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The brain’s ability to adapt behavior is crucial to survival. Long-term learning of dexterous motor skills likely 
requires plastic changes in cortex1, but we can also learn even from errors in single movements2. Such trial-to-trial 
adaptation likely requires a faster mechanism. Here, we show how the brain can adapt behavior by redeploying 
existing population activity patterns without altering the functional structure of the cortex. We recorded from both 
primary motor cortex (M1) and dorsal premotor (PMd) cortex in macaque monkeys during motor learning. We 
trained computational models to predict single neuron spiking based on the activity of the surrounding neural 
population in order to study the functional relationships between neurons within the two areas3. Intriguingly, the 
functional structure within each area was preserved throughout learning, suggesting that the underlying neural 
circuitry remained unaltered4,5. To study the interaction between the areas, we separated the PMd activity6 into 
two sets of components: “potent” components that captured activity that mapped onto M1, and “null” components 
that captured activity patterns with effects only within PMd7. As was true within each area, the activity of the 
potent components consistently predicted M1 spiking throughout its learning-related changes. In stark contrast, 
the mapping from the null components gradually changed with learning. These results show that, at a population 
level, PMd develops new motor plans (reflected in the null components) that are transmitted to M1 through an 
unchanged functional mapping (captured by the potent components) between the two areas. Use of the PMd-to-
M1 null space as a neural scratch pad for the gradual development of new motor plans is a powerful mechanism 
that may explain a variety of rapid learning processes throughout the brain. 
 
In order to make skilled movements, sensory input is combined with internal state variables and transformed into 
a plan executed by the motor cortices8. This transformation may be mediated in part by an “internal inverse 
model” that maps a desired motor action to the required low-level muscle commands. The dorsal premotor (PMd) 
and primary motor (M1) cortices, together with the cerebellum, are prime candidate locations for such an inverse 
model. PMd is involved in movement planning9, with diverse inputs and strong connectivity with M110, while M1 
is the main cortical output to the spinal cord11. Correction of movement errors, such as those caused by external 
perturbations12, is thought to lead to alteration of the inverse model, leading to progressively more accurate 
movements even on a trial-by-trial basis2. The rapid speed of these changes seems incompatible with structural 
changes in synaptic connectivity13,14. Furthermore, monkeys using brain-machine interfaces have great difficulty 
learning mappings between brain activity and cursor movement that require the normal pattern of covariation 
among recorded cortical neurons to be altered15. Given that neural covariance patterns seem to be determined by 
synaptic connectivity16, this result further suggests that changes in cortical connectivity may not be the primary 
mechanism for short-term learning. At the same time, the progressive change in performance over tens of minutes 
and the performance savings between sessions seem incompatible with a mechanism like the network 
reverberation that may underlie short-term working memory17. To reconcile these apparently contradictory 
observations, we recorded simultaneously from electrode arrays implanted in both M1 and PMd (Figure 1a) as 
monkeys learned to make accurate reaching movements that were perturbed by a curl field (CF), a velocity-
dependent force applied to the hand12. The CF altered the dynamics such that straight reaches to each target 
required the monkeys to learn new muscle activation patterns2,18. We investigated whether changes in the 
functional relationships of the M1 and PMd populations could explain the adapted behavior. 
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We trained two rhesus macaque monkeys to perform a standard center-out reaching task (Figure 1a). Each session 
began with reaches in a null field before the monkeys began to adapt to the CF12,18,19, and progressively straighten 
their reaches (Figure 1b, S1). Evidence of their learning was revealed by the occurrence of after-effects upon 
eventual return to the null field (Figure 1b, S1). As has been previously observed, neural activity during 
adaptation was strikingly heterogeneous across neurons20 (Figure S2). Intriguingly however, the population 
correlation structure was surprisingly similar before and after learning, despite the large changes in neural firing 
in both areas (Figures 1d,e, S3). 
 
We used Poisson Generalized Linear Models (GLMs) to predict the spiking of individual neurons based on the 
activity of the remaining neurons (Figure 2a and Methods)3,21. Using data from late in learning (Figure 2b) when 
behavior had stabilized, we trained three models: one predicted M1 neurons from the M1 population activity (M1-
M1), another predicted PMd neurons from the PMd population (PMd-PMd), and the third predicted M1 neurons 
from the PMd population (PMd-M1) (Figure 2c). We assessed model performance using a relative pseudo-R2 
(rpR2) metric, which quantified the improvement in model performance due to the neural inputs above that of 
reach kinematics alone (Figure S4; Methods). This removed the effect of shared variability due to behavior-
related common inputs, and left the unique contributions of individual neurons. We tested generalization of each 
model from the late CF training data to the early CF trials. Good generalization would indicate that the 
relationships between neurons were unchanged during learning. The within-area models (M1-M1, PMd-PMd) 
predicted the complex spiking changes remarkably well throughout learning (Figure 2d-f, Figure S6 shows 
individual monkeys). However, early in learning, M1 spiking was poorly predicted from PMd. Furthermore, the 
model’s performance improved with a time course very much like that of behavioral adaptation (Figure 2h), 
suggesting that learning resulted from a change in the functional relationships between neurons in PMd and M1, 
even though the functional interactions within the two networks remained unchanged4,16,5. 
 
We sought to explain how the relationships between PMd and M1 neurons could change while those within each 
area remained consistent. Intuitively, PMd population activity at once reflects its inputs, their subsequent 
processing, and the eventual outputs to M122 (Figure 3a). We sought to separate these components of population 
activity by projecting PMd activity patterns onto output-null and output-potent spaces (Figure 3b, see Methods)7. 
We used Principal Component Analysis (PCA) to represent the activity of the M1 and PMd populations as a small 
number of components that captured mutual covariance patterns across neurons6. PMd consistently contained 
more components than M1 (Figure S5), indicating the existence of a null space containing PMd activity that had 
no net effect on the M1 components (Figure 3c, see Methods). We hypothesized that these extra components and 
the resulting null space arise from planning-related computations performed within PMd that did not directly 
activate M1. Such null-space planning activity could account for the altered overall relationships between PMd 
and M1, while at the same time, allowing the potent space to maintain a stable mapping from PMd to M1. We 
repeated the GLM analysis to predict the spiking of individual M1 neurons using either the PMd potent (Pot-M1) 
or null (Null-M1) components as inputs (Figure 3c). If the null components capture motor planning within PMd 
that changes with learning, the accuracy of the Null-M1 model should change with behavioral performance, much 
like the overall PMd-M1 model (Figure 2d-f, purple). However, if the updated motor plans are ultimately sent in a 
consistent manner to M1, Pot-M1 should remain unchanged. For both monkeys, Pot-M1 predicted M1 spiking 
consistently, while Null-M1 predictions changed with a time course like that of behavior (Figure 3e). The stability 
of Pot-M1 shows that, at a population level, there exists a direct mapping between PMd and M1 that persists 
throughout short-term motor adaptation. The stability of the potent mapping (along with the M1-M1 and PMd-
PMd models) supports the conclusion that there were no structural changes in these cortical areas, since the potent 
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and null spaces are defined simply by different weightings of the same neurons with the same connectivity 
(Figure S5d,f). Learning, then, results from new activity patterns within PMd, which may be necessary to set a 
new preparatory state for M17,23. 
 
We next asked if the observed changes within PMd are a necessary consequence of adapted behavior, or if they 
are indicative of a more specialized role for PMd in the CF task. On a separate set of sessions, the monkeys 
learned to reach in the presence of a static rotation of the reach-related visual feedback (visuomotor rotation; VR). 
Considerable evidence from behavioral studies in humans suggests that the brain areas involved in learning a 
static visual mapping differ from those required to learn novel effector dynamics (e.g., the CF)24,25. Since VR 
learning appears to rely heavily on parietal cortex25,26, hierarchically upstream yet of PMd, we hypothesized that 
VR adaptation would not result in a change in the functional relationship between M1 and PMd. We repeated the 
above analyses using sessions where the monkeys adapted to a VR of 30 degrees (Figure 4a). There were a 
number of similarities with the CF sessions: behavioral errors were similar in magnitude and time course (Figures 
4b, S1c,d), and there were highly varied, complex changes in neural activity patterns with a preserved correlation 
structure (Figure S3d,e). However, when we fit GLM models to predict single neuron spiking, all models, 
including PMd-M1, accurately generalized throughout learning (Figure 4d). Thus, there were no changes in the 
functional relationships between the PMd and M1 populations, despite diverse changes in single-neuron activity. 
This result highlights a fundamental difference in the neural adaptation to these two perturbations, and supports 
the view that VR adaptation occurs upstream of PMd, likely involving parietal cortex25,26. It also strengthens our 
conclusions about the CF task: the poor generalization of the PMd-M1 GLM model is not a necessary 
consequence of changing behavior, but rather captures a previously undescribed mechanism by which the motor 
cortices drive sensorimotor adaptation through population-level activity patterns. 
 
Long-term learning is known to alter connectivity in the motor cortex, resulting in increased horizontal 
connections27 and synaptogenesis28. Many have proposed that the brain uses similar plastic mechanisms to adapt 
behavior on shorter timescales19,29. However, structural changes would have impaired predictions of the GLM 
models4,5. Hence our results suggest that, at least on the time scale of a single experimental session, there were no 
structural changes within PMd or M1. Our lab has previously found that the relationship between M1 activity and 
the dynamics of the motor output remains unchanged during CF adaptation18, with no evidence for adaptive 
changes in either spatial tuning or firing rates that have a time course like that of learning. Therefore, we 
hypothesized that CF learning must be mediated by changes in recruitment of M1 by upstream areas, including 
PMd. Our current results directly support this interpretation: PMd exploits the null space to formulate new motor 
plans reflecting the modified task demands of the CF, which are then used to recruit M1 without changing the 
connectivity within either area, or within the potent space from PMd to M1. The lack of any such change in null-
space processing during the VR task suggests that VR adaptation occurs upstream of PMd. 

 
Through lesion, computational, and recording studies, the cerebellum has been implicated in a variety of 
supervised, error-driven motor-learning problems, including both the curl field and visual rotation paradigms 
explored in this study25,30–32. It is also considered to be a site at which both forward and inverse internal models 
may be learned33,34. Many forms of cellular plasticity are present in the cerebellum, occurring at multiple sites and 
over several time scales35,36. The cerebellum also supports rapid, short term memory storage through the bistable 
properties of Purkinje cells37. The most direct evidence for its role in motor adaptation comes through Purkinje 
cell recordings during the adaptation of arm38, eye36, and head39 movements. Given the extensive interconnections 
with PMd40 the new motor plans during CF learning may arise from interactions between PMd and an evolving 
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inverse internal model in the cerebellum2,25,34. Other evidence suggests that while these internal models may 
depend on the cerebellum for their modification, they may actually be located elsewhere41. Over a longer time 
period (hours to days), the motor memory is consolidated, possibly through structural changes in the cerebral 
cortex42,1. We propose that such structural changes could emerge to support the long-term refinement and recall of 
skills43,42, while rapid behavioral adaptation is mediated by modified population-wide activity patterns within the 
existing constrained network structure of the motor cortices. Similar activity patterns have been found in 
prefrontal cortex for decision-making44, working memory45, and rule-learning46, in the motor cortex for movement 
planning7, and in the parietal cortex for navigation47. These widespread observations suggest that the novel 
coordination mechanism between neuronal populations described here could be exploited throughout the brain for 
the rapid, flexible adaptation of behavior.  
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Figure 1 | Curl field task. a) Monkeys performed a standard center-out task with a variable instructed delay period following 
cue presentation (top). We recorded from single neurons in M1 and PMd (bottom; CS: central sulcus, PCD: pre-central 
dimple, AS: arcuate sulcus). b) Example position traces for the first reaches to each target for four representative CF sessions. 
Curvature increased when the CF was imposed (top right), but straightened during learning (bottom left). We observed 
oppositely directed after-effects in Washout (bottom right). c) Summary of percent of firing rate change for all cells recorded 
on a single session. d) Normalized pairwise correlations between all cells recorded on the same session as Panel c. Clustering 
was performed in Baseline (BL, left) as a means to visualize the correlation structure, and the same ordering was kept for late 
CF (right). e) Summary of pairwise correlations between BL and late CF for all combinations of neurons recorded in each of 
the nine CF sessions. A random subsample of 5,000 pairs is plotted. The value of ‘r’ for each plot indicates the Pearson’s 
correlation coefficient to assess similarity between the null-field and CF conditions for all pairwise-correlations from all 
sessions. 
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Figure 2 | Predicting neural spiking with GLMs. a) We used Poisson GLMs to predict single-neuron spiking using the 
kinematics and the activity of the remaining population. b) We trained three models: two within an area (M1-M1, and PMd-
PMd) and one between the areas (PMd-M1). c) Angular error (mean ± st.e. across sessions) during CF learning. We trained 
GLMs using data recorded late in learning, after behavior had stabilized (right) and tested them for generalization throughout 
the initial phase of learning, beginning at the first CF trial (left). In Panels e, f, and g, we compared Early CF (highest error) 
and Late CF (lowest error) trials within the testing block. d) Cross-validated rpR2 for all cells with significant fits for the 
three GLM models. Cells were pooled across two monkeys and nine total sessions. e) Spiking of three representative neurons 
(black) and model predictions (colors) during three early and three late learning trials. f) Summary histograms of rpR2 values 
for predictions of a block of 5 trials in early CF (hollow) and late CF (solid). M1-M1 and PMd-PMd had similar distributions 
during early and late CF, but Early CF predictions by the PMd-M1 models were significantly lower than Late CF (p = 0.01, 
two-sample t-test). g) Percent error in model performance during early and late learning. Significant differences were 
observed between PMd-M1 during Early and Late, and PMd-M1 compared with M1-M1 and PMd-PMd during late, with a 
significance level defined at p < 0.01 (two-sample t-test, N is given by cell counts in Panel d). h) Time course of model 
performance changes. Predictions were made for individual trials, and then smoothed with a 30 trial moving average (see 
Methods). Plotted data are mean and standard error across predicted neurons for each model. Behavioral error processed with 
the same methods is overlaid in gray. The decrease in PMd-M1 model error followed the time course of behavior. 
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Figure 3 | Predictions from potent and null components. a) Hierarchical schematic of motor planning in PMd and M1. b) 
We devised an analysis to demix the PMd outputs to M1 from the other functions of the population. The former comprises 
the potent space, while the latter resides in the null space. c) The time-varying projections of PMd activity onto these potent 
and null axes were used as the inputs to a GLM model to predict M1 spiking. d) Bar plot comparing model error performance 
during early and late trials with potent (Pot-M1), null (Null-M1), and all PMd PCs (PCA-M1). Pot-M1 performed 
significantly better than the other models (p < 0.01, two-sample t-test). e) The time course of model performance for Pot-M1 
and Null-M1 for all sessions with the two subjects. Gray line is the mean behavioral error corresponding to those trials. 
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Figure 4 | Model performance during visuomotor rotation. a) The monkeys also adapted to a visuomotor rotation (VR) 
using the same center-out task as Figure 1. The VR rotated the visual cursor feedback on the screen by 30 degrees. b) 
Position traces for the first (or last) reach to each target for four representative sessions with the VR, shown as in Figure 1b. 
The monkeys exhibited behavioral errors that were similar to those of the CF condition (see Figure S1). c) Model prediction 
error during early and late VR trials. There were no significant changes throughout learning. d) Same format as Figure 2h. 
All GLM models, including PMd-M1 generalized well from late VR to early VR trials, despite clear behavioral adaptation 
(gray). 
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Figure S1 | Behavioral adaptation. a) Position traces for the first reach to each target from four sessions with a clockwise 
CF (top row) and five sessions with a counter-clockwise CF (bottom row). Sessions from both monkeys are included. Data 
from the three sessions with Monkey C with shorter reaches were plotted on a different scale to provide uniform length for 
visualization purposes. b) Error in the takeoff angle for all sessions (light gray lines), with the median across sessions shown 
in black. Gray traces were smoothed with a 4 trial moving average to reduce noise while preserving the time course of 
adaptation. c) Same as Panel a, but for the VR sessions (two clockwise and 5 counter-clockwise). d) Same as Panel b for the 
VR sessions.  
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Figure S2 | Example neural activity before and after CF learning. a) Array recordings for a single session for PMd (left) 
and M1 (right). The mean waveform is plotted in the spatial location on the array, with each sorted unit having a different 
color.  b-d) Activity patterns for three example neurons from the same CF session. Neural activity for each trial was 
smoothed with a Gaussian kernel, aligned to the go cue (indicated by the arrow at the bottom of each panel), and averaged 
across reaches to each target (colored directions) for Baseline (solid lines) and late CF (dashed lines).  e-g) Same as Panels a-
c, but for three M1 neurons. 
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Figure S3 | Correlation structure during learning. a) Summary of percent firing rate changes for M1 and PMd neurons in 
a CF session, reproduced from Figure 1c. b) Correlation structure for all M1 (left) and PMd (right) in a CF session, for 
Baseline (BL, top) and CF (bottom). Data reproduced from Figure 1d. c) Scatter plot of BL and CF pairwise correlations, 
reproduced from Figure 1e. d-f) Same as panels a-c, but for a representative VR session. The two perturbations had similar 
amounts of activity changes, and both had preserved correlation structure. g) A simple Recurrent Neural Network (RNN) was 
trained to provide joint torques to drive a model of the limb (see Methods). h) The RNN was trained to perform a single reach 
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direction, then the curl field was applied to the endpoint and the model was further trained to apply compensatory torques. In 
this case, learning is known to occur through structural changes in the network, and provides a reference to compare against 
the recorded neural data. i) Angular velocities for the elbow and shoulder joints (left) and endpoint position (right) for BL 
(solid) and CF (dashed) reaches to the target. j) Panel b was replicated using pairwise correlations between units in the RNN 
during BL and CF. Much of the structure changed during the CF. k) Panel c was replicated using units in the RNN. There is 
much less correlation between activity of the units in BL and CF than in the recorded neurons, suggesting that the real CF 
and VR learning does not result in structural changes.  
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Figure S4 | GLM Model Performance a) Schematic representation of the GLM models. The Basic model included only 
kinematic covariates (see Methods), while the Full model included both kinematics and neural activity. The relative pseudo-
R2 metric was a comparison between these two models. b) Distribution of cross-validated pseudo-R2 values for predictions of 
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all M1 neurons from all sessions with the Basic model (gray). Black overlaid distribution shows cells with significant model 
fits (see Methods). c) Same as Panel b, but for predictions of PMd neurons. d) Distribution of cross-validated pseudo-R2 
values for the Full M1-M1 model. All neurons from all sessions with significant fits are included. e-f) Same as Panel d, but 
for the PMd-PMd and PMd-M1 models. g) Predictions of M1 spiking (black) for a single example neuron. The Basic model 
prediction (gray) is compared to the M1-M1 model prediction (blue). The black scale bar on the right indicates one spike, and 
pseudo-R2 values are shown below the predictions. h-i) Same as Panel g, but for PMd-PMd and PMd-M1. j-l) Distribution of 
cross-validated relative pseudo-R2 values for the PCA-M1 (j), Pot-M1 (k), and Null-M1 (l) models. The three models had 
similar performance.  
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Figure S5 | Details on Potent and Null Spaces a) Summary histograms across all sessions from both monkeys of 
dimensionality for M1 (top) and PMd (bottom). b) For one example session from Monkey C, the effect of population size on 
dimensionality. We randomly subsampled the neural populations 100 times at each percentage and repeated the 
dimensionality analysis. The result of each repetition is plotted as a single point with a random jitter on the horizontal axis to 
show the density. PMd (right) was consistently higher dimensional than M1 (left). c) Schematic representation of the method 
to identify output-potent and output-null spaces using trial-averaged data from a single session. Traces show the activity of 
components found by PCA on a representative session, with each color corresponding to one of the eight target directions. 
We used multi-linear regression to build a matrix W relating the activity of the M1 PCs (here, dimensionality of two) to the 
PMd PCs (here, dimensionality of four). Thus, W is a 2x4 matrix. Using Singular Value Decomposition (see Methods), we 
identified a matrix V’, the first two rows of which contained the basis vectors of the potent space, while the last two rows 
defined the null space. We multiplied the PMd PCs by this matrix to get the time-varying potent (top) and null (bottom) 
projections. d) Example predictions (red) of the first eight M1 PCs (black) from the first sixteen PMd PCs, with R2 
quantifying quality of fit for a single session. e) Summary of R2 for M1 PC predictions across sessions (gray lines). Black 
line and gray shading indicate and mean and st.dev. across sessions. f) We attempted to identify potent or null subpopulations 
using an index that quantified the relative weights of each neuron onto the potent and null axes (see Methods). Values of 1 
indicate the cell was exclusively potent, and values of -1 indicate the cell was exclusively null. The distribution of cells was 
centered around zero, indicating that the potent and null spaces captured population-wide activity patterns. g) Comparison of 
GLM performance error between early CF (left bars for each dimension) and late CF trials (right bars) for Pot-M1 and Null-
M1 as a function of the selected dimensionality. Values for eight dimensions plotted here are those included in Figure 3d. 
Our primary effect that Pot-M1 generalizes to early CF trials better than Null-M1 was consistent for a range of 
dimensionalities. 
 
 
  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2017. ; https://doi.org/10.1101/138743doi: bioRxiv preprint 

https://doi.org/10.1101/138743
http://creativecommons.org/licenses/by-nd/4.0/


A neural population mechanism for rapid learning 	17 

 
Figure S6 | Subject-specific GLM performance. a) Identical to Figure 2h, but for all neurons recorded on a single session 
from Monkey C. The gray line shows a moving average of the mean behavioral error of the monkey on that session for the 
same trials. b-c) Same as Panel a, but for all sessions from Monkey C (b) and Monkey M (c). d) Identical to Figure 3e, but for 
a single session from Monkey C. e) Identical to Panel d, but for all sessions from Monkey C. f) Identical to Panels d, but for a 
session from Monkey M. Since Monkey M contained fewer neurons and predictions were considerably noisier, we extended 
the moving average window size to 50 trials. 
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Methods 
 
Behavioral task 
Two monkeys (male, mucaca mulatta; Monkey C: 11.7 kg, Monkey M: 10.5 kg) were seated in a primate chair 
and made reaching movements with a custom 2-D planar manipulandum to control a cursor displayed on a 
computer screen. We recorded the position of the handle at a sampling frequency of 1kHz using encoders. The 
monkeys performed a standard center-out reaching task with eight outer targets evenly distributed around a circle 
at a radius of 8cm. All targets were 2cm squares. The first three sessions with Monkey C used a radius of 6 cm. 
However, we observed no qualitative different in the behavioral or neural results for the shorter reach distance, 
and all sessions were thus treated equally. Each trial began when the monkey moved to a center target. After a 
variable hold period (0.5 – 1.5 s), one of the eight outer targets appeared. The monkey had a variable instructed 
delay period (0.5 – 1.5 s) which allowed us to study neural activity during explicit movement planning and 
preparation, in addition to movement execution. The monkeys then received an auditory go cue, and the center 
target disappeared. The monkeys had one second to reach the target, where they had to hold for 0.5 s. 
 
In the curl field (CF) task, two motors applied torques to the elbow and shoulder joints of the manipulandum in 
order to achieve the desired endpoint force. The magnitude and direction of the force depended on the velocity of 
hand movement according to Equation 1, where 𝐹 is the endpoint force, 𝑝 is the derivative of the hand position 𝑝, 
qc is the angle of curl field application (85°), and k is a constant (0.15 N•s/cm): 
 

 𝐹 =
𝐹$
𝐹%

= 𝑘 cos 𝜃+ − sin 𝜃+
sin 𝜃+ cos 𝜃+

𝑝$
𝑝%

 (1) 

 
In the visuomotor rotation (VR) task, hand position p was rotated by qr (here, chosen to be 30°) to provide altered 
cursor feedback 𝐶 on the screen. The rotation was position-dependent so that the cursor would return to the center 
target with the return reach: 
 

 𝐶 =
𝐶$
𝐶%

= cos 𝜃0 − sin 𝜃0
sin 𝜃0 cos 𝜃0

𝑝$
𝑝%  (2) 

 
Both the CF and VR perturbations were imposed continuously throughout the block of learning trials, including 
the return to center and outer target hold periods. 
 
Each session was of variable length since we allowed the monkeys to reach as long as possible to ensure that 
behavior had sufficient time to stabilize, and allow for large testing and training sets for the GLM. For the CF 
sessions, the monkeys performed a block of unperturbed Baseline trials (range across sessions: 170 – 225 
rewards) followed by an Adaptation block with the CF perturbations (201 – 337 rewards). The session concluded 
with a Washout block, where the perturbation was removed and the monkeys readapted to making normal reaches 
(153 – 404 rewards). The curl field was applied in both clockwise (CW) and counter-clockwise (CCW) directions, 
though we saw no qualitative difference between the sessions. Monkey C had three CW sessions and two CCW 
sessions, while Monkey M had four CCW sessions. For the VR sessions, the monkeys performed 154 – 217 
successful trials in Baseline, 219 – 316 during VR (either CW or CCW), and then 162 – 348 in Washout. Monkey 
C performed two CW VR sessions and two CCW sessions, while monkey M performed three CCW sessions. 
There is considerable evidence that learning can be consolidated, resulting in savings across sessions 1. In this 
study, we minimized the effect of savings to focus on single-session learning. The monkeys typically: 1) received 
different perturbations day-to-day, as we alternated between CF and VR sessions, 2) received opposing directions 
of the perturbation on subsequent days, and 3) had multiple days between successive perturbation exposures. 
 
Behavioral adaptation analysis 
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For a quantitative summary of behavioral adaptation, we used the errors in the angle of the initial hand trajectory. 
We measured the angular deviation of the hand from the true target direction 150 ms after movement onset.  To 
account for the natural biases of the monkeys, we found the difference on each trial from the average deviation for 
that target in Baseline trials. Sessions with the CW and CCW perturbations were similar except for the sign of the 
effects. Thus, for the behavioral data in Figures 2h, 4f, and S1, we pooled all perturbation directions together and 
simply flipped the sign of the CW errors. Figures 1b and 4b show the position traces for example CF and VR 
sessions, respectively. Since the target size was 2cm, there could be some deviation in the starting and ending 
positions, and subsequently some deviation in the total length of the reaches. For visualization purposes only, we 
normalized the length of each reach to begin in the center of the workspace and have a total linear distance of 8cm 
between the starting and ending points.  
 
Neural recordings 
After extensive training in the unperturbed center-out reaching task, we surgically implanted chronic multi-
electrode arrays (Blackrock Microsystems, Salt Lake City, UT) in M1 and PMd. From each array, we recorded 96 
channels of neural activity using a Blackrock Cerebus system (Blackrock Microsystems, Salt Lake City, UT). The 
snippet data was manually processed offline using spike sorting software to identify single neurons (Offline Sorter 
v3, Plexon, Inc, Dallas, TX). We sorted data from all three task epochs (Baseline, CF/VR learning, and Washout) 
simultaneously to ensure we reliably identified the same neurons throughout the sessions. With such array 
recordings, there is a small possibility that duplicate neurons can appear on different channels as a result of 
electrode shunting, which would influence our GLM models by providing perfectly correlated inputs for these 
cells. While such duplicate channels are often easily identifiable during recording, we took two precautionary 
steps to ensure our data included only independent channels. First, we used the electrode crosstalk utility in the 
Blackrock Cerebus system to identify and disable any potential candidates with high crosstalk. Second, offline we 
computed the percent of coincident spikes between any two channels, and compared this percentage against an 
empirical probability distribution from all sessions of data. We excluded any cells whose coincidence was above a 
95% probability threshold (in practice, this was approximately 15-20% coincidence, which excluded no more than 
one or two low-firing cells per session). 
 
Across all sessions, we isolated between 137 – 256 PMd and 55 – 93 M1 neurons for Monkey C, and 66 – 121 
PMd and 26 – 51 M1 neurons for Monkey M. For the pairwise correlation analysis, we excluded cells with a trial-
averaged firing rates of less than 1 Hz. Our GLM models were by necessity poorly fit for neurons with low firing 
rates. Thus, for the GLM analyses, we only considered neurons with a trial-averaged mean firing rate greater than 
5 Hz. Pooled across all monkeys and CF and VR sessions, this gave a population of 918 M1 and 2221 PMd 
neurons. Given the chronic nature of these recordings, it is certain that some individual neurons appeared in 
multiple sessions. However, our analyses primarily focus on the population-level relationships which we found to 
be robust to changes in the exact cells recorded, so we do not expect our results to biased by partial resampling. 
 
Dimensionality reduction 
We counted spikes in 10 ms bins and square root transformed the raw counts to stabilize the variance2. We then 
convolved the spike train of each neuron for each trial with a Gaussian kernel of width 100 ms to compute a 
smooth firing rate. We used Principal Component Analysis (PCA) to reduce the smoothed firing rates of the 
neurons in each session to a small number of components2. PCA finds the dominant covariation patterns in the 
population and provides a set of orthogonal basis vectors that captures most of the population variance. 
Importantly, the axes of PCA capture population-wide interactions, with nearly all neurons contributing to the 
dominant components. 
 
For the null and potent space analysis described below, we needed to select dimensionalities for M1 and PMd. We 
adapted a method developed by Machens et al3 to estimate the dimensionality of our recorded populations. In 
brief, PCA provides an orthogonal basis set with the same dimensionality as the neural input. However, the 
variance captured by many of the higher dimensions (with the smallest eigenvalues) is typically quite small. We 
estimated the noise in the neural activity patterns using the trial-to-trial variation in the activity of each neuron. 
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We sampled a random pair of trials for each reach direction and subtracted the activity of each neuron. This gave 
an estimate of the variance of each neuron across two different reaches to each target. We then ran PCA on the 
neural “noise” space provided by this difference for all targets. We repeated this 1000 times, giving a distribution 
of eigenvalues for each of these noise dimensions. We used the 99% limit of these distributions to estimate the 
amount of noise variance explained for each dimension. This allowed us to put a ceiling on the amount of 
variance that could be explained by noise. The dimensionality was thus defined by the number of dimensions 
needed to explain 95% of the remaining variance (Figure S5d shows all sessions for M1 and PMd). Importantly, 
the dimensionality we estimated was robust to the number of recorded neurons since it reflected population-level 
patterns. We performed a control where we repeated the above analysis with random subsamples of neurons, 
taking 50-90% of the M1 or PMd populations (Figure S5e) and observed no change in the estimated 
dimensionality. 
 
Potent and null space calculation 
Using the above method, we estimated the dimensionality of the M1 and PMd populations on each session. Since 
we identified a larger dimensionality for PMd than M1, there existed a "null space" in PMd, which encompasses 
PMd activity that has no net effect on M14. To identify the geometry of the null and potent spaces, we constructed 
multi-input multi-output (MIMO) linear models relating the N-dimensional PMd space to the O-dimensional M1 
space (with N > O): 
 
 𝑀 = 𝑊𝑃 (3) 
 
M (O x t) and P (N x t) are matrices whose rows contain the activity of each PC for M1 and PMd, respectively, 
and whose columns contain the time points (t). We then performed singular value decomposition (SVD) of the 
matrix W (O x N) that maps PMd onto M1: 
 
 𝑊 = 𝑈𝑆𝑉′ (4) 
 
SVD decomposes the rank-deficient rectangular matrix W into a set of orthonormal basis vectors that allows us to 
define the null and potent spaces. For our purposes, the matrix V’ defines the vectors that define the potent and 
null spaces, with the first N rows corresponding to the potent space, and the remaining M - N rows defining the 
null space (Figure S5a, Equation 5): 
 

 𝑉 =
𝑣99 ⋯ 𝑣9;
⋮ ⋱ ⋮
𝑣>9 ⋯ 𝑣>;

 (5) 

 
We used only trials from the Baseline period of each session to find the axes for PCA, as well as the null and 
potent spaces. The Baseline trials were independent of the CF/VR trials used for both testing and training the 
GLM models, ensuring that we did not bias our results to find any specific solutions. However, we obtained 
nearly identical results if we used all of the data, or data only from the CF/VR trials, indicating that the null and 
potent spaces identified through this analysis did not change throughout the session. It is also important to note 
that the null and potent spaces, as with the PCA axes, typically comprised population-wide activity patterns, 
rather than sub-groups of neurons (Figure S5f). 
 
Single neuron correlation analysis 
We studied the correlations between individual neurons using the same smoothed firing rates we used for PCA. 
We then aligned each trial at the time of movement onset and isolated a window beginning 700 ms before and 
ending 800 ms after movement onset. We averaged across trials for each target direction, during both the pre-
learning Baseline and the learning epochs. We excluded the first 50% of CF or VR trials to look at neural activity 
when adaptation was most complete. Examples of these trial-averaged activity profiles were used for the plots in 
Figures 1, 4, S2, and S7. We then performed pairwise cross-correlations between all neurons recorded on each 
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session during Baseline and late CF/VR. The coefficient of correlation values shown in Figures 1e and S3 were 
computed using the pairwise correlation values using all pairs of neurons from each session, as a means to 
quantify the similarity between the two conditions. For the heat maps shown in Figures 1e and S3, we normalized 
the range of each row to scale from -1 to 1 to enhance visualization. We then used a simple hierarchical clustering 
algorithm to sort the neurons in the Baseline condition. This same sorting order was used for the late CF heat map 
as a means of visually assessing the consistency in the correlation structure. 
 
Recurrent Neural Network model 
We sought to develop a reference to interpret our pairwise correlation models in a scenario where there are known 
structural changes. We trained a Recurrent Neural Network (RNN) to drive torques applied to the elbow and 
shoulder joints of a 2-D planar arm (Figure S3g). The RNN was trained using the HebbRNN toolkit5. In brief, we 
initialized a 300 unit neural network randomly, and trained over subsequent iterations to reach the desired 
endpoint. No constraints were placed on the hand path or velocity. We trained the initial model to control the limb 
in the null field, then retrained the same network to make the same reach with a modeled curl field imposed on the 
endpoint (Figure S3h,i). We compared the activation profiles for these two reaches using pairwise correlations, as 
was done with the real neurons (Figure S3j,k). 
 
Generalized Linear Models 
We trained Poisson Generalized Linear Models6 (GLMs) to predict the spiking activity of individual neurons on a 
single-trial basis7. GLMs extend Gaussian multilinear regression approaches for the Poisson statistics of neural 
spiking. We take weighted linear combinations of the desired covariates, xi, such as limb kinematics: 
 
 𝜃?𝑥?? = 𝑋Θ (6) 
 
The weighted covariates were passed through an exponential inverse link function. The exponential provides a 
non-negative conditional intensity function l, analogous to the firing rate of the predicted neuron: 
 
 𝜆|𝑋, Θ = exp 𝑋Θ  (7) 
 
The number of observed spikes, n, in any given time bin is assumed to a Poisson process with an instantaneous 
firing rate mean of l: 
 
 𝑛|𝜆	~	Poisson(𝜆	𝑑𝑡) (8) 
 
Covariate inputs to the GLMs 
In our analyses, we used GLMs to predict the spiking activity of single neurons based on the activity of the 
remaining population and kinematic signals. We binned the neural spikes at 50 ms intervals and downsampled the 
continuous kinematic signals to 20 Hz to match the binned spikes. We shifted the kinematic signals backwards in 
time by three spiking bins (150 ms) to account for transmission delays between cortical activity and the motor 
output. Previous studies have observed a broad range of delays8, so we convolved the kinematic signals with 
raised cosine basis functions centered at 0 ms and -100 ms, adapting the method of Pillow et al., where bases 
further back in history become wider9. By including these convolved signals as inputs to our GLM models, we 
allowed the neurons to have more flexible temporal relationships with the kinematics. Note that all GLM models 
included the same convolved endpoint position, velocity, and acceleration signals as covariates. 
 
We trained two types of models: the Basic models included only kinematic covariates, while the Full models 
included both the kinematic covariates and the spiking activity of the single-neuron populations (Figure S3). For 
the GLMs with single neuron inputs (Figure 2), we trained three different types of Full models. M1-M1 models 
predicted the spiking activity of each M1 neuron from the activity of all other M1 neurons recorded on the same 
session, PMd-PMd models predicted the spiking of each PMd neuron from all other PMd neurons, and PMd-M1 
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models predicted M1 neurons using the activity of all PMd cells. For the GLM analysis with potent and null 
components (Figure 3), we used low-dimensional summaries of PMd population activity as inputs to the GLMs, 
rather than single neurons. For PCA-M1, we projected PMd activity into the PCA space (see above) and selected 
only the first 16 dimensions as input to the GLM. Since PCA captures population-wide covariance patterns, we 
expected that this approach would provide nearly identical results to the single neuron models of PMd-M1, and it 
was included primarily as a control. For Pot-M1 and Null-M1, we projected the time-varying PMd signals onto 
the basis vectors for the potent and null space, respectively (see above). We then used these time-varying signals 
as inputs to GLMs to predict the spiking of M1 neurons. It is worth noting that although we defined the Null 
space as activity which produced zero output in the low-dimensional M1 components, we could still predict M1 
spiking quite well from the Null space in the cross-validated training data (Figure S3). Although potentially 
unintuitive, it worked well for a number of reasons. First, we identified the potent and null spaces using 
population-wide components, and used these activity patterns to predict the spiking single neurons. Additionally, 
for a given reach direction within a condition, the stereotyped activity in the null space could be well-correlated 
with activity in the potent space (and subsequently M1) due to the lawful relationship between them4,10. It is under 
the condition of changing behavior that these correlations can begin to break. 
 
Training the GLMs 
We trained the models using the last 50% of CF or VR trials when behavior was most stable, including only trials 
where the monkeys made successful reaches to acquire the outer target (reward trials). This allowed us to test the 
generalization of the GLMs during the early adaptation trials. For the CF, it was important to both train and test 
the GLMs using trials from the CF epoch to avoid extrapolating between the Null and CF conditions. When we 
imposed the CF, it changed the relationship between the kinematics and dynamics of limb movement. Thus, if we 
trained the GLM on Baseline trials, the relationship between kinematics and neural activity changed immediately 
on CF trials11, leading to poor GLM generalization for all models. By both training and testing within the block of 
CF trials, we avoided the problem of extrapolating to new dynamics conditions. Although the VR sessions did not 
have this problem, we adopted this same approach the sake of consistency. 
 
We trained the models using a maximum likelihood method (glmfit in Matlab, The Mathworks Inc). In the case of 
our full population spiking models, we had dozens to hundreds of covariate inputs for a single predicted output. 
Although we had very large numbers of training datapoints (typically on the order of 10,000 samples), there is the 
possibility our models were impaired by overfitting. We guarded against overfitting using ten-fold cross-
validation of our training dataset. We also repeated our analyses using Lasso GLM for regularization and 
observed nearly identical results (data not shown). We thus chose to use the non-regularized GLM for simplicity 
and to reduce the computational load, since it did not impact our results. 
 
Evaluating GLM performance 
We evaluated GLM performance using a particular formulation of the pseudo-R2 (pR2). The pR2 is analogous to 
the R2 commonly used in model-fitting with Gaussian statistics, but it is generalized to incorporate the assumed 
Poisson statistics of the neural spiking data: 
 

 pRR = 1 − TUV W X YTUV	 W(Z)
TUV W X YTUV	 W(X)

 (9) 
 
The pR2 finds the difference in log-likelihood between the observed spiking data (n) and the model predictions 
(𝜆). This value is compared against the difference in log-likelihood for the mean of the dataset (𝑛). We used the 
Likelihood (L) for Poisson data according to: 

 

 𝐿 = Poisson(𝑛\|𝜆\)]
\^9 = Z_

`_abc	(YZ_)
X_!

]
\^9  (10) 

 
And thus, the log-likelihood (log L) across all time bins (t) of a given spike train is: 
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 log 𝐿 = 𝑛\ log 𝜆\ − 𝜆\ − log 𝑛\!]

\^9  (11) 
 
Although the upper bound for pR2 is one, poor model fits can be less than zero. A pR2 of one indicates a perfect 
model fit, a value of zero indicates that the model prediction performs as well as finding the mean of the data, 
while values less than zero indicate that the model performed worse than merely fitting the mean. Typical pR2 
values are smaller in magnitude than those typically found with the Gaussian R2. When evaluating GLM fits, we 
used a bootstrapping procedure with 1000 iterations to obtain 95% confidence bounds on the pR2 value. We 
considered a model fit to be significant if this bootstrapped confidence interval was above zero, indicating that the 
model helped to explain the spiking activity. For many analyses, we used the relative pseudo-R2 (rpR2), which 
directly compares two separate GLM models. While pR2 compared the log-likelihood of the model predictions to 
the mean of the data, the rpR2 compares the predictions of a Full model to a Basic model with fewer covariates. 
 

 rpRR(Basic, Full) = 1 − TUV W X YTUV	 W(Zh)
TUV W X YTUV	 W(Zi)

 (12) 
 
Here, 𝜆j, the Full model prediction, which includes both the kinematics and the population spiking, is compared 
to 𝜆k, the prediction of the Basic model, which includes only kinematics. This metric thus quantifies the 
improvement in performance afforded by the additional neuronal inputs. Positive values indicate that the Full 
model performed better than the Basic model, while negative values indicate that predictions were better with 
kinematics alone. As with the pR2, we obtained confidence bounds with a bootstrapping procedure and assessed 
significance by determining if the lower bound was above zero. This indicated that the addition of population 
spiking added information over the kinematics alone, and thus could be capturing meaningful functional 
relationships between the population and the predicted cell. 
 
For the time course plots, such as Figure 2h, we predicted neural spiking on individual trials. However, 
predictions could be quite noisy with such small numbers of datapoints. For example, if a cell fired very few 
spikes on a particular trial, the pR2 may be quite low, even though the model generally performed quite well. To 
remove some of this variability, we smoothed the trial-to-trial predictions for each neuron (as well as the overlaid 
behavior) with a moving average. We chose a window of 30 trials, though we observed similar (but slightly more 
variable) traces even down to window sizes of 5-10 trials. Since there were rapid behavioral improvements in the 
early trials, we padded the beginning and end with NaNs, each of a length of half of the window size. This helped 
to prevent averaging out the changing behavioral effects, with the tradeoff of slightly increasing noise. In practice, 
our results were similar without this padding. 
 
Selecting cells with significant population relationships 
For most of our analyses, we studied cells that were well-predicted by our GLMs. We determined this by two 
main criteria using ten-fold cross-validation on the training data. First, we required that the Basic pR2 was 
significantly above zero. This reduced the pool of candidate cells to 522/918 (57%) in M1 and 612/2221 (28%) in 
PMd, but was necessary so that the rpR2 would be well defined. Qualitatively, we obtained similar results when 
we relaxed this criterion to include more cells. We also required that the rpR2 was significantly above zero. We 
only included cells that were significantly above zero for all ten of the folds for all pR2 and rpR2. This method was 
very conservative, but ensured that we only studied cells that were reliably predicted. 
 
Statistical tests 
For the GLM models, we assessed the significance of model fits empirically using a bootstrapping procedure on 
cross-validated data as described above. We additionally used two-sample Student’s t-tests to compare the 
distributions of pseudo-R2 changes in Early and late learning. For Figure 2f, this was done using the raw rpR2 
values. For Figures 2g, 3d, 4c, and Extended Data Figure 5g, the t-test was done using the normalized change in 
rpR2. 
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