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Abstract 24 

Understanding patterns of species occurrence and the processes underlying these patterns is 25 

fundamental to the study of ecology. One of the more commonly used approaches to investigate 26 

species occurrence patterns is occupancy modeling, which can account for imperfect detection of 27 

a species during surveys. In recent years, there has been a proliferation of Bayesian modeling in 28 

ecology, which includes fitting Bayesian occupancy models. The Bayesian framework is 29 

appealing to ecologists for many reasons, including the ability to incorporate prior information 30 

through the specification of prior distributions on parameters. While ecologists often intend to 31 

choose priors so that they are “uninformative” or “vague”, such priors can easily be 32 

unintentionally highly informative. Here we report on how the specification of a “vague” 33 

normally distributed (i.e., Gaussian) prior on coefficients in Bayesian occupancy models can 34 

unintentionally influence parameter estimation. Using both simulated data and empirical 35 

examples, we illustrate how this issue likely compromises inference about species-habitat 36 

relationships. While the occurrence of this issue likely depends on the data set, researchers fitting 37 

Bayesian occupancy models should conduct sensitivity analyses to ensure intended inference, or 38 

use priors other than those most commonly used in the literature. We provide further suggestions 39 

for addressing this issue in occupancy studies, and an online tool for exploring this issue under 40 

different contexts.   41 
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Introduction 47 

Understanding species distributions, and the environmental factors that influence occurrence is 48 

fundamental to ecology. Our knowledge of many well-studied topics in ecology, including niche 49 

partitioning, trophic interactions and metapopulation dynamics, depend on knowing which 50 

species occur in an area and why. Furthermore, occurrence patterns are critical when making 51 

conservation and management decisions; placement of reserve boundaries, or assessments of 52 

whether development will impact threatened and endangered species depend entirely on knowing 53 

whether a target species is present. Research on the patterns and drivers of species occurrence 54 

has been ongoing for many years (see Guisan and Thuiller 2005 for a brief discussion), with 55 

major advancements, especially over the past two decades (see Elith and Leathwick 2009 for a 56 

review). These advancements have stemmed from a combination of enhanced computational 57 

power, the advent of geographical information systems (GIS), and the development of a diversity 58 

of field-sampling and statistical modeling approaches that allow for detailed assessments of 59 

species habitat-relationships and the ensuing distribution patterns.  60 

At the forefront of the methodological advancements in modeling species distributions is 61 

the explicit recognition and correction for sampling biases, such as the non-detection of a species 62 

in an area, despite it being present (i.e., false-negatives; MacKenzie et al. 2002). These 63 

‘occupancy models’ can account for the inherent imperfect detection of a species by 64 

simultaneously modeling the observation and occurrence processes. The development and 65 

refinement of these types of models has been a major focus of the ecological literature; there are 66 

numerous publications developing and describing occupancy models designed to address 67 

different ecological processes or sampling designs (see Kéry and Royle 2015), along with books 68 

acting as “how-to” guides (Royle and Dorazio 2008, Kéry and Royle 2015) and software for 69 
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readily fitting occupancy models to ecological data (e.g. unmarked; Fiske and Chandler 2011; 70 

MARK; White and Burnham 1999; PRESENCE; Hines 2006). These resources have allowed 71 

researchers to apply occupancy models to a range of ecological questions.  72 

Concomitant with the increasing prevalence of occupancy models has been the increase 73 

in the use of Bayesian statistics in ecology (Clark 2005, McCarthy 2007, Hobbs and Hooten 74 

2015). The adoption of Bayesian statistics by ecologists has likely been driven by a number of 75 

factors, including the straightforward manner in which hierarchical or multi-level models can be 76 

specified and fit. Occupancy models are naturally structured hierarchically (see model below) 77 

making them straightforward to fit using Bayesian methods and there are numerous published 78 

and online resources that provide code to do so (e.g. Royle and Dorazio 2008, Kéry and Royle 79 

2015). The increase in the availability of these resources has made the application of Bayesian 80 

methods more approachable for practitioners and researchers. 81 

A potential risk of the proliferation of easily accessible software and code is that 82 

researchers are perhaps fitting models without a clear understanding of the consequences of 83 

modeling choices. In Bayesian modeling, one choice that has the potential to strongly influence 84 

statistical inference is that of prior distributions (Gelman et al. 2014). Briefly, Bayesian inference 85 

focuses on summarizing posterior distributions of model parameters, which are informed jointly 86 

by the likelihood and the prior distributions. The relative influence each has on the posterior 87 

distribution depends on their information quantity. A model’s likelihood is determined entirely 88 

by the data, while prior distributions represent our best knowledge about the distribution of a 89 

parameter prior to model fitting. Guidance on the choice of priors when fitting Bayesian models 90 

in ecology is limited. In our experience, researchers typically attempt to choose priors such that 91 

they are expected to have minimal or no influence on the resulting inference (i.e., “flat,” 92 
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“vague,” or “uninformative” priors). Researchers commonly pick these priors so that parametric 93 

inference is primarily driven by the data, rather than the prior (e.g. Jones et al. 2011). However, 94 

seemingly uninformative priors often can have strong unintended consequences (Lele and 95 

Dennis 2009, Seaman III et al. 2012). Here we explore this issue with a specific focus on 96 

occupancy models. We show how under certain conditions a commonly used prior can strongly 97 

influence statistical inference. We provide examples of when the use of this prior is an issue and 98 

offer guidance when fitting Bayesian occupancy models.   99 

 100 

A basic Bayesian occupancy model 101 

In the analyses and discussion below we focus on a simple site occupancy model, formulated in a 102 

hierarchical Bayesian framework, which takes the following form, 103 

�� � Binomial
�� , 
��  


� � � � ��  (1) 

�� � Bernoulli
��  

where ��  indicates the number of detections at site �, out of a total of ��  sampling occasions, ��  is 104 

a latent (unobserved) parameter indicating the true occupancy state of the site (1 = occupied and 105 

0 = unoccupied), � is the probability of detecting a species at the site conditional on it being 106 

occupied, and � is the probability that a site is occupied. In a full Bayesian analysis, prior 107 

distributions would be specified for the unknown parameters, � and �. Often, uniform prior 108 

distributions between 0 and 1 are chosen (e.g. Kéry and Royle 2015).  109 

Typically, researchers are interested in investigating hypotheses of whether 110 

environmental covariates influence species occurrence. In this case, the above model can be 111 
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extended to include covariates on the occupancy process, which is most often specified as a logit 112 

regression model as, 113 

�����
��� � � � �� ! (2) 

where ��  is the site-specific probability of occupancy, which is influenced by a matrix of 114 

covariates �� (for example land cover type at the site), corresponding vector of coefficients   and 115 

an intercept, �. The logit is a link function (i.e., loge(
�

���
)) that takes probability values, which 116 

are restricted between 0 and 1, and projects them to values on the real number line, making 117 

estimation easier due to the lack of numerical boundaries. To recover occupancy probabilities, 118 

we use the inverse-logit of the linear combination of the intercept and covariates (i.e., logit-
119 

1(" � �� ) =
������

��������
). We note that other link functions are available for this model, such as the 120 

probit or complementary log-log link, but in our experience, these link functions are rarely used 121 

in the ecological literature.  122 

 123 

The issue of normally distributed priors in occupancy modeling 124 

The convention in Bayesian regression models is to specify normally distributed (i.e., Gaussian 125 

distribution) priors for the intercept (�) and coefficients ( ), with a mean of 0 and some standard 126 

deviation (σ; e.g., α ~ Normal(0, σ); Gelman and Hill 2007; technically, in the example above a 127 

multivariate Normal prior with a vector of 0s for the mean and a covariance matrix with 0's in all 128 

the off-diagonal positions would be used for β). Normally distributed priors are a sensible choice 129 

for a range of reasons discussed elsewhere (e.g. Gelman and Hill 2007), but see Gelman et al. 130 

(2008) for a discussion of why alternative priors might be preferred in certain cases. When 131 

conducting regression analyses, researchers typically specify these priors with a large standard 132 

deviation (#) hoping to diffuse the influence of the prior. In simple linear regression, this choice 133 
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of prior has the intended result. However, the use of such “vague” Normal priors in occupancy 134 

modeling has a potentially pernicious outcome. The issue is that the logit transformation is non-135 

linear such that as values become more negative or more positive, the transformed probability 136 

values approach zero and one, respectively (Fig. S1). This nonlinearity in the transformation 137 

leads to some priors that are intended to be “uninformative” becoming informative on the 138 

probability scale and strongly bimodal with large values of σ (Fig. 1 and Fig. S2). It is a 139 

mathematical truism that a normally distributed prior is not invariant to this transformation—140 

however, we believe that the consequences for modeling occupancy (as well as any logistic 141 

regression model) are not well appreciated in the ecological literature. Below, we demonstrate 142 

the influence of this assumed prior distribution on inference from occupancy models, using both 143 

simulated and empirical datasets.  144 

 145 

Methods 146 

We first demonstrate the influence of a logit-Normal prior by simulating example occupancy 147 

datasets (using � � 0.9, � � 0.2, � � 10, where n is the number of occasions) at a varying 148 

number of sites (50, 100, 200, and 400). For each dataset, we first fit the data in a maximum 149 

likelihood framework using the statistical program MARK (White and Burnham 1999) via the R 150 

package ‘RMark’ (Laake 2013) in the programming language R (R Core Team 2015). Next, to 151 

illustrate the influence of the prior relative to the likelihood, we fit these models in a Bayesian 152 

framework (above model without covariates; �����
��� � � and prior � ~ *�+,-�
0, .) ) using 153 

JAGS (Plummer 2015a) via the ‘rjags’ package (Plummer 2015b; see Appendix S1 and S2 for 154 

example JAGS code). In JAGS, the uncertainty parameter for the Normal distribution is 155 

specified as the precision (.), which is 1/#	, where # is the standard deviation of the Normal 156 
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distribution.  We fit the Bayesian model with normally distributed priors with # values of 0.25, 157 

0.5, 1, 2, 5, 10, 100, 500, and 1000; algorithms were run for 10,000 Markov chain Monte Carlo 158 

(MCMC) iterations, removing the first 5,000 as a period of burn-in. We investigated 159 

convergence in both paradigms by fitting the models with random initial values, checking for 160 

estimate consistency. The parameters from the Bayesian analysis were also investigated for 161 

convergence by visually examining posterior distribution trace plots to ensure proper mixing and 162 

by calculating the Gelman-Rubin diagnostic (Gelman and Rubin 1992) to ensure values were 163 

close to 1, which they always were. We compare the likelihood results, which are not influenced 164 

by the assumed prior distribution, with the Bayesian results by plotting posterior distributions of 165 

� for each dataset and prior, along with the maximum likelihood estimate (MLE). Assuming 166 

convergence and a sufficiently large number of samples, the discrepancy between the posterior 167 

mode (i.e., most probable value) and the MLE is a consequence of the assumed prior. We note 168 

that our focus is different than many simulation studies, where the aim is to evaluate the 169 

discrepancies between estimated and true parameter values. Here, we are strictly interested in 170 

unintended consequences of prior specifications and its influence on parametric inference.  171 

We further illustrate this issue by fitting occupancy models to empirical point count data 172 

collected by McGarigal and McComb (1995). The authors visited over 1,000 sites in the Oregon 173 

Coast Range, USA, four times between 1990 and 1992. We fit the basic occupancy model with 174 

covariates to detections for three species: gray jay (Perisoreus Canadensis), Steller’s jay 175 

(Cyanocitta stelleri) and song sparrow (Melospiza melodia) with two standardized covariates, 176 

one representing the distance to forest edges, and the other representing the proportion of the 177 

area within 1000 m comprised of mature forest (derived from a gradient nearest neighbor 178 

method; Ohmann and Gregory 2002). We specified a uniform prior on detection probability (p ~ 179 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2017. ; https://doi.org/10.1101/138735doi: bioRxiv preprint 

https://doi.org/10.1101/138735
http://creativecommons.org/licenses/by-nc-nd/4.0/


Uniform(0,1)), and a normally distributed prior on the intercept and coefficients of occupancy 180 

probability with a mean of 0 and #	 ranging between 1 and 1000 (1, 10, 100, and 1000). We 181 

standardized both covariates, and fit the Bayesian occupancy model with 10,000 MCMC 182 

iterations, dropping the first 5,000 as burn-in. Diagnosis of convergence followed the same 183 

procedure outlined above for the simulated datasets. We also fit each model in MARK, using the 184 

‘RMark’ package.  185 

To assess the relative prevalence of this issue in the ecological literature we performed a 186 

review of the use of priors in Bayesian occupancy modeling. We searched for articles published 187 

since 2010 using the term “Bayesian occupancy model” on Web of Science 188 

(http://apps.webofknowledge.com). We filtered results to include only those articles published in 189 

the field of ecology. We further eliminated any articles that focused on the development and 190 

refinement of methods for fitting occupancy. We reviewed a random sample of 25 of the 191 

remaining articles, attempting to identify the priors specified.  192 

 193 

Results 194 

For the simulated datasets, when the prior standard deviation was small (i.e. σ < 2) the posterior 195 

mode was always smaller than the MLE (Fig. 2), as these priors pulled the posterior towards a 196 

probability of 0.5. With a standard deviation of 2, the posterior mode was approximately the 197 

MLE. At intermediate values of the standard deviation (between 5 and 10), the posterior mode 198 

was close to the MLE, but the proximity was influenced by the number of surveyed sites (Fig. 3). 199 

As # became large (>100), the posterior became bimodal, with one mode close to the MLE and 200 

the other close to 1 (Fig. 2). Importantly, having a large number of sampled sites only buffered 201 

against the influence of the prior in a relatively narrow band of values. Generally, the nature of 202 
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the influence of the prior on the posterior and subsequent ecological inference depends on a 203 

combination of effects including: 1) the true underlying detection and occupancy probabilities; 2) 204 

the number of sampled sites; 3) the number of surveys per site; and, 4) the linear combination of 205 

coefficients and covariates. Importantly, the linear combination (i.e. � � �� !) is the quantity 206 

that is transformed, and thus in some cases very large magnitude values for coefficients, when 207 

combined with certain values of covariates, could lead to scenarios where the transformation is 208 

not impactful (e.g. when there is a strong effect of a covariate that ranges over a very small set of 209 

values). However, in other cases, the use of Normal prior distributions with a large # can 210 

seriously affect parametric estimates.  211 

In our empirical analysis, there were clear effects of the prior for the gray jay and 212 

Steller’s jay data, but not the song sparrow.  For both jay species, the median and upper credible 213 

bound increased with the prior variance (#	), while for the song sparrow, there were no apparent 214 

effects of the prior on the posterior (Table S1). For the jays, estimates approaching the MLE 215 

could only be obtained by fine-tuning the prior iteratively (results not shown here). Thus, for 216 

these datasets, there are very few specifications of the prior distribution that will not impact the 217 

posterior distribution and thus our inference on occupancy. Further, many more MCMC 218 

iterations were needed to achieve convergence for the gray jay model fit with values of σ2 greater 219 

than 10, likely due to bimodality similar to that seen in the analysis of simulated datasets (Fig. 220 

S3). In addition to causing issues with convergence, the gray jay results also highlight how these 221 

priors can impact inference on the habitat factors influencing occupancy. Whether or not credible 222 

intervals include 0 is often taken as evidence for the existence of an effect of a covariate on 223 

occupancy. For Steller’s jays, the 95% credible intervals (and 95% confidence intervals for the 224 

MARK analysis) for the effect of mature forest and edges all overlapped 0, indicating weak 225 
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evidence for an effect. However, for gray jays the credible intervals (and confidence intervals for 226 

the MARK analysis) did not overlap 0 except in the Bayesian analysis when σ2 was set to 1000 227 

(Table S1). Thus, we would draw very different conclusions about the influence of mature forest 228 

on this species depending only on the specification of the prior. We note here that the low 229 

detection probability for gray jays and Steller’s jays could be a result of a lack of closure (i.e. 230 

that they were not always available for detection during a survey); however occupancy models 231 

are routinely fit to datasets with similar violations of assumptions (see Rota et al. 2009 for a 232 

discussion), and with even lower detection probabilities, and thus we believe this example is still 233 

illustrative of the issues that can arise from using a prior that is assumed to be non-informative.  234 

The use of priors that could lead to inferential issues such as those outlined above was 235 

common in the recent literature. We found 108 articles published since 2010 that contained the 236 

keyphrase “Bayesian occupancy model.” Of the 25 articles reviewed, 8 (approximately one third) 237 

reported using priors on �, above, that were incidentally informative on the probability scale. 238 

How informative these priors were varied, with some researchers using only moderately 239 

informative priors (e.g., uniform distribution between -8 and 8), and others using highly 240 

informative priors (e.g., Normal with a variance of >1 000 000). Further, 3 of the articles did not 241 

report their priors or described them only as uninformative. Only 2 articles used priors that were 242 

likely to be uninformative, based on our results above. We note, that some researchers did report 243 

conducting sensitivity analyses to their priors.   244 

 245 

Discussion and suggested guidance  246 

The results that we present above, combined with the apparent prevalence of this issue in the 247 

literature, raise concerns about the inference made in regards to species-habitat relationship and 248 
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resulting distribution patterns. Our literature review, though relatively basic, indicates that this 249 

issue might be widespread. Further, most species in a given area are rare (Preston 1948), 250 

meaning that researchers likely are fitting models for species with little data (though this depends 251 

on the size of the sampling site relative to the species distribution), which will allow for priors to 252 

be more influential. However, the true magnitude of the issue is unknown because the 253 

circumstances that allow a seemingly uninformative prior distribution to be in fact informative, 254 

can vary, depending on the data. As illustrated in our empirical example, there are scenarios 255 

under which the specification of the prior will not impact inference; however, there also will be 256 

times when specifying a prior that does not impact inference will be difficult and require iterative 257 

model fitting. The potential implications of this issue for conservation and management-based 258 

studies are significant. We note that camera trapping and the use of occupancy models has 259 

become common for studying rare or cryptic, threatened and endangered species (O'Connell et 260 

al. 2010). In these studies, both sample sizes and detection probabilities tend to be low, two 261 

aspects that can lead to potential issues with influential priors. Even small overestimates in 262 

occupancy for such species can have major implications for conservation and management 263 

action.  264 

It is important to point out that the highlighted issue is not an inherent shortcoming of 265 

Bayesian inference. As a rule, Bayesian analysis requires the specification of priors, and as such, 266 

inference will be influenced to some degree by these priors. The models fit above are behaving 267 

appropriately and in the above we compared the posteriors to the MLE to illustrate how the 268 

priors are influencing results. Priors with large standard deviations or small precisions (inverse of 269 

the variance) can strongly influence the posterior distribution of occupancy, both in terms of the 270 

most probable value and the shape of the distribution. This is not a unique issue with the basic 271 
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occupancy model or just the occupancy parameter, but applies more generally to using a logit-272 

Normal prior distribution with a large standard deviation.  273 

The issues outlined above bring up a larger philosophical issue of what type of inference 274 

researchers want and why they choose to use Bayesian inference. In many cases, integrating 275 

informative prior information with new data to update the belief about an ecological process is 276 

not only justifiable but philosophically appealing (Hobbs and Hooten 2015). Informative priors 277 

can be particularly useful for the analysis of repeated studies, when there is a desire to include 278 

information from published research in current analyses, or to borrow strength across data 279 

sources to improve estimate precision (Gopalaswamy et al. 2012). Additionally, informative 280 

priors can guard against spurious effects (Gelman et al. 2012, Northrup et al. 2014) and 281 

erroneous estimation of large effects in underpowered studies (Lemoine et al. 2016), thus 282 

providing more conservative inference than frequentists analyses. But also more generally, 283 

informative priors and their shrinkage properties provide a coherent form of model selection (i.e. 284 

statistical regularization; Friedman et al. 2001), which has predictive benefits (Gerber et al. 285 

2015). However, based on our reading of the literature, many ecologists want inference that is 286 

free from effects of the prior (e.g. Jones et al. 2011, Northrup et al. 2015). If researchers truly 287 

want inference entirely free from any potential influence of the prior, then they likely should 288 

look to different frameworks than Bayesian inference (e.g. using likelihood based occupancy 289 

models, or for more complex hierarchical models, methods such as data cloning; Lele et al. 290 

2007). If researchers want to obtain Bayesian inference, it is important that they assess the 291 

sensitivity of their models to their priors so that they can obtain an understanding of the influence 292 

of the prior on their inference. We suggest following a similar approach to the one outlined in 293 

our empirical analysis, where sequentially smaller values of σ are used, and posterior medians 294 
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and credible intervals are compared so that researchers obtain such an understanding. This 295 

information can then be used to make an informed decision about the degree to which ecological 296 

inference is impacted. For those who desire Bayesian inference and are interested in 297 

investigating specific scenarios (i.e., �, p, n, number of sites, and #) we provide an easily 298 

accessible online tool for doing so (https://briangerber.shinyapps.io/OccupancyPrior/).  299 

As noted above, simply using a more restrictive prior might not provide the desired 300 

inference in all scenarios. The literature offers some further guidance on priors for logistic 301 

regression and occupancy. Gelman et al. (2008) suggest the use of a Cauchy distribution with 302 

center 0 and scale 2.5 as a default prior when conducting logistic regression. However, this prior 303 

still displays slight bimodality at 0 and 1 and thus has the potential to affect posterior 304 

distributions. An exact prior distribution that is completely invariant to transformation, such as 305 

between the logit and probability scale, is the Jeffry’s prior (Jeffreys 1946), which can be derived 306 

for occupancy models, but also will likely be informative and thus might not be more appropriate 307 

than a Normal distribution with small variance. We note that recent publications in statistical 308 

ecology describing how to fit occupancy models in a Bayesian framework provide some 309 

suggestions for priors that should reduce the concerns we raise here. Kéry and Royle (2015), in 310 

worked examples suggest, for the intercept, a uniform distribution between 0 and 1 that is then 311 

logit-transformed, though with unscaled covariates this prior could lead to estimates of the 312 

intercept that are biased low.  Further, the uniform distribution actually leads to an improper 313 

posterior, though the degree to which this impacts inference is likely limited.  Following our 314 

findings and the recommendation from Hobbs and Hooten (2015), logit-Normal prior 315 

distributions with a variance near 2 (standard deviation approximately 1.4) will often likely be 316 

weakly informative (when covariates are standardized), but we still strongly suggest conducting 317 
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a prior sensitivity analysis. We also note, that while this issue is relatively well understood in the 318 

types statistical ecology texts discussed above, these texts often are unapproachable for 319 

practitioners hoping to apply models.  320 

Beyond the above suggestions, practitioners should use particular care when detection is 321 

low, few sites are surveyed, and occupancy is very low or very high. Generally, caution should 322 

be applied when parameter uncertainty is likely to be large and near the probability boundaries, 323 

zero and one. In all cases, but particularly under these circumstances, we suggest first scaling all 324 

independent variables so that large magnitude coefficient estimates are avoided (Gelman and Hill 325 

2007; scaling also speeds convergence in many cases). Secondly, we suggest fitting models with 326 

a range of priors, to assess their influence. We caution that surveying many sites is not a panacea 327 

for this issue. In the dataset analyzed above, there were 4 visits to over 1,000 sites, a dataset that 328 

dwarfs most used in occupancy analyses.  329 

 330 

Conclusion 331 

Complex computational and statistical methods will continue to become more attainable for 332 

ecologists and other practitioners as computers become more advanced, and books are published 333 

that provide walk-through examples and code to fit complicated models. While the issue of 334 

uninformative priors becoming informative when transformed is well known to statisticians 335 

(Lele and Dennis 2009, Seaman III et al. 2012), many of the previous descriptions of this 336 

problem are unapproachable for ecologists. We hope that this comment will spur other ecologists 337 

to take care to better understand the models that they fit, and what their model outputs and results 338 

and the associated ecological inference truly means. The tools are available for us to fit difficult 339 

and complex models, the onus is thus on us to understand what they mean.  340 
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Figure legends 451 

Figure 1. Demonstration of a Normal prior distribution transformed to the probability scale (� is 452 

the occupancy probability before transformation to the probability scale using the logit link; see 453 

equation 2 in the text); panels vary by the standard deviation (#) of the prior distribution. A small 454 

# gives high probability density around zero, while increasing levels move this probability 455 

density towards zero and one, which eventually begins to accumulate near these values. Note that 456 

y-axes differ substantially among the panels. 457 

 458 

Figure 2. Posterior distributions (solid curves) and the corresponding maximum likelihood 459 

estimates (vertical lines) of occupancy probability from simulated data sets of varying number of 460 

sites (N = 50, 100, 200, and 400); data were simulated with a true occupancy of 0.9, a per 461 

occasion detection probability of 0.2 and 10 sampling occasions. If prior distributions were truly 462 

uninformative, the posterior mode would correspond to the maximum likelihood estimate.  463 
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