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Abstract 

Rapid advances in massively parallel single cell RNA sequencing (scRNA-seq) is paving the 

way for high-resolution single cell profiling of biological samples. In most scRNA-seq studies, 

only a small fraction of the transcripts present in each cell are sequenced. The efficiency, that is, 

the proportion of transcripts in the cell that are sequenced, can be especially low in highly 

parallelized experiments where the number of reads allocated for each cell is small. This leads 

to unreliable quantification of lowly and moderately expressed genes, resulting in extremely 

sparse data and hindering downstream analysis. To address this challenge, we introduce 

SAVER (Single-cell Analysis Via Expression Recovery), an expression recovery method for 

scRNA-seq that borrows information across genes and cells to impute the zeros as well as to 

improve the expression estimates for all genes. We show, by comparison to RNA fluorescence 

in situ hybridization (FISH) and by data down-sampling experiments, that SAVER reliably 

recovers cell-specific gene expression concentrations, cross-cell gene expression distributions, 

and gene-to-gene and cell-to-cell correlations. This improves the power and accuracy of any 

downstream analysis involving genes with low to moderate expression. 

 

Introduction 

A primary challenge in the analysis of scRNA-seq is the low efficiency affecting each cell, which 

leads to a large proportion of genes, often exceeding 90%, with zero or low count. Although 

many of the observed zero counts reflect true zero expression, a considerable fraction is due to 

technical factors such as capture and sequencing efficiency. The overall efficiency of scRNA-

seq protocols can vary between <1% to >60% across cells, depending on the method used1. 

Existing studies have adopted varying approaches to mitigate the noise caused by low 

efficiency. Low-abundance genes and low-coverage cells are commonly removed prior to 

downstream analysis. This is not ideal, as low abundance genes may be of biological 

importance and stringent filtering of cells exacerbates the biased sampling of the original cell 

population. In differential expression and cell type classification, transcripts expressed in a cell 

but not detected due to technical limitations, also known as dropouts, are sometimes accounted 

for by a zero-inflated model2–4. Other methods try to impute the zeros using bulk RNA-seq data5 

or through gene-pair relationships6. However, the zero-inflation models do not explicitly recover 
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low-abundance genes. Imputation methods focus on imputing genes with zero counts, but 

ignore genes with low counts, which are also unreliably measured. Imputation based on bulk 

RNA-seq data fail to capture the cell-to-cell stochasticity in gene expression, which has been 

shown to lead to large variations in true expression, even across cells of the same type7,8 or of 

the same cell line9,10. 

The observed variation in scRNA-seq data is due to both biological and technical factors. 

Biologically, cells vary in type, size, and expression program. Technically, cDNA library 

construction from the low amount of RNA in each cell inevitably leads to the loss of some 

transcripts, the amplification of this library introduces more random variation, and the ensuing 

sequencing step can lead to further loss if sequencing depth is low. Thus, the observed read 

counts are a poor representation of the true expression.  

Here, we propose SAVER to recover the true expression level of each gene in each cell, 

removing technical variation while retaining biological variation across cells. SAVER starts with 

gene count data obtained from UMI-based experiments and computes, for each gene in each 

cell, an estimate of the true expression as well as a posterior distribution quantifying the 

uncertainty in this estimate. We demonstrate through down-sampling experiments that the 

observed expression is distorted by efficiency loss, but that the true expression profiles can be 

recovered using SAVER. We then evaluate the performance of SAVER through comparisons of 

Drop-seq and RNA FISH on a melanoma cell line11. Finally, we apply SAVER to an embryonic 

stem cell (ESC) differentiation study12 to recover known gene-to-gene relationships. 

 

Results 

Overview of SAVER model and interpretation 

 

SAVER is based on adaptive shrinkage to a multi-gene prediction model (Fig. 1A). Let 𝑌𝑐𝑔 

denote the observed UMI count of gene 𝑔 on cell 𝑐. We model 𝑌𝑐𝑔 as  

𝑌𝑐𝑔 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑠𝑐𝜆𝑐𝑔), 

where 𝜆𝑐𝑔 is the true expression level of gene 𝑔 in cell 𝑐, and 𝑠𝑐 is a cell-specific size factor 

which will be described below. The Poisson distribution after controlling for biological variation 

between cells has been shown previously by bulk-RNA splitting experiments to be a reasonable 

approximation for observed gene counts12,13. Our goal is to recover 𝜆𝑐𝑔 with the help of a 

prediction 𝜇𝑐𝑔 based on the observed expression of a set of informative genes 𝑆𝑔 in the same 

cell (Methods). The accuracy of 𝜇𝑐𝑔 in predicting 𝜆𝑐𝑔 differs across genes — genes that play 

central roles in pathways are easier to predict, whereas genes that are not coordinated with 

other genes are harder to predict. To account for prediction uncertainty, we assume for 𝜆𝑐𝑔 a 

gamma prior with mean set to the prediction 𝜇𝑐𝑔 and with dispersion parameter 𝜙𝑔. The 

dispersion parameter quantifies how well the expression level of gene 𝑔 is predicted by 𝜇𝑐𝑔. 

After maximum-likelihood estimation of 𝜙𝑔 and reparameterization, let �̂�𝑐𝑔 and �̂�𝑐𝑔 be the 

estimated shape and rate parameters, respectively, for the prior gamma distribution. Then, the  
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posterior distribution of 𝜆𝑐𝑔 is also gamma distributed with shape parameter 𝑌𝑐𝑔 +  �̂�𝑐𝑔 and rate 

parameter 𝑠𝑐 + �̂�𝑐𝑔. The SAVER recovered gene expression is the posterior mean, 

�̂�𝑐𝑔 =
𝑠𝑐

𝑠𝑐 + �̂�𝑐𝑔

∙
𝑌𝑐𝑔

𝑠𝑐
+  

�̂�𝑐𝑔

𝑠𝑐 + �̂�𝑐𝑔

∙  𝜇𝑐𝑔. 

As seen from the above equation, the recovered expression �̂�𝑐𝑔 is a weighted average of the 

normalized observed counts 𝑌𝑐𝑔/𝑠𝑐 and the prediction 𝜇𝑐𝑔. The weights are a function of the size 

factor 𝑠𝑐 and, through the �̂�𝑐𝑔 term , the gene’s predictability �̂�𝑔 and its prediction 𝜇𝑐𝑔. Genes for 

which the prediction is more trustworthy (small �̂�𝑔) have larger weight on the prediction 𝜇𝑐𝑔. 

Genes with higher expression have larger weight on the observed counts and rely less on the 

prediction. Cells with higher coverage have more reliable observed counts and also rely less on 

the prediction. Fig. 1B shows example scenarios. 

Interpretation of 𝜆𝑐𝑔 depends on how the size factor 𝑠𝑐 is defined and computed. There are two 

scenarios. In what is perhaps the simpler scenario, assume that the efficiency loss, that is, the 

proportion of original transcripts that are sequenced and observed, is known or can be 

estimated through external spike-ins. If 𝑠𝑐 were defined as the cell-specific efficiency loss, then 
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𝜆𝑐𝑔 would represent the absolute count of gene 𝑔 in cell 𝑐. The second scenario assumes that 

the efficiency loss is not known, in which case 𝑠𝑐 can be set to a normalization factor such as 

library size or scRNA-seq normalization factors14,15. In this case, 𝜆𝑐𝑔 represents a gene 

concentration or relative expression. Which scenario applies depends on the objective of the 

study and the availability and quality of spike-ins.  

It is important to note that SAVER outputs the posterior distribution for 𝜆𝑐𝑔, not just its posterior 

mean. The posterior distribution quantifies the uncertainty in our estimate of 𝜆𝑐𝑔, and it is crucial 

to incorporate this uncertainty in downstream analyses. We demonstrate the use of this 

posterior distribution in two ways. First, to recover the cross-cell expression distribution of a 

given gene, we sample from the posterior of 𝜆𝑐𝑔 for each cell instead of simply using the 

posterior mean �̂�𝑐𝑔. Second, in estimating gene-to-gene correlations, the sample correlation of 

the recovered estimates �̂�𝑐𝑔 tends to overestimate the true values. We developed an adjusted 

measure of correlation which takes into account the uncertainty in 𝜆𝑐𝑔 (see Methods). 

SAVER recovers cell-specific gene expression values 

We start with a data down-sampling experiment using the mouse brain scRNA-seq data from 

Zeisel et al.16, where we selected a subset of 3,529 highly expressed genes and 1,799 high 

coverage cells to create a high quality reference dataset. We treat this dataset as the proxy for 

true expression 𝜆𝑐𝑔. Then, we down-sampled gene counts from this reference dataset at three 

mean efficiency levels — 25%, 10%, and 5% — to create three observed datasets (Fig. 2A). 

The reference dataset contains roughly 25% zero counts, while the 25%, 10%, and 5% 

observed datasets contain roughly 60%, 75%, and 85% zero counts respectively. The down-

sampled datasets are analyzed using SAVER and by other quantification methods: library size 

normalized observed counts, the predictions 𝜇𝑐𝑔, K-nearest neighbor imputation (KNN)17, 

singular value decomposition matrix completion (SVD)18, and random forest imputation (RF)19. 

Using the predictions directly as the recovered values is similar in concept to the strategy used 

by Satija et al.20 for spatial reconstruction, although a linear noise model was used instead of a 

Poisson model for counts. The last three are established missing data imputation algorithms 

that have been applied to gene expression microarray data21. They were applied to the 

observed datasets treating all zeros as missing data. 

First, we considered the recovery accuracy of each gene’s expression pattern across cells. For 

each gene 𝑔, under algorithm 𝑎, we computed the Pearson’s correlation coefficient (𝜌𝑔
𝑎) of its 

recovered expression across cells with the corresponding values in the library size normalized 

reference dataset (Fig. 2A). The distribution of 𝜌𝑔
𝑎 across genes is compared across the three 

down-sampled datasets and the six algorithms (Fig. 2B left, upper). There is a substantial 

decrease in correlation between the observed data and the reference data as efficiency 

decreases. SAVER considerably improves the overall correlation with the reference dataset at 

each efficiency level, outperforming the other algorithms. We also wanted to measure the 

percent improvement in correlation for SAVER and other algorithms over using simply the 

normalized observed counts across genes (Fig. 2B left, lower). We see that for the majority of 

genes, SAVER has improved correlation with the reference over the observed, with 

improvements reaching up to 50%. The imputation algorithms KNN, SVD, and RF, all perform 

worse than using the observed data for the majority of genes. This is not surprising as some of 

the zeros are true zeros, and eliminating them from the analysis leads to biased estimation.  
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Importantly, SAVER outperforms simply using the predictions, establishing that SAVER’s 

adaptive weighting is a crucial and effective step. 

Next, we considered the accuracy in the recovery of each cell’s transcriptome as measured by 

the Pearson’s correlation coefficient (𝜌𝑐
𝑎) of the cell’s recovered gene concentrations with their 

corresponding values in the library size normalized reference dataset (Fig. 2A). Once again, we 

see that efficiency loss decreases correlation between the observed data and the reference 
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data at the cell level. SAVER improves the correlation of all cells to their reference values, 

showing even more substantial gains than at the gene level. Existing imputation algorithms, 

especially SVD, perform poorly. We believe this is due to the low-dimensional linear 

representation assumed by SVD, which is too idealistic for scRNA-seq data.  

It is interesting to note in the gene-wise analysis that SAVER performs much better than simply 

using the prediction at 25% efficiency, but only slightly better at 5% efficiency. This is due to 

SAVER’s adaptive weighting of the observed count versus the prediction to essentially only use 

the prediction when the prediction is trustworthy and the observed counts are not trustworthy. At 

5% efficiency, the observed counts are so low that for most genes, SAVER is relying heavily on 

the predictions, hence the similarity in their performance.  

SAVER improves the estimation of gene-to-gene and cell-to-cell relationships 

Many downstream analyses, such as gene network analysis or cell type clustering, depend on 

faithful recovery of pairwise gene-to-gene or cell-to-cell relationships. To evaluate the effect of 

efficiency loss on these relationships, we computed gene-gene and cell-cell correlation 

matrices, and then evaluated the distance between the correlation matrices computed using the 

recovered expression and those computed using the normalized reference dataset (Fig. 2C). In 

the case of SAVER, we first calculated the correlation matrices on the SAVER estimates �̂�𝑐𝑔, 

which was then scaled by a correlation adjustment factor to account for the uncertainty in �̂�𝑐𝑔 

(see Methods). As expected, both the observed gene-to-gene and cell-to-cell correlation 

matrices stray farther from their reference values as efficiency decreases. However, SAVER is 

able to recover most of the correlation structure in the reference datasets. In addition, all the 

three imputation algorithms destroy most gene-to-gene correlations. One interesting observation 

is that the difference with the reference is almost negligible for cell-to-cell correlations. Even at a 

5% efficiency, the cell-to-cell correlation matrix still resembles the original correlation matrix. 

This is due to the fact that cell-to-cell correlations are driven by the highly expressed genes in 

each cell, which are not severely affected by low efficiency. 

SAVER improves the power of differential expression analysis while controlling FDR 

One of the main goals of scRNA-seq is differential expression in comparing gene expression 

profiles between various conditions or cell types. On the same reference and down-sampled 

datasets created above, we performed differential expression analysis between two subclasses 

of cells — 351 CA1Pyr1 cells and 389 CA1Pyr2 cells — identified by Zeisel et al. using a 

biclustering algorithm. We compared the performance of the following differential expression 

methods under a FDR of 0.01: Wilcoxon rank sum test using the SAVER recovered expression 

counts �̂�𝑐𝑔, Wilcoxon rank sum test on the library size normalized observed counts, MAST3, 

scDD22, and SCDE2 (Fig. 2D left). The Wilcoxon rank sum test detects shifts in distribution, 

SCDE detects changes in means, MAST detects changes in means and zero proportions, and 

scDD detects differential distribution. We see that, as expected, the number of significant genes 

detected by each method decreases as efficiency decreases. The Wilcoxon test on the 

observed, MAST, and scDD perform similarly, detecting almost 3,000 genes in the reference 

dataset but less than 1,000 in the 5% efficiency dataset. SCDE detects fewer genes, but 

decreases at a similar rate as efficiency decreases. The Wilcoxon test on the SAVER estimates 

is able to detect 3,224 genes in the reference dataset, while maintaining similar numbers as 

efficiency decreases, with 2,579 genes detected at the 5% efficiency level (Supp. Table 1).  
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To examine whether FDR is controlled at the desired 0.01 level, we permuted the cell labels and 

quantified the number of rejections using each method for the permutated data (see Methods). 

All methods except SCDE control FDR at the approximate 0.01 level (Fig. 2D right). Thus, using 

a Wilcoxon test with SAVER estimates detects the most genes and is robust to efficiency loss, 

all while controlling FDR. 

Using RNA FISH as gold standard, SAVER recovers gene expression distributions 

SAVER is then evaluated on data from Torre and Dueck et al.11, where Drop-seq and RNA 

FISH are applied to the same melanoma cell line. After filtering, 8,498 cells and 12,241 genes 

were kept for analysis from the Drop-seq experiment, with a median of 1,135 UMI counts per 

cell. Sixteen of these genes, including resistance markers and housekeeping genes, were 

profiled using RNA FISH across 7,000-88,000 cells, the exact number of cells depend on the 

gene. We applied SAVER to the sixteen genes in the Drop-seq dataset to obtain their SAVER 

estimates and posterior distributions. Counts in both FISH and Drop-seq were normalized by 

each cell’s GAPDH expression to ensure comparability.  

Torre and Dueck et al. demonstrated that while mean gene expression shows adequate 

correlation with the FISH counterpart, more subtle features of each gene’s cross-cell expression 

distribution require stringent data filtering to include only cells with high transcriptome coverage. 

For example, one informative feature is Gini coefficient, which quantifies the inequity of 

expression across cells of a particular gene and is useful for identifying marker genes for rare 

cell types. We calculated Gini coefficients in the FISH, Drop-seq, and SAVER datasets for each 

of the remaining fifteen genes, removing GAPDH since it was used for normalization (Fig. 3A). 

Gini coefficients computed using SAVER recovered expression match extremely well with those 

computed on the FISH data. In comparison, Gini coefficients computed on the original Drop-seq 

data show substantial positive bias, in concordance with results of Torre and Dueck et al. If we 

were to use the filter, proposed by Torre and Dueck et al., of removing cells with less than 2,000 

genes detected, then 87% of the cells would have to be removed, leaving 1,135 of the original 

8,640 cells for analysis. In comparison, SAVER’s analysis used 8,498 of the original 8,640 cells, 

allowing for more efficient use of the data and a more complete sampling of the original cell 

population, which is especially important for rare cell analysis. In this analysis, we assumed no 

knowledge of the efficiency of the Drop-seq experiment. 

Another way to compare FISH and Drop-seq is simply to overlay, for each gene, its cross-cell 

expression distribution obtained by each method. Overlaying the distributions requires 

knowledge of the relative efficiency between the two technologies. Thus, for each gene, we 

computed its average relative efficiency as its mean Drop-seq count divided by its mean FISH 

count. Then, each gene’s Drop-seq counts were scaled by its average relative efficiency to 

produce the Drop-seq raw distributions, which were then normalized by GAPDH. Similarly, for 

each gene, we sampled from its efficiency-adjusted SAVER posterior distribution for each cell, 

normalized by that cell’s GAPDH expression, and aggregated across cells to get the SAVER 

recovered distribution (see Methods). We then compared these distributions to their FISH 

counterpart via the Kolmogorov-Smirnov (KS) statistic (Fig. 3B), which reveal that the SAVER 

recovered distributions are much closer to their FISH counterpart, as compared to those derived 

from the original Drop-seq data. We can also evaluate accuracy by simply plotting, for each 

gene, its kernel smoothed densities obtained from FISH, original Drop-seq, and SAVER 

recovery (LMNA and CCNA2 shown in Fig. 3C and all genes shown in Supp. Fig. 1). SAVER 

substantially improves adherence to the FISH distributions for almost all genes, except for C1S.  
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The raw Drop-seq distributions, even after scaling by relative efficiency, do not resemble their 

FISH counterparts. This is because Drop-seq data, comprised mostly of very low counts, is 

highly discrete, and thus scaling by relative efficiency still results in a highly discrete distribution 

that is a poor estimate of the true distribution. SAVER, on the other hand, recovers continuous 

values that matches the true values after scaling. 

SAVER recovers gene-to-gene relationships that are validated by RNA FISH 

The data down-sampling experiments already suggest that SAVER can improve the inference of 

gene-to-gene and cell-to-cell relationships. We further evaluate the recovery of gene-to-gene  
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relationships on the melanoma data, using FISH as the gold standard. For each pair of genes, 

we computed their correlation for the unnormalized FISH, Drop-seq, and SAVER, making the 

pre-described correlation adjustment in SAVER (Fig. 3D). Due to low coverage, the correlations 

computed from the original Drop-seq counts are dampened compared to their FISH 

counterparts. Correlations computed by SAVER are much closer to their corresponding FISH 

values. Consider a specific pair of housekeeping genes, BABAM1 and LMNA (Fig. 3E). For this 

pair, the correlation is 0.67 in FISH, 0.19 in Drop-seq, and 0.69 in SAVER. The SAVER 

estimates �̂�𝑐𝑔 are shown as black points while their posterior distributions, quantifying 

uncertainty, are shown as the blue gradient.  

Illustration of SAVER in an ESC differentiation study 

To further demonstrate the performance of SAVER, we analyzed the inDrop differentiating 

mouse embryonic stem cell dataset from Klein et al.12. The differentiating population was 

profiled at four time points: before LIF withdrawal (day 0), and at 2, 4, and 7 days post 

withdrawal. We focused on comparing gene relationships between known pluripotency factors 

and differentiation markers at day 0 and day 7 and evaluating how these relationships are 

recovered by SAVER. For example, consider the relationship between Sox2, a pluripotency 

factor, and Krt8, an epiblast differentiation marker in the observed counts and the SAVER 

estimates (Fig. 4). In the observed counts, there is no marked change in correlation between 

day 0 and day 7. After SAVER recovery, we see the correlation decrease from -0.09 to -0.34. In 

addition, in the SAVER day 7 plot, we see a clear trajectory relating decrease in Sox2 to 

increase in Krt8 as cells acquire epiblast fate. Based on SAVER’s day 7 plot, most cells are 

differentiated and have low Sox2, but a few cells remain undifferentiated with high Sox2 and low 
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Krt8. This pattern is almost indiscernible in the observed day 7 plot due to the large number of 

cells with zero Sox2 expression. Similar observations were made for other gene pairs (Supp. 

Fig. 2). 

 

Discussion 

We have described SAVER, an expression recovery method for scRNA-seq. SAVER aims to 

recover true gene expression patterns by removing technical variation while retaining biological 

variation. SAVER uses the observed gene counts to form a prediction model for each gene and 

then uses a weighted average of the observed count and the prediction to estimate the true 

expression of the gene. The weights balance our confidence in the prediction with our 

confidence in the observed counts. In addition, SAVER provides a posterior distribution which 

reflects the uncertainty in the SAVER estimate and which can be sampled from for distributional 

analysis. 

The down-sampling experiments and the comparisons between Drop-seq and FISH show that 

true expression patterns across genes and across cells are distorted by efficiency loss. This 

results in poor performance in downstream analyses such as detecting differentially expressed 

genes and evaluating gene expression distributions. In addition, imputation methods such as 

KNN, SVD matrix completion, and random forest imputation perform poorly in recovering the 

true expression. This is due to the extreme sparsity in the datasets and the fact that zeros do 

not occur at random, violating the missing-at-random assumptions of these imputation methods. 

In addition, the existing methods all inevitably remove some of the natural biological variation 

from the data — SVD by assuming a low-dimensional linear approximation and KNN by 

averaging across “similar” cells. Such aggressive approaches may be desirable for some 

analysis, but without limiting downstream analysis goals, SAVER attempts to retain cell-to-cell 

biological variation. This motivates the important predictability parameter 𝜙𝑔 within SAVER, 

which guards against over-smoothing and maintains natural biological variation.  

We believe the closest method to SAVER in published studies of scRNA-seq data is Satija et 

al.20, which forms LASSO-based linear predictions of marker genes to stabilize their estimates 

as part of the Seurat pipeline. Improving on Satija et al., SAVER uses a Poisson model with cell-

specific size factors, and, more importantly, derives an adaptive-weighting scheme to balance 

prediction accuracy versus gene- and cell-specific coverage in forming the final estimate of 

expression. Our benchmark results show that this adaptive-weighting is crucial for accurate 

gene expression recovery, leading to substantial improvement of SAVER over simply using the 

initial predictions.  

When the efficiency of each cell is unknown, SAVER recovers gene expression concentrations, 

which is always a continuous value. Converting concentrations to discrete expression counts 

requires knowledge of the efficiency, or equivalently, of the total RNA volume. For a gene with 

extremely low SAVER recovered concentration, deciding whether its true absolute expression is 

zero or an extremely low count requires knowledge of the total RNA volume. If the total RNA 

volume can be estimated, for example through spike-ins, then the recovered concentration can 

be scaled by this value, and rounded to the nearest integer to yield absolute counts. 

Alternatively, sampling from the scaled posterior gamma distribution followed by binning gives 

posterior absolute count probabilities for each gene.  
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Our analysis of the Drop-seq data with FISH validation demonstrates SAVER’s ability to recover 

important features of gene expression distributions such as the Gini coefficient without 

knowledge of efficiency. Provided with an estimate of efficiency, SAVER is able to precisely 

recover not only the GINI coefficient but also the entire expression distribution. By FISH 

validation in Torre and Dueck et al. data, and by comparing to well-known relationships in the 

Klein et al. inDrop data, we also demonstrated that SAVER is able to recover true gene-to-gene 

relationships, while performing minimal pre-filtering of cells. Open-source software for SAVER 

can be downloaded from: https://github.com/mohuangx/SAVER. 
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Methods 

Datasets and pre-processing 

The scRNA-seq mouse brain cell data used for simulations was obtained from Zeisel et al.16. 

The dataset contains UMI-labeled reads of 19,972 genes from 3,005 cells from various regions 

of the mouse brain. To create the true expression dataset, we selected a subset of genes that 

have non-zero expression in more than 40% of cells and a subset of cells that have a library 

size of over 10,000 UMI reads. We ended up with the reference dataset containing 3,529 genes 

and 1,799 cells. 

The single molecule RNA FISH and UMI-labeled Drop-seq datasets of a melanoma cell line 

were acquired from Torre and Dueck et al.11. Sets of various genes were profiled across 6 

batches of cells in the FISH experiment, totaling 88,040 cells and 26 genes. GAPDH expression 

was measured in all 88,040 cells. The Drop-seq data consisted of 32,287 genes and 8,640 

cells. Genes with mean expression less than 0.01 and cells with library size less than 500 or 

greater than 20,000 were filtered out. 12,241 genes and 8,498 cells remained after filtering. Out 

of the filtered genes, 16 were profiled in the FISH experiment. 

The scRNA-seq mouse embryonic stem (ES) cell data was obtained from Klein et al.12. Briefly, 

UMI-labeled reads for 24,175 genes were obtained at four time points: 935 ES cells before 

leukemia inhibitory factor (LIF) withdrawal, 303 ES cells 2 days post-LIF withdrawal, 683 ES 

cells 4 days post-LIF withdrawal, and 798 ES cells 7 days post-LIF withdrawal. The day 0 and 

day 7 datasets were used in the gene correlation analysis. 
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Gene expression model 

Let 𝑌𝑐𝑔 be the observed read count of gene 𝑔 in cell 𝑐. We model 𝑌𝑐𝑔 as a negative binomial 

random variable through the following Poisson-Gamma mixture 

𝑌𝑐𝑔 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑠𝑐𝜆𝑐𝑔) 

 𝜆𝑐𝑔 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑐𝑔, 𝛽𝑐𝑔) 

where 𝜆𝑐𝑔 represents the normalized true expression. A gamma prior is placed on 𝜆𝑐𝑔 to 

account for our uncertainty about its value. The shape parameter 𝛼𝑐𝑔 and the rate 

parameter 𝛽𝑐𝑔 are reparameterizations of 𝜇𝑐𝑔 and 𝜙𝑔, see details in Supplementary Materials. 𝑠𝑐 

represents the size normalization factor. In the following analyses, we use a library size 

normalization defined as the library size divided by the mean library size across cells. SAVER 

can also accommodate pre-normalized data. 

SAVER procedure 

Our goal is to derive the posterior gamma distribution for 𝜆𝑐𝑔 given the observed counts 𝑌𝑐𝑔 and 

use the posterior mean as the normalized SAVER estimate �̂�𝑐𝑔. The variance in the posterior 

distribution can be thought of as a measure of uncertainty in the SAVER estimate.  

As stated before, we let the prior mean 𝜇𝑐𝑔 be a prediction for gene 𝑔 derived from the 

expression of other genes in the same cell. Specifically, we use the log normalized counts of all 

other genes 𝑔′ as predictors in a Poisson generalized linear regression model with a log link 

function, 

log 𝜇𝑐𝑔 =  𝛾𝑔0 +  ∑ 𝛾𝑔𝑔′ log [
𝑌𝑐𝑔′ + 1

𝑠𝑐
]

𝑔′≠𝑔

. 

Since the number of genes often far exceeds the number of cells, a penalized Poisson LASSO 

regression is used to shrink most of the regression coefficients to zero. We believe that this 

accurately reflects true biology since genes often only interact with a few other genes. The 

regression is fit using the glmnet R package version 2.0-523. The model with the lowest five-fold 

cross-validation error is selected. We then use the selected model to get our predictions 𝜇𝑐𝑔 for 

each gene in each cell. 

The next step is to quantify the reliability of the prediction 𝜇𝑐𝑔 using a dispersion parameter 𝜙𝑔. 

We consider three models for 𝜙𝑔, depending on what we assume to be constant for gene 

𝑔 across cells: constant coefficient of variation, constant Fano factor, or constant variance. A 

constant coefficient of variation corresponds to a constant shape parameter 𝛼𝑐𝑔 = 𝛼𝑐 in the 

gamma distribution and a constant Fano factor corresponds to a constant rate parameter 𝛽𝑐𝑔 =

𝛽𝑐 (see Theory Supplement). To determine which model for 𝜙𝑔 is the most appropriate, we 

calculate the marginal likelihood across cells under each definition and select the one with the 

highest maximum likelihood, and then set �̂�𝑔 to the maximum likelihood estimate.  
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Now that we have both 𝜇𝑐𝑔 and �̂�𝑔, we can reparametrize, based on the chosen model for 𝜙𝑔, 

into the usual shape and rate parameters of the gamma distribution, �̂�𝑐𝑔 and �̂�𝑐𝑔. The posterior 

distribution is then 

𝜆𝑐𝑔| 𝑌𝑐𝑔, �̂�𝑐𝑔, �̂�𝑐𝑔 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑌𝑐𝑔 + �̂�𝑐𝑔, 𝑠𝑐 +  �̂�𝑐𝑔) 

The SAVER estimate �̂�𝑐𝑔 is the posterior mean: 

�̂�𝑐𝑔 =  
𝑌𝑐𝑔 +  �̂�𝑐𝑔

𝑠𝑐 + �̂�𝑐𝑔

=  
𝑠𝑐

𝑠𝑐 + �̂�𝑐𝑔

 
𝑌𝑐𝑔

𝑠𝑐
+  

�̂�𝑐𝑔

𝑠𝑐 + �̂�𝑐𝑔

 �̂�𝑐𝑔. 

Estimating 𝜙𝑔 and computing the posterior distribution is quite fast computationally. The Klein 

day 0 dataset with 24,175 genes and 935 cells took under 5 minutes total. However, preforming 

the prediction with the LASSO regression is computationally intensive. For the Klein day 0 

dataset, the LASSO regression took on average about 15 seconds per gene. However, this 

prediction step can be extensively parallelized.  

Calculating correlations with SAVER 

The SAVER estimate �̂�𝑐𝑔 cannot be directly used to calculate gene-to-gene or cell-to-cell 

correlations since we need to take into account its posterior uncertainty. Let the correlation 

between gene 𝑔 and gene 𝑔′ be represented by 𝜌𝑔𝑔′ = 𝐶𝑜𝑟(𝝀𝑔, 𝝀𝑔′), where 𝝀𝑔 and 𝝀𝑔′ are the 

true expression vectors across cells. We can estimate 𝜌𝑔𝑔′ by calculating the sample correlation 

of the SAVER estimate �̂�𝑐𝑔 and scaling by an adjustment factor, which takes into account the 

uncertainty of the estimate: 

�̂�𝑔𝑔′ =  𝐶𝑜𝑟(�̂�𝑔, �̂�𝑔′) ×
√𝑉𝑎𝑟(�̂�𝑔)√𝑉𝑎𝑟(�̂�𝑔′)

√𝑉𝑎𝑟(�̂�𝑔) + 𝐸[𝑉𝑎𝑟(𝝀𝑔|𝒁)]√𝑉𝑎𝑟(�̂�𝑔′) + 𝐸[𝑉𝑎𝑟(𝝀𝑔′|𝒁)]

 

where 𝑉𝑎𝑟(𝝀𝑔|𝒁) is a vector of posterior variances. The same adjustment can be applied to cell-

to-cell correlations. See Supplementary Materials for derivation of this adjustment factor. 

Distribution recovery 

SAVER can be used to recover the distribution of either the absolute molecules counts or 

relative expression. Recovery of the absolute counts requires knowledge of the efficiency loss 

through ERCC spike-ins or some other control. To recover the absolute counts, we sample each 

cell from a Poisson-Gamma mixture distribution (i.e. negative binomial), where the gamma is 

the SAVER posterior distribution scaled by the efficiency. If the efficiency is not known or 

relative expression is desired, we sample each cell from the posterior gamma distribution. 

Down-sampling datasets 

Using the Zeisel et al. reference dataset as the true transcript count 𝜆𝑐𝑔, we generated down-

sampled observed datasets by drawing from a Poisson distribution with mean parameter 𝜏𝑐𝜆𝑐𝑔, 

where 𝜏𝑐 is the cell-specific efficiency loss. To mimic variation in efficiency across cells, we 

sampled 𝜏𝑐 as follows, 
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1. 25% efficiency: 𝜏𝑐 ∼ 𝐺𝑎𝑚𝑚𝑎(10, 40) 

2. 10% efficiency: 𝜏𝑐  ~ 𝐺𝑎𝑚𝑚𝑎(10, 100) 

3. 5% efficiency: 𝜏𝑐  ~ 𝐺𝑎𝑚𝑚𝑎(10, 200) 

Implementation of methods on down-sampled data 

We compared the performance of SAVER against using the library-size normalized observed 

dataset, the regression prediction 𝜇𝑐𝑔, K-nearest neighbors imputation, singular value 

decomposition imputation, and random forest imputation in recovering the expression profile of 

the library-size normalized reference dataset. The imputation techniques were performed on the 

library size normalized observed data treating zeros as missing. KNN imputation was performed 

using the impute.knn function in the impute R package version 1.48.0, with parameters rowmax 

= 1, colmax = 1, and maxp = p. SVD imputation was performed using the soft.Impute function in 

the softImpute R package version 1.4, with parameters rank.max = 50, lambda = 30, and type = 

“svd”. Random forest imputation was performed with the missForest R package version 1.4 with 

default parameters. 

Gene-to-gene and cell-to-cell correlation analysis 

Pairwise Pearson correlations were calculated for each library size normalized dataset and 

imputed dataset. Since the SAVER estimates have uncertainty, we want to calculate the 

correlation based on 𝜆𝑐𝑔. Correlations were first calculated using the SAVER recovered 

estimates �̂�𝑐𝑔 and scaled by the correlation adjustment factor described above.  

The correlation matrix distance (CMD) is a measure of the distance between two correlation 

matrices with range from 0 (equal) to 1 (maximum difference)24. The CMD for two correlation 

matrices 𝑹1, 𝑹2 is defined as 

𝑑(𝑹1, 𝑹2) = 1 −  
tr(𝑹1𝑹2)

‖𝑹1‖𝑓‖𝑹2‖𝑓
. 

Differential expression analysis of simulated datasets 

Differential expression analysis between the CA1Pyr1 and CA1Pyr2 cells for the truth and 

down-sampled datasets were performed using a Wilcoxon rank sum test on the SAVER 

estimates, a Wilcoxon rank sum test on the observed expression, MAST, scDD, and SCDE. 

FDR control was set to 0.01 and no fold change cutoff was used. MAST version 1.0.5 was run 

on the library size normalized expression counts with the condition and scaled cellular detection 

rate as the Hurdle model input. The combined Hurdle test results were used. scDD version 1.2.0 

was run on the library size normalized expression counts with default settings. Both the nonzero 

and the zero test results were used. SCDE version 2.2.0 was run on unnormalized expression 

counts with default parameters, except number of randomizations was set to 100. The p-value 

was calculated according to a two-sided test on the corrected Z-score.  

To calculate the estimated false discovery rate, we first performed a permutation of the cell 

labels and determined the number of genes called as differentially expressed according to the 

p-value threshold defined for the unpermuted data. This number divided by the number of 

differentially expressed genes in the unpermutated data is the false discovery rate for that one 
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permutation. The final estimated false discovery rate is the average of the false discovery rates 

over 20 permutations. 

RNA FISH and Drop-seq analysis 

SAVER was performed on the Drop-seq dataset for the 16 genes that overlapped between 

Drop-seq and FISH. Since the FISH and Drop-seq experiments have different technical biases, 

we normalized by a GAPDH factor for each cell, defined as the expression of GAPDH divided 

by the mean of GAPDH across cells in each experiment. Since some cells have very low or very 

high GAPDH counts, we filtered out cells in the bottom and top 10th percentile. For the Gini 

coefficient analysis where we assume we do not know the efficiency, we sampled the SAVER 

dataset from the SAVER posterior gamma distributions. We then filtered out cells in the bottom 

and top 10th percentile of GAPDH expression in the sampled SAVER dataset and normalized 

the remaining by the GAPDH factor. For the distribution recovery, we calculated the efficiency 

loss for each gene as the mean Drop-seq expression divided by the mean SAVER expression. 

We scaled the pre-normalized Drop-seq dataset by the efficiency loss, filtered by GAPDH, and 

then normalized by the GAPDH factor. We scaled the SAVER posterior distributions by the 

efficiency loss and sampled from the Poisson-Gamma mixture to get the absolute counts as 

described above. We then performed the filtering and normalization by the GAPDH factor on the 

sampled SAVER dataset. 

Correlation analysis was performed for pairs of genes in unnormalized FISH, Drop-seq, SAVER. 

Since the SAVER estimates were returned as library size normalized values, we rescaled by the 

library size to get the unnormalized values and used those to calculate the adjusted gene-to-

gene correlations described above. 
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