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Abstract

Background Many metagenome analysis tools are presently available
to classify sequences and profile environmental samples. In particular, tax-
onomic profiling and binning methods are commonly used for such tasks.
Tools available among these two categories make use of several techniques,
e.g. read mapping, k-mer alignment, and composition analysis. Variations
on the construction of the corresponding reference sequence databases are
also common. In addition, different tools provide good results in differ-
ent datasets and configurations. All this variation creates a complicated
scenario to researchers to decide which methods to use. Installation, con-
figuration and execution can also be difficult especially when dealing with
multiple datasets and tools. Results We propose MetaMeta: a pipeline to
execute and integrate results from metagenome analysis tools. MetaMeta
provides an easy workflow to run multiple tools with multiple samples,
producing a single enhanced output profile for each sample. MetaMeta
includes a database generation, pre-processing, execution, and integration
steps, allowing easy execution and parallelization. The integration relies
on the co-occurrence of organisms from different methods as the main
feature to improve community profiling while accounting for differences
in their databases. Conclusions In a controlled case with simulated and
real data we show that the integrated profiles of MetaMeta overcome the
best single profile. Using the same input data, it provides more sensitive
and reliable results with the presence of each organism being supported by
several methods. MetaMeta uses Snakemake and has six pre-configured
tools, all available at BioConda channel for easy installation (conda install
-c bioconda metameta). The MetaMeta pipeline is open-source and can
be downloaded at: https://github.com/pirovc/metameta
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Background

A large and increasing number of metagenome analysis tools are presently avail-
able aiming to characterize environmental samples [1, 2, 3, 4]. Motivated by the
large amounts of data produced from whole metagenome shotgun (WMS) se-
quencing technologies, profiling of metagenomes has become more accessible and
applicable in real scenarios and tends to become the standard method for cheap
and fast analysis [5, 6, 7]. Tools which perform sequence classification based on
WMS sequencing data come in different flavors. One basic approach is the de
novo sequence assembly [8, 9, 10], which aims to reconstruct complete or near
complete genomes from fragmented short sequences without any reference or
prior knowledge. It is the method which provides the best resolution to assess
the community composition. However it is very difficult to produce meaning-
ful assemblies from metagenomics data due to short read length, insufficient
coverage, similar DNA sequences, and low abundant strains [11].

More commonly, methods use the WMS reads directly without assembly and
are in general reference-based, meaning that they rely on previously obtained
genome sequences to perform their analysis. In this category of applications,
two standard definitions are employed: taxonomic profiling and binning tools.
Profilers aim to analyze WMS sequences as a whole, predicting organisms and
their relative abundances based on a given set of reference sequences. Binning
tools aim to classify each sequence in a given sample individually, linking each
one of them to the most probable organism of the reference set. Regardless of
their conceptual differences, both groups of tools could be used to characterize
microbial communities. Yet binning tools produce individual classification for
each sequence and should be converted and normalized to be used as a taxonomic
profiler.

Methods available among these two categories make use of several tech-
niques, e.g. read mapping, k-mer alignment, and composition analysis. Vari-
ations on the construction of the reference databases, e.g. complete genome
sequences, marker genes, protein sequences, are also common. Many of those
techniques were developed to overcome the computational cost of dealing with
the high throughput of modern sequencing technologies as well as the large
number of reference genome sequences available.

The availability of several options for tools, parameters, databases and tech-
niques create a complicated scenario to researchers to decide which methods to
use. Different tools provide good results in different scenarios, being more or less
precise or sensitive in multiple configurations. It is hard to rely on their output
for every study or sample variation. In addition when more than one method is
used, inconsistent results between tools using different reference sets are difficult
to be integrated. Furthermore, installation, parameterization, database creation
as well as the lack of standard outputs are challenges not easily overcome.

We propose MetaMeta, a new pipeline for the joint execution and integration
of metagenomic sequence classification tools. MetaMeta has several strengths:
easy installation and set-up, support for multiple samples, improved final profile
combining multiple tools, out-of-the-box parallelization and high performance
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computing (HPC) integration, automated databases download and set-up, inte-
grated pre-processing step (read trimming, error correction, and sub-sampling)
as well as standardized rules for integration of new tools. MetaMeta achieves
more sensitive profiling results than single tools alone by merging their cor-
rect identifications and properly filtering out false identifications. MetaMeta
was built with SnakeMake [12] and is open-source. The pipeline has six pre-
configured tools that can be easily installed through the BioConda channel
(https://bioconda.github.io). We encourage the integration of new tools, mak-
ing it available to the community through a participative Git repository (via pull
request). MetaMeta source-code is available at: https://github.com/pirovc/metameta

Implementation

MetaMeta executes and integrates metagenomic sequence classification tools.
The integration is based on several tools’ output profiles and aims to im-
prove organism identification and quantification. An optional pre-processing
and sub-sampling step is included. The pipeline is generalized for binning and
profiling tools, categories that were previously described in the CAMI (Crit-
ical Assessment of Metagenome Interpretation) challenge (http://www.cami-
challenge.org). MetaMeta provides a pre-defined set of standardized rules to
facilitate the integration of tools, easy parallelization and execution in high per-
formance computing infrastructure. The pre-configured tools are available at
the BioConda channel to facilitate download and installation, avoiding set-up
problems and broken dependencies. The pipeline accepts one or multiple WMS
samples and the output is an integrated taxonomic profile for each sample (as
well as a separated output from each executed tool). The MetaMeta pipeline can
be described in 4 modules: database generation, pre-processing, tool execution,
and integration (Figure 1).

Database generation

On the first run, the pipeline downloads and builds the databases for each of the
configured tools. Since each tool has its own database with a specific version of
reference sequences, database profiles are generated, collecting which taxonomic
groups each tool can identify. Given a list of accession version identifiers for each
sequence on the reference set, MetaMeta automatically generates a taxonomic
profile for each tool’s database.

Pre-processing

An optional pre-processing step is provided to remove errors and improve se-
quence classification: Trimommatic [13] for read trimming and BayesHammer
[14] for error correction. A sub-sampling step is also included, allowing the sub
division of large read sets among several tools by equally dividing them or by
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taking smaller random samples with or without replacement, to reduce overall
run-time.

Tool execution

In this step, the pre-processed reads are analyzed by the configured tools. Tools
can be added to the pipeline if they follow a minimum set of requirements.
They should output their results based on the NCBI Taxonomy database [15]
(by name or taxonomic id). Profiling tools should output a rank separated tax-
onomic profile with relative abundances while binning tools should provide an
output with sequence id, length used in the assignment and taxon (More details
are given in the Additional file 1). The BioBoxes [16] data format for binning
and profiling (https://github.com/bioboxes/rfc/tree/master/data-format) is di-
rectly accepted. Tools which provide non-standard output should be configured
with an additional step converting their output to be correctly integrated into
the pipeline.

Integration

The integration step will merge identified taxonomic groups and abundances
and provide a unified profile for each sample. MetaMeta aims to improve the
final results based on the assumption that the more identifications of the same
taxon by different tools are reported, the higher its chance to be correct. This
task is performed by the MetaMetaMerge module. This module accepts bin-
ning and profiling results and relies on previously generated database profiles.
Taxonomic classification can change over time and each tool can use a different
version/definition of it. For that reason a recent taxonomy database version is
used to solve name and rank conflicts (e.g. changing name specification, species
turning into sub-species, etc.).

Abundance estimation - binning tools

Binning tools provide a single classification for each sequence in the dataset
instead of relative abundances for taxons. An abundance estimation step is
necessary for a correct interpretation of such data and posterior integration. The
lengths of the binned sequences are summed up for each identified taxonomic
group and normalized by the length of their respective reference sequences,
estimating the abundance for each identified taxon n as:

abundancen =
r∑

i=1

∑t
j=1 b

l
(1)

where r is the number of reference sequences belonging to the taxonomic group
n, ti is the total of reads classified to the reference i, b is the number of bases
used in the assignment and li is the length of the reference i. The abundance
of the parent nodes are based on the cumulative sum of their children nodes’
abundance.
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Merging approach

The first step on the merging approach is to normalize estimated abundances
to 100% for each taxonomic level. That is necessary because some tools do ac-
count for the unclassified reads and others do not. Once normalized, all profiles
are then integrated to a single profile. In this step, MetaMetaMerge saves the
number of occurrences of each taxon among all profiles. This occurrence count
is used to better select taxons that are more often identified, assuming that they
have higher chances of being a correct identification. MetaMetaMerge also cal-
culates an integrated value for the relative abundance estimation, defined as the
harmonic mean of all normalized abundances for each taxon, avoiding outliers
and obtaining a general trend among the estimated abundances. All steps taken
in the merging process are performed for each taxonomic level independently,
from super kingdom to species by default.

Since tools use different databases of reference sequences it is necessary to
account for this bias. Previously generated database profiles provide which
taxons are available for each tool. By merging all database profiles, it is possible
to anticipate how many times each taxon could be identified among all tools
used. The number of occurrences of each taxon from the tools’ output and the
database presence number are integrated to generate a score S for each taxon,
defined as:

Sij =
(i + 1)2

j + 1
(2)

where i is the number of times the taxon was identified and j the number of
times it is contained in the databases. This score calculation accounts for the
presence/absence of taxonomic groups on different databases. It gives higher
scores to the most identified taxons present in more databases. At the same
time, lower scores are assigned to taxons present in many databases but not
identified too many times. The score calculation is purposely biased for higher
scores when i = j (Additional file 1: Figure 1), given the benefit of the doubt
for taxons with low identification that are available only in few databases.

Commonly, metagenome analysis methods have to deal with a moderate to
high number of false positive identifications at lower taxonomic levels. That
occurs mainly because metagenomes can contain very low abundant organisms
with similar genome sequences. This problem is even extended in our merged
profile by collecting all false positives from different methods, generating a long
tail of false positives with lower scores mixed together with true identifications.
A filtering step is therefore necessary to avoid wrong assignments. This step
is usually performed by an abundance cutoff value. Setting up this value is
subject to uncertainty since the real abundances are usually not known and
the separation between low abundant organisms and false identifications is not
clear [17]. A simple cutoff would not provide a good separation between true
and false results in this scenario.

To overcome this problem, MetaMetaMerge classifies each taxon in a set
of bins (four by default) based on the calculated score (Equation 2). Bins are
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defined by equally dividing the range of scores in the numbers of bins selected.
Now each taxon has a score and a bin assigned to it. Taxons with higher
scores are more likely to be true identifications and are going to be grouped
together in the same bin. With this strategy it is possible to obtain a general
separation among taxons which are prone to be true or false identifications.
Within each taxon grouped in a bin (sorted by relative abundance) a cutoff is
applied to remove possible false identifications with low abundance. Here, the
cutoff value can be selected based on pre-defined functions, which can achieve
more sensitive or precise results (Additional file 1: Mode functions). After
the cutoff, the remaining taxons are grouped together and sorted by relative
abundance to generate the final profile.

At the end, MetaMeta will provide a final taxonomic profile, integrating all
tools results, a detailed profile with co-occurrence and individual abundances as
well as single profiles for each executed tool.

Results

Tool selection

MetaMeta was evaluated with a set of six tools: CLARK [18], DUDes [19],
GOTTCHA [20], Kraken [21], Kaiju [22], and mOTUs [23]. The choice was mo-
tivated by recent publications comparing the performance of such tools [3, 4].
We also selected new tools that represent state-of-the-art of sequence classifi-
cation for metagenomics data, as long as they fit in our pipeline requirements
described on the Methods section. We considered the amount of data/run time
performance for each tool, selecting only the ones that can handle large amounts
of data as commonly used today in metagenomics analysis in an acceptable time
(for our largest dataset less than 1 day). We also selected an equal number of
tools for each category: DUDes, GOTTCHA and mOTUs are taxonomic profil-
ing tools, while CLARK, Kraken and Kaiju are binning tools. Databases were
created following the default guidelines for each tool, considering only bacteria
and archaea as targets.

Datasets and evaluation

The pipeline was evaluated with a set of simulated and real samples (Table 1).
The simulated data were provided as part of the CAMI Challenge (toy sam-
ples) and the real samples were obtained from the Human Microbiome Project
(HMP) [24, 25]. MetaMeta was compared to each single result from each tool
configured in the pipeline. Although the pipeline can work on the strain level,
we evaluate the results until species levels since most of the tools still do not
provide strain level identifications. We compare the results to the ground truth
in a binary (true and false positives, sensitivity and precision) and quantitative
way (L1 norm) if abundance profiles were available. Computer specifications
and parameters can be found on the Additional file 1.

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2017. ; https://doi.org/10.1101/138578doi: bioRxiv preprint 

https://doi.org/10.1101/138578


CAMI data

The CAMI challenge provided three toy datasets of different complexity (Table
1) with known composition and abundances. From low to high complexity,
they provide an increasing number of organisms and samples. The samples
within a complexity group contain the same organisms with variable abundances
among samples. The sets contain real and simulated strains from complete and
draft bacterial and archaeal genome sequences. The simulated CAMI datasets,
especially those of medium and high complexity, provide a very challenging and
realistic data in terms of complexity and size.

In Figure 2 it is possible to observe the tools performance in terms of true and
false positives for the CAMI high complexity set. All configured tools perform
similarly in the true positive identifications but vary among the false positives.
Binning tools have a higher number of false positive identifications due to the
fact that even single classified reads are considered. MetaMetaMerge profile
surpassed all other methods in true positive identifications while keeping the
false positive number low. The same trend occurs in the other complexity sets
(Additional file 1: Figures 3-8). Figure 3 shows the trade-off between precision
and sensitivity for all high complexity samples. MetaMetaMerge achieved the
best sensitivity while GOTTCHA the best precision among the compared tools
with default parameters. Those results show how the merging module of the
MetaMeta pipeline is capable of better selecting and identifying true positives
based on the co-occurrence information. MetaMetaMerge also has the flexibility
to provide more precise or sensitive results (Figure 3) just by changing the
mode parameter (details are given in the Additional file 1: Mode functions).
In the very precise mode, the merged profile outperformed all tools in terms of
precision, but with the cost of losing sensitivity. In the very sensitive mode, the
merged profile could improve the sensitivity compared to the run with default
parameters, with some loss of precision. It is important to notice that the
trade-off between precision and sensitivity could also be explored by the cutoff
parameter (default 0.0001), depending on what is expected to be the lowest
abundant organism in the sample. The MetaMetaMerge mode parameter will
give more precise or sensitive results based on this cutoff value.

In terms of relative abundance, MetaMetaMerge provides the most reliable
predictions with smaller difference from the real abundances, as shown in Figure
4 with regard to the L1 norm measure. By taking the harmonic mean, we
succeed in reducing the effect of outliers that occur among the tools and capture
the trend of the estimated relative abundances, providing a new, more robust
estimate.

Pre-processing and sub-sampling effects

We explore here the effects of pre-processing and sub-sampling on the CAMI
toy sets. Results shown in this section were trimmed and sub-sampled in several
sizes, with and without replacement and executed five times for each sub-sample.
Trimming effects were small on this set, slightly increasing precision (data not
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shown). Figure 5 shows the effects of sub-sampling in terms sensitivity and
run-time (full pipeline) for one of the high complexity CAMI sets. Sampling
provides a high decrease on run-time for every tool and consequently for the
whole pipeline. However, only below 5% it is possible to see a significant but
still small decrease on sensitivity. All tools behave similarly on the sub-sampled
sets, with GOTTCHA and mOTUs having a high decrease of sensitivity when
using only 1% of the data. With the same sub-sample configuration (1%),
MetaMetaMerge achieved a sensitivity higher than any other tool alone using
100% of the set. It also runs the whole pipeline approximately 17 times faster
than with the full set (from 05h41m36s to 20m19s on average), being faster
than the fastest tool with 100% of the data (kraken 29m26s on average) and the
second best sensitive tool (kaiju 1h47m44 on average). As expected, precision
is slightly increased in small sub-samples due to less data (Additional file 1:
Figure 9).

Human Microbiome Project data

The HMP provided several resources to characterize the microbial communities
at different sites of the human body. MetaMeta was tested on stool samples to
evaluate the performance of the pipeline on real data. For evaluation we use
a list of reference genome sequences that were isolated from specific body sites
and sequenced as part of the HMP. They do not represent the complete content
of microbial diversity in each community but serve as a guide to check how
well the tools are performing. Randomly selected stool samples were compared
against the isolated genomes obtained from the gastrointestinal tract.

Figure 6 shows the results for 10 randomly selected samples. In sensitive
mode, MetaMetaMerge achieved the highest number of true positive identifi-
cations with a moderate number of false positives, below all binning tools but
slightly above the taxonomic profilers. mOTUs produced good results in the
selected samples mainly because its database is based on the isolated genomes
from the HMP (the same as the ground truth used here). Since mOTUs is the
only tool with a distinct set of reference sequences that could classify this set,
the scores (from Equation 2) attributed to mOTUs’ unique identifications were
low. Still, MetaMetaMerge could improve the true identifications keeping a
lower rate of false positives by incorporating the true identifications from other
methods.

Discussion

MetaMeta is a complete pipeline for classification of metagenomic datasets.
It provides improved profiles over the tested tools by merging their results. In
addition, the pipeline provides easy configuration, execution and parallelization.
With simulated and real data, MetaMeta is capable to achieve higher sensitivity.
That is possible due to the MetaMetaMerge module, which extracts information
of co-occurrence of taxons on databases and profiles. Using this information
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with a novel approach, MetaMetaMerge avoids false positives and keeps most
of the true identifications, exploring the complementarity of currently available
methods.

By running several tools, MetaMeta has an apparently prohibitive execution
time. In reality, the parallelization provided by Snakemake makes the pipeline
run in a reasonable time using most of the computational resources. That is pos-
sible by the way the rules are chained and executed among several cores, lasting
not more than the slowest tool plus pre- and post-processing time, which are
very small in comparison to the analysis time. In addition, sub-sampling allows
the reduction of input data and a high decrease of execution time with small if
any impact on the final result. That is viable due to redundant data contained
in many metagenomic samples as well as redundant execution by several tools
provided in the MetaMeta environment. However sub-sampling should be used
with caution, taking in consideration the coverage of low abundant organisms.

All tools presented here are available at the BioConda channel and can be in-
stalled with a single command, working out-of-the-box for several computer en-
vironments and avoiding conflicts and broken dependencies. MetaMeta can also
handle multiple large samples at the same time, with options to delete interme-
diate files and keep only necessary ones, being well suited to large scale projects.
It also reduces idle computational time by smartly parallelizing samples among
one or more tools (Additional file 1: Figures 10-12). The parallelization notice-
ably decreases the run time when computational power is available and manages
to serialize and control the run when access to computational power is limited.
Integration into HPC systems is also possible and we provide a pre-configured
file for queuing systems (e.g. slurm). As stated by Lee et al. [26], solid-state
drives accelerate the run time of many bioinformatics tools. Such drives were
used in the evaluations shown in this paper and are beneficial for the MetaMeta
pipeline.

MetaMeta makes it easier for the user to obtain more precise or sensitive
results by providing a single default parameter as well as advanced options for
more refined results. All other tools were used in default mode, meaning that
it is possible to obtain problem-centric optimized results only by changing the
way MetaMeta works. That facilitates and simplifies the task for researchers
that are in search for a specific goal.

MetaMeta supports strain level identification. Nevertheless all evaluations
were made at species level due to lack of support to strain identification in some
tools. Also the lack of standard was a limiting factor. Taxonomic IDs are no
longer assigned to strain levels [27] and tools output them in different ways.
With standard output definitions, the use of strain classification on the pipeline
is straight forward.

Related in parts, a method called WEVOTE was developed in parallel and
recently published [28] where five classification tools were used to generate a
merged taxonomic profile. Although the two methods present distinct ways of
achieving better taxonomic profiling, they are not built for the same use case.
WEVOTE relies on BLAST based tools and thereby is not suited for the large
scale WMS applications, since the dataset sizes practically prohibit analyses
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via BLAST based approaches. Differently, MetaMeta was built accounting for
high throughput data. Moreover, we supply an easy way to install tools and
MetaMeta provides a complete pipeline which can configure databases and run
classification tools with an integration module at the end, where WEVOTE
provides only the integration method. As a result a comparison among the
pipelines is hard to perform and interpret since they both use a different set of
tools and databases.

In conclusion, MetaMeta is an easy way to execute and generate improved
taxonomic profiles for WMS samples with multiple tool support. We believe
the method can be very useful for researchers that are dealing with multiple
metagenomic samples and want to standardize their analysis. The MetaMeta
pipeline was built in a way to facilitate the execution in many computational
environments using Snakemake and BioConda. That diminishes the burden of
installing and configuring multiple tools. The pipeline also gives control over
the storage of the results and has an easy set of parameters which makes it
possible to obtain more precise or sensitive results. MetaMeta was coded in a
standardized manner, allowing easy expansion to more tools, also collectively
in the MetaMeta git repository (https://github.com/pirovc/metameta). We
believe that the final profile could be even further improved with novel tools
configured into the pipeline.
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CAMI - critical assessment of metagenome interpretation
HMP - human microbiome project
HPC - high performance computing
WMS - whole metagenome shotgun

Ethics approval and consent to participate

This manuscript does not report data collected from humans or animals

Consent for publication

This manuscript does not contain any individual person’s data in any form

Availability of data and material

The software presented in this manuscript is available at: https://github.com/pirovc/metameta/
and https://github.com/pirovc/metametamerge/.
CAMI data sets are available at: http://data.cami-challenge.org/.
HMP data sets are avaiable at NCBI Sequence Read Archive: https://www.ncbi.nlm.nih.gov/sra

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2017. ; https://doi.org/10.1101/138578doi: bioRxiv preprint 

https://doi.org/10.1101/138578


with the following accession numbers: SRS013476, SRS014979, SRS015065,
SRS016018, SRS016267, SRS016989, SRS017191, SRS022071, SRS049712, SRS065504.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior (CAPES) - Ciencia sem Fronteiras [BEX 13472/13-5 to VCP]
and by the German Federal Ministry of Health [IIA5-2512-FSB-725 to BYR].

Author’s contributions

VCP and BYR conceived the project and designed the methods. VCP developed
the pipeline and MM led the sub-sampling analysis. VCP and BYR interpreted
the data. VCP drafted the manuscript with contributions by MM and BYR.
All authors read and approved the final manuscript.

Acknowledgements

We thank Enrico Seiler for proof-reading the manuscript and for technical sup-
port.

References

[1] Adam L Bazinet and Michael P Cummings. A comparative evaluation of
sequence classification programs. BMC Bioinformatics, 13(1):92, 2012.

[2] Pavlopoulos, Anastasis Oulas, Christina Pavloudi, Paraskevi Polymenakou,
Nikolas Papanikolaou, Georgios Kotoulas, Christos Arvanitidis, and Ioan-
nis Iliopoulos. Metagenomics: Tools and Insights for Analyzing Next-
Generation Sequencing Data Derived from Biodiversity Studies. Bioin-
formatics and Biology Insights, page 75, May 2015.

[3] Michael a. Peabody, Thea Van Rossum, Raymond Lo, and Fiona S. L.
Brinkman. Evaluation of shotgun metagenomics sequence classification
methods using in silico and in vitro simulated communities. BMC Bioin-
formatics, 16(1):363, dec 2015.

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2017. ; https://doi.org/10.1101/138578doi: bioRxiv preprint 

https://doi.org/10.1101/138578


[4] Stinus Lindgreen, Karen L. Adair, and Paul P. Gardner. An evaluation of
the accuracy and speed of metagenome analysis tools. Scientific Reports,
6:19233, jan 2016.
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[16] Peter Belmann, Johannes Dröge, Andreas Bremges, Alice C. McHardy,
Alexander Sczyrba, and Michael D. Barton. Bioboxes: standardised con-
tainers for interchangeable bioinformatics software. GigaScience, 4(1):47,
dec 2015.

[17] M. L. Zepeda Mendoza, T. Sicheritz-Ponten, and M. T. P. Gilbert. Environ-
mental genes and genomes: understanding the differences and challenges in
the approaches and software for their analyses. Briefings in Bioinformatics,
(November 2014):1–14, feb 2015.

[18] Rachid Ounit, Steve Wanamaker, Timothy J Close, and Stefano Lonardi.
CLARK: fast and accurate classification of metagenomic and genomic se-
quences using discriminative k-mers. BMC Genomics, 16(1):236, dec 2015.

[19] Vitor C. Piro, Martin S. Lindner, and Bernhard Y. Renard. DUDes: a top-
down taxonomic profiler for metagenomics. Bioinformatics, 32(15):2272–
2280, aug 2016.

[20] T. a. K. Freitas, P.-E. Li, M. B. Scholz, and P. S. G. Chain. Accurate read-
based metagenome characterization using a hierarchical suite of unique
signatures. Nucleic Acids Research, 43(10):e69–e69, may 2015.

[21] Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic
sequence classification using exact alignments. Genome biology, 15(3):R46,
mar 2014.

[22] Peter Menzel, Kim Lee Ng, and Anders Krogh. Fast and sensitive taxo-
nomic classification for metagenomics with Kaiju. Nature Communications,
7:11257, apr 2016.

[23] Shinichi Sunagawa, Daniel R Mende, Georg Zeller, Fernando Izquierdo-
Carrasco, Simon a Berger, Jens Roat Kultima, Luis Pedro Coelho, Mani-
mozhiyan Arumugam, Julien Tap, Henrik Bjørn Nielsen, Simon Rasmussen,
Søren Brunak, Oluf Pedersen, Francisco Guarner, Willem M de Vos, Jun
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Figures

Figure 1: MetaMeta Pipeline The MetaMeta Pipeline: one or more WMS
read samples and a configuration file are the input. The pipeline consists of
4 main modules: Database Generation (only on the first run), Pre-processing
(optional), Tool Execution and Integration. The output is a unified taxonomic
profile integrating the results from all configured tools for each sample, generated
by the MetaMetaMerge module.
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Figure 2: True and False Positives - CAMI high complexity set In green
(left y axis): True Positives. In red (right y axis): False Positives. Results at
species level. Each marker represents one out of five samples from the CAMI
high complexity set.

Table 1: Samples used in this study. * expected number of species from isolated
genomes from the gastrointestinal tract

Sets # Samples Total bases # species
CAMI Toy Low 1 14.8 Gbp 30

CAMI Toy Medium 4 31.3 Gbp 199
CAMI Toy High 5 74.5 Gbp 375

HMP Stool 10 102.2 Gbp 299*
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Figure 3: Precision and Sensitivity - CAMI high complexity set Dotted
black line marks the maximum possible sensitivity value (0.57) that could be
achieved with the given tools and databases. Results at species level. Each
marker represents one out of five samples from the CAMI high complexity set.
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Figure 4: L1 norm error Mean of the L1 norm measure at each taxonomic
level for five samples from the high complexity CAMI set.

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2017. ; https://doi.org/10.1101/138578doi: bioRxiv preprint 

https://doi.org/10.1101/138578


20406080100
Sub-sample size (%)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Se
ns

iti
vi

ty

0

60

120

180

240

300

360

Ru
n-

tim
e 

(m
in

ut
es

)

clark
dudes
gottcha
kaiju
kraken
motus
metametamerge
Run-time MetaMeta

Figure 5: Sub-sampling Sensitivity (left y axis) and run-time (right y axis)
at species level for one randomly selected CAMI high complexity sample. Each
sub-sample was executed five times. Lines represent the mean and the area
around it the maximum and minimum achieved values. Run-time stands for
the time to execute the MetaMeta pipeline. The evaluated sample sizes are:
100%, 50%, 25%, 16.6%, 10%, 5%, 1%. 16.6% is the exact division among
6 tools, using the the whole sample. Sub-samples above that value were taken
with replacement and below without replacement. The plot is limited to a value
of 0.57 (left y axis) that is the maximum possible sensitivity value that could
be achieved with the given tools and databases.
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Figure 6: True and False Positives - HMP stool samples In green (left y
axis): True Positives. In red (right y axis): False Positives. Results at species
level. Each marker represents one out of ten randomly selected stool samples
from the HMP.
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