

validation loop for the T. reesei SVM model, and a 10-fold cross-validation loop for the S. cerevisiae

SVM model. Such a model was previously shown to yield a 0.79 average cross-validation AUC on

the S. cerevisiae dataset [8].

3.2 Training an SVM with Few Labeled Training Examples

The HIPSEC model, consisting of a linear kernel SVM trained with the A. niger dataset, performed

well on the T. reesei data, returning balanced accuracies of 0.84 and 0.81 on the heterologous and

homologous components, respectively. In this case, the training dataset consists of 345 sequences.

Given that it is costly to gather this amount of experimental data, we investigated whether a similar

performance could be reached with fewer training examples.

We first assigned the data to 10 random cross-validation folds. For each fold, we held the test

examples constant for all iterations, but decreased the number of training examples by 10 in every

iteration by taking a random subsample of the training examples used in the previous iteration.
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Iterations were continued until 10 training examples remained from each fold. We used stratified

sampling so that the ratio of positive to negative class training examples is the same in each

subsample.

Models were trained with RBF and linear kernels. C and γ parameters were selected separately

for each fold using a second 5-fold cross-validation loop within the training data, such that the

parameters maximized the average accuracy across the 5 inner folds. Parameter selection was per-

formed once in the first iteration using all labeled training data, and these parameters were used

for all the following iterations. The average performance across folds and its standard deviation are

shown for each iteration in Figure 2. Repetition of the experiment with different randomized data

splits yielded results similar to those shown.

3.3 SVM performance on different feature sets and kernels

We compared the performance of different features and model choices for training and testing on

the A. niger and T. reesei datasets. In addition to training SVM models with normalized amino acid

composition as input features, we tested the contribution of protein characteristics to the prediction

problem by incorporating InterProScan features (Section 2.2), either by concatenating the feature

vectors prior to training the models, or by taking the element-wise kernel product of the normalized

kernel matrices calculated from each feature set. We tested linear, RBF, and polynomial kernels for

every feature combination.

We trained and tested SVM models on both the A. niger and combined T. reesei datasets. We

used 10-fold cross-validation to train and evaluate models trained with the A. niger dataset, and

leave-one-out cross-validation to evaluate the T. reesei model, because of its smaller size. For the

A. niger model, we calculated the average AUC and balanced accuracy across cross-validation

folds. For the T. reesei model, we calculated the balanced accuracy of the aggregated leave-one-out

predictions.

AUC was not calculated for the T. reesei models because the distances of individual samples from

the classification hyperplane, returned by leave-one-out cross-validation, are not directly comparable

across models due to different selected regularization parameters. In addition to testing model per-

formance within each dataset by cross-validation, we tested the generalization performance across

datasets. Features and kernel choices that generalize well may capture protein characteristics that

indicate protein producibility in filamentous fungi at a broader scale than within individual species.

The SVM C parameter and kernel parameters were set using a nested cross-validation scheme,

with a 3-fold inner cross-validation loop over the training data for each fold. The parameters that

resulted in the highest average balanced accuracy across the inner cross-validation loops were se-

lected. In these experiments the C parameter and γ parameter for the RBF kernel were set using a

grid search over {10−3, 10−2, 10−1, 100, 101, 102, 103} and the k parameter for the polynomial kernel

was set with a grid search over {2, 3, 4, 5, 6}.
Results for the SVM models trained on the A. niger and T. reesei datasets are shown in Table 2

and Table 3, respectively. The type of kernel is shown in parentheses, and the highest value achieved
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in each column is in bold font. For the A. niger dataset, where the average was taken across cross-

validation folds, its standard deviation is shown in parentheses. The first observation is that amino-

acid composition is clearly the dominating feature type, and that non-linear kernels do not increase

accuracy. The kernel product seems to be overall the best-performing method of integrating the

Interpro features with the amino acid composition; however, even that combination fails to perform

at the level of amino acid features alone. The non-linear RBF and polynomial kernel do not have

much effect on the A. niger trained model. On the model trained with T. reesei data, the non-linear

kernels actually hurt the performance.

3.4 Semi-supervised models

Semi-supervised methods use a combination of labeled and unlabeled data. Since modern sequencing

technologies have made a wealth of protein sequences publicly available, the question immediately

arises of how to select the protein sequences that form the unlabeled dataset.

We conducted preliminary experiments to determine the effect of sequence distance in BLAST

E-value space on performance using the semi-supervised TSVM model. We separated the

19,845 unlabeled SwissProt sequences into 5 bins using the following E-value thresholds:

{10−60, 10−20, 10−1, 100}. We performed 5 rounds of 10-fold cross-validation with a linear ker-

nel TSVM trained on amino acid composition features. In each round we used the same labeled A.

niger examples for training, but different unlabeled sequences. In round k = 1, . . . , 5, we sample

1000 unlabeled sequences uniformly at random from the first k bins, where the bins are ordered by

increasing E-value thresholds. Thus the number of unlabeled sequences is kept constant, but the

maximum BLAST E-value is increased in each round. The resulting AUC values are shown in Table

4. Based on Table 4, the highest performances of the TSVM model resulted when using sequences

from the first two bins. We thus limited unlabeled sequences to those with BLAST E-value smaller

or equal to 10−20.

For subsequent experiments, we switched from the SwissProt database to the larger UniProt

TrEMBL database. In order to keep sequence similarity threshold consistent, we used the SwissProt

database size N = 542, 901 as the normalizing factor in the E-value, rather than the TrEMBL

database size. We note that this rescaling of E-values does not constitute a statistical problem,

since we do not use the E-values to make claims of statistical significance. BLAST of the labeled A.

niger and T. reesei sequences against the TrEMBL database returned 307,301 unlabeled candidate

TrEMBL sequences for the A. niger dataset and 72,679 sequences for the T. reesei dataset.

We evaluated the performance of a linear kernel TSVM (Section 2.4) and two different sampling

procedures to select the unlabeled sequences to use during training.

• In the “random” sampling method, we selected U ∈ {500, 2000} unlabeled sequences for each

cross-validation fold from the TrEMBL sequences with E-value at most 10−20 and combined

them with the labeled training data

• The “close” method, sampled from TrEMBL sequences k nearest neighbors of each labeled

training sequence, using Euclidean distance between amino acid content vectors as the distance
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measure. We used U ∈ {500, 2000} as the number of unlabeled sequences. The number of

nearest-neighbors to select for each labeled sequence was set equal to k = dU/Ne, where N

denotes the number of labeled examples and d·e rounds up to next larger integer.

For labeled training examples, we examined two selection strategies: training with all labeled train-

ing examples, and training with a subset of 10 labeled training examples. These 10 examples were

randomly selected from each fold, such that the ratio of negative and positive examples in the

subsample was the same as in the complete dataset.

The C parameter for the SVM was set once using all labeled examples. The best parameters for

each cross-validation fold were selected as the parameters that maximized the average balanced

accuracy within an inner 3-fold cross-validation loop. These parameter values, set once for each

dataset, were applied for all semi-supervised experiments, including those with only 10 labeled

training examples.

For the A. niger dataset, the regularization parameter for the TSVM, C∗, was selected by an

inner 3-fold cross-validation loop, so that the selected value of C∗ maximized average accuracy

across folds. A grid search over 10i for i ∈ {−3,−2,−1, 0, 1, 2, 3} was performed to select C∗. The

parameter was kept at its default value for the T. reesei dataset, because of the dataset’s small size.

The results of this experiment are shown in Table 5. When all labeled training examples are used,

the unlabeled examples do not bring any advantage. On A. niger the balanced accuracy is unaffected

by the unlabeled data, while for T. reesei, the balanced accuracy goes down upon adding unlabeled

examples. On the other hand, in the case when only 10 labeled examples are used, TSVM is able

to improve balanced accuracy. The “close” selection strategy seemed to be better than “random”

on T. reesei data, however on A. niger data the different strategies performed equally.

3.5 SVM Predictions on SwissProt

The model evaluations depicted before give us estimates for how well we can predict the success

of available labeled data, primarily composed of sequences from the native T. reesei and A. niger

genomes. In this section we sought to understand what sequences are predicted to be “producible”

at a wider scale, by analyzing SVM model predictions on the Uniprot SwissProt database of protein

sequences. Here we used the SVM model trained with the linear kernel on amino acid composition.

We tested for enrichment of “successful” predictions in taxonomic classification of the organism

from which the sequence originates, and in enzyme function as specified by Enzyme Commission

(EC) numbers.

SwissProt includes taxonomic classification of the organism from which each protein sequence

originates. An example entry from the database for a plant protein sequence is as follows: Eukary-

ota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta,Spermatophyta; Magnoliophyta; eu-

dicotyledons; Gunneridae, Pentapetalae; rosids; fabids; Fabales; Fabaceae; Papilionoideae,Fabeae.

To separate sequences by the classification of their origin species, we defined taxonomic categories

by the fifth level of their taxonomic classification, where each level is separated by semi-colons. In

the example sequence taxonomy, the sequence would belong to the “Tracheophyta” category.
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47% of the sequences in SwissProt also have an Enzyme Commission (EC) number. The EC num-

ber system, assigned by the Nomenclature Committee of the International Union of Biochemistry

and Molecular Biology (NC-IUBMB)[4] describes the reactions catalyzed by the protein. In tests for

enrichment by EC class, we separated sequences by the third number in their EC number. As an

example, cellulases have an EC number of 3.2.1.4, so in our enrichment tests they would be counted

in the “3.2.1” category.

To test for a significantly high number of predicted “successes” per category, we used the hyper-

geometric statistical test, implemented as phyper in the R programming language. Given a sample

population, this tests whether a sub-sample of items, taken without replacement, contains a larger-

than-expected proportion of items of a particular type. In our case, the “sample population” is the

SwissProt database, the sub-sample taken consists of all sequences with a positive prediction, and

the “type” tested for significant presence in the sub-sample is either the taxonomy of the organism

of origin or the sequence EC number.

We only considered EC number or taxonomic categories that contained at least 20 sequences in

SwissProt, to avoid deeming a category as “enriched” with positive predictions if there were very

few examples from which to draw this conclusion.

The results of the enrichment tests for the A. niger model are represented in Figure 3. The T.

reesei model gave similar results (data not shown). Various fungal hydrolytic enzymes active on

carbohydrates and peptides show the most prominent enrichments. However, enzymes of similar

classes, in particular, 3.2.1-class glycosylases, i.e. cellulases, are enriched in non-fungal eukaryotic

groups also.

4 Discussion
We successfully applied an SVM trained with amino acid composition features to predict the suc-

cessful production of proteins in A. niger and T. reesei. While this approach was previously applied

to A. niger [55], we demonstrated its high success rate for proteins produced in a different filamen-

tous fungus host species, T. reesei.

While the A. niger dataset consists of over 300 protein sequences, we demonstrate that as few as

50 sequences can be used to train a predictive model with comparable performance. This finding

is further supported by the high predictive abilities of the T. reesei model, trained on almost

50 sequences. We applied the SVM predictors from both A. niger and T. reesei datasets to the

protein sequences in UniProt SwissProt, and observe that enzyme classes with a significant portion

of predicted successes include cellulases and proteases which would be expected to be produced

successfully. In addition, we showed that the training data does not need to be balanced with

respect to positive and negative labels, as indicated by the success of the model trained with the

unbalanced T. reesei data and applied to the A. niger data.

Experiments with the semi-supervised TSVM gave mixed results. It seems that when very few

labeled examples (10 were used in our example) are available, adding unlabeled examples can help

[4]http://www.chem.qmul.ac.uk/iubmb/enzyme/
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somewhat. However, the advantage seemed to disappear and turn to disadvantage quite rapidly,

which limits the applicability of semi-supervised models in protein producibility prediction.

In order to find alternative, hopefully more predictive representations for protein sequences over

the amino acid composition features, we explored the use of family domain information to improve

the model through the inclusion of InterProScan features, consisting of protein family and domain

information. The rationale for testing them is that, because enzymes which are secreted naturally

by filamentous fungi degrade biopolymers in the surrounding environment for use as energy sources,

it is likely that secreted proteins contain conserved protein domains related to this function. The

addition of protein domain information has also been found to improve performance for predicting

protein subcellular location [24]. However, our experiments indicated that these features do not

benefit the protein producibility task, compared to using amino acid content information only, and

can actually hurt the performance. Hence, protein family and domain information should probably

be excluded in future modeling efforts.

The solubility of a protein inside a cell or secretability of a protein out of cell could depend

mostly on its physical properties. Also the solubility and secretability might essentially be very

similar physical properties of a protein. The ability to fold efficiently and to stay solute inside a

cell is at least a prerequisite for efficient secretion. Hence, prediction of solubility with mix species

data sets has been proposed [25]. Nevertheless the intracellular conditions at least between Fungi

and Bacteria appear so different that proteins that are insoluble upon expression in E. coli, can be

highly soluble when expressed in Saccharomyces cerevisiae [26].

In order to reliably interpret prediction results across different species the species specific data

sets used for prediction should be somehow comparable. The data from species we use have been

produced with various laboratory techniques. Most importantly the labelling of proteins to suc-

cessful and unsuccessful has been done by independent qualitative choice of original authors for

each data set. Hence, it is quite remarkable that a model trained on A. niger data works so well

to predict secretion in T. reesei, regardless of the approximately 500 millions years of divergence

between the species [27]. In contrast, a model trained on S. cerevisiae, an even more distant fungus,

gives mixed results (Table 1). This could either point to problems in data or suggests the possibility

of yet undiscovered fundamental differences between the secretion systems of Pezizomycotina (A.

niger and T. reesei) and Saccharomycotina (S. cerevisiae) fungi.

The naturally secreted proteins of Pezizomycotina and Saccharomycotina both contain a wealth of

glycosidic and peptide bond active enzymes that the fungi use to transfrom biomass into a form that

is easier to internalise. However, Peziziomycotina are generally able to degrade complex polysaccha-

rides, e.g. cellulose, with various cellulases and accessory enzymes, while Saccharomycotina only use

simple mono or dimeric glycosides. These differences are clearly visible from their genomic content

of enzyme genes [28].

The A. niger and T. reesei data sets used to build the models are rich in proteases and cellulases

hence it is not surprising that such enzymes are predicted to be secreted in the SwissProt data.

However, not only such fungal enzymes but also proteins from very distant taxons are predicted
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to be secreted. This could imply that specific protein families have properties that make them

physically stable and hence secretable, such as tight globular structures or large numbers of sulphur

bonds as seen in cellulases. In this respect it is surprising that the protein domain data performs

consistently so poorly in comparison to amino acid content data.

5 Conclusions
In this paper we have evaluated machine learning methods in prediction of recombinant protein

producibility in the filamentous fungi T.reesei. Our results indicate that already modest amounts of

training data allow accurate predictions using a support vector machine and additional unlabeled

training data did not improve the results if all labeled data was used. As input features, it was

shown to be sufficient to use the amino acid content, as opposed of more elaborate protein features.

Cross-species prediction was shown to be feasible between two filamentous fungi, A. niger and

T-reesei, but not between more distant microbes.

We note, however, The current results, where a relatively simple SVM classification model per-

form better than more elaborate alternatives, may reflect a ’local optimum’ in protein producibility

prediction—perhaps significantly larger datasets, that map more densely the space of producible

recombinant proteins for sets of host species, would allow us to leverage more elaborate features

and machine learning schemes, and let us dissect the differences between secretion systems in dif-

ferent hosts. This could significantly improve the production of heterologous proteins in established

production systems.
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Figures

Figure 1 Histogram of number of sequences vs. smallest BLAST E-value to the labeled A. niger sequences.

Performance vs. number of training examples

Figure 2 Accuracy (pane a) and AUC (pane b) as a function of the number of labeled training examples for an SVM
trained with the A. niger data. Solid lines show the average across 10 cross-validation folds and the shaded area is
the standard error. The blue and orange colors show results using a linear and RBF kernel, respectively.
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Figure 3 EC number/ organism taxonomy enrichment for the linear kernel model trained with the A. niger dataset.
Cell coloring is a function of the base 10 logarithm of the number of predicted successes with the donor organism
taxonomy of the cell column and EC number of the cell row. The EC numbers and organism taxonomies that form
the rows and columns were enriched in the model positive predictions with a p-value of 0.
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Tables

Table 1 Accuracies of 5 models for predicting class labels for A. niger, T. reesei homologous (hom) and heterologous
(het) components, and S. cerevisiae datasets. The results for PROSO II [5], ccSOL omics [6] and HIPSEC [10] were
gathered from the tool websites. Performance of the model on the training data is omitted (-).

Tool A. niger [10] T. reesei hom T. reesei het S. cerevisiae
PROSO II 0.52 0.68 0.53 0.58

ccSOL omics 0.50 0.55 0.63 0.48
HIPSEC - 0.81 0.84 0.50

T. reesei SVM 0.70 - - 0.53
S. cerevisiae SVM 0.57 0.94 0.63 -

Table 2 Performance of feature/kernel pairs for SVM model trained with A. niger data. A. niger and T. reesei column
headers indicate the dataset used for evaluation. The A. niger column shows the cross-validation average with its
standard deviation in parentheses.

A. niger T. reesei

AUC Bal Acc AUC Bal Acc
AA composition (linear) 0.84 (0.08) 0.76 (0.09) 0.86 0.84
InterProScan (linear) 0.74 (0.12) 0.67 (0.12) 0.83 0.68
Feature concatenation (linear) 0.75 (0.10) 0.68 (0.08) 0.78 0.60
Kernel product (linear) 0.78 (0.11) 0.70 (0.08) 0.81 0.76

AA composition (RBF) 0.84 (0.07) 0.77 (0.08) 0.83 0.73
InterProScan (RBF) 0.75 (0.12) 0.67 (0.12) 0.74 0.69
Feature concatenation (RBF) 0.75 (0.11) 0.67 (0.11) 0.80 0.61
Kernel product (RBF) 0.76 (0.10) 0.68 (0.11) 0.76 0.62

AA composition (polynomial) 0.82 (0.09) 0.77 (0.09) 0.89 0.88
InterProScan (polynomial) 0.75 (0.11) 0.68 (0.12) 0.78 0.60
Feature concatenation (polynomial) 0.74 (0.11) 0.68 (0.11) 0.79 0.60
Kernel product (polynomial) 0.77 (0.11) 0.70 (0.10) 0.82 0.69
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Table 3 Performance of feature/kernel pairs for SVM model trained with T. reesei combined data. A. niger and T.
reesei column headers indicate the dataset used for evaluation. The T. reesei column shows the balanced accuracy for
leave-one-out class predictions.

A. niger T. reesei

AUC Bal Acc Bal Acc
AA composition (linear) 0.75 0.69 0.80
InterProScan (linear) 0.67 0.51 0.60
Feature concatenation (linear) 0.73 0.51 0.66
Kernel product (linear) 0.72 0.51 0.63

AA composition (RBF) 0.74 0.67 0.62
InterProScan (RBF) 0.51 0.51 0.70
Feature concatenation (RBF) 0.51 0.51 0.63
Kernel product (RBF) 0.51 0.51 0.67

AA composition (polynomial) 0.74 0.70 0.65
InterProScan (polynomial) 0.69 0.51 0.59
Feature concatenation (polynomial) 0.72 0.50 0.60
Kernel product (polynomial) 0.72 0.52 0.54

Table 4 AUC values obtained by 10-fold cross-validation of a linear TSVM trained on A. niger dataset using amino acid
composition features, using 1000 unlabeled sequences. Each AUC values corresponds to a given maximum BLAST
E-value threshold against labeled A. niger sequences.

max E-value 10−60 10−20 10−1 100 101

AUC 0.829 0.817 0.794 0.792 0.786

Table 5 Balanced accuracy performance of a TSVM with a linear kernel. Shows avg. (std.) for A. niger model and
leave-one-out balanced accuracy for T. reesei model.

A. niger T. reesei

All ex 10 ex All ex 10 ex
SVM 0.76 (0.09) 0.61 (0.11) 0.80 0.57
random 500 0.75 (0.07) 0.66 (0.11) 0.70 0.60
random 2000 0.76 (0.07) 0.67 (0.09) 0.70 0.60
close 500 0.76 (0.07) 0.68 (0.12) 0.77 0.62
close 2000 0.76 (0.06) 0.68 (0.10) 0.77 0.62
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