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Abstract 
The stabilizing role of sensory feedback in relation to movement dynamics remains to be poorly 
understood in realistic three-dimensional movements of limbs. The objective of this experimental and 
computational study was to classify the contribution of sensory feedback from muscle spindles to the 
control of assistive and resistive limb dynamics during human pointing movements. We integrated a 
human upper-limb musculoskeletal model with a model of Ia primary afferent discharge to analyze 
motion and muscle activation patterns during reaching movements in virtual reality (VR). The reaching 
target locations in VR were selected to define movements with varying roles of gravity and interaction 
torques that created diverse dynamical contexts. Nine healthy human subjects performed the VR task by 
pointing to the reaching targets with visual feedback of their arm location. Motion capture and 
electromyography (EMG) were recorded, and joint torques and Ia primary afferent discharge were 
estimated using the integrated model. The experimental and simulated data were analyzed with 
hierarchal clustering (Gritsenko et al., 2016). The clustering analysis of EMG and predicted 
proprioceptive signals showed a divergent relationship between muscle activation and sensory feedback 
patterns. Even though the Ia models had nonlinear dynamical components, their output was still most 
related to the anatomical grouping of muscles and less so to the dynamical contexts of each movement, 
reflected in muscle activations. Altogether, these results suggest that sensory feedback is nonlinearly 
related to muscle activation profiles and that it may contribute information necessary for coupling 
between proximal and distal muscle groups. 
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Introduction 
Movements are the product of interactions between neural control signals and the musculoskeletal 
dynamics that depend on limb anatomy (Yakovenko, 2011; Gritsenko et al., 2016). The control of this 
complex system is accomplished by the hierarchically organized central nervous system (CNS). 
Musculoskeletal morphology has traditionally been viewed as an additional complexity with redundant 
characteristics that the CNS is required to solve (Bernstein, 1967). The supraspinal systems are thought 
to solve this complexity through the dynamical cortical mechanisms (Churchland et al., 2012) that 
generate a variety of movements through combinations of relatively few neural signals (Tresch et al., 
2006; Cheung et al., 2009; 2012; d'Avella and Lacquaniti, 2013). The precision of such control is 
particularly important to compensate for passive moments around joints that arise from the inertial 
properties of the limb and external forces, such as gravity. These passive moments play two main roles 
during movement, resistive or assistive. An example of the resistive role of passive moments is during 
simultaneous extension or flexion of both shoulder and elbow joints in a horizontal plane. During such 
movement, interaction torques at shoulder and elbow joints are in the opposite direction to net torques, 
that correspond to the direction of the desired movement. These resistive passive moments need to be 
overcome by additional muscle contraction, and they have been shown to be predictively counteracted 
by the CNS (Almeida et al., 1995; Gribble and Ostry, 1999; Koshland et al., 2000; Pigeon et al., 2003; 
Debicki and Gribble, 2005; Kurtzer et al., 2008; Gritsenko et al., 2011). An example of the assistive 
passive moments is akin to a whiplash action between adjacent joints. Skilled baseball players increase 
the efficiency of their throws by using the whiplash action of interaction torques at the elbow that are 
initiated by torques applied at the shoulder(Hirashima et al., 2007). To allow for the assistive passive 
moments to have effect, the magnitude of active moments due to muscle contractions need to be 
reduced. However, the assistive action of passive moments also needs to be kept in check, so that it does 
not cause instability. This could be accomplished by the viscoelastic properties of muscles and spinal 
reflexes, which can resist perturbations and ensure stable control with minimal supraspinal input 
(Asatryan and Feldman, 1965; Brown and Loeb, 2000; Yakovenko et al., 2004; Prochazka and 
Yakovenko, 2007; Valero-Cuevas et al., 2015). Other evidence points toward the stabilizing action of 
sensory feedback through inter-joint coordination (Sainburg et al., 1993; 1995). Altogether, evidence 
suggests that the supraspinal structures need to embed the complex mechanical dynamics of the limb in 
order to appropriately shape the control signals and incorporate sensory feedback (Kluzik et al., 2008; 
Kurtzer et al., 2008; Wagner and Smith, 2008). 

The objective of this study is to classify the contribution of Ia primary afferent discharge to the control 
of assistive and resistive limb dynamics during human pointing movements. To achieve this goal, we 
selected a small set of whole arm movements that were accompanied by either assistive or resistive 
passive joint torques as defined by an inverse dynamic model of the arm. Then, we designed a virtual 
reality task that guided healthy human subjects through these movements. The recorded muscle activity 
and limb kinematics were then used to compare experimental motor commands to sensory feedback 
computed using models.  

Materials and Methods 

Experimental design and human subjects 
We have recruited 9 healthy adults (5 males, 4 females, 24.3 ± 1.8 years old, 76.3 ± 14.5 kg) to perform 
upper extremity reaching movements in a virtual reality (VR) environment. All procedures were 
approved by the West Virginia University Institutional Review Board (Protocol #1309092800). The 
movement task was created with a wearable VR helmet (Oculus Rift) integrated with motion capture. 
Subjects moved to virtual targets on cue with the visual feedback of their arm position (Fig. 1A). To 
minimize the inter-subject differences in motion, the locations of all targets were calculated 
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mathematically based on subject’s segment lengths and shoulder and elbow joint angles, so that in 
movement #1 subjects’ shoulder extended while elbow flexed, in Movement #2 both shoulder and elbow 
flexed, and in Movement #3 shoulder extended while elbow flexed to a different end position. These 
movements defined diverse dynamical contexts where the movement was largely passive (#1), 
interaction torques were resistive with increasing gravitational load (#2), and interaction torques were 
assistive with decreasing gravitational load (#3, Fig. 1B). During movement, we recorded kinematics of 
shoulder, elbow, and wrist joints and electromyography (EMG) of 12 muscles that span those joints. 
Muscles recorded were anterior and posterior deltoids (ADelt and PDelt respectively), pectoralis major 
(Pec), teres major (TMaj), biceps brachii long and short heads (BicL and BicS respectively), triceps 
brachii lateral and long heads (TriLa and TriLo respectively), brachioradialis (BR), extensor carpi 
radialis (ECR), flexor carpi radialis (FCR), and flexor carpi ulnaris (FCU). These muscle abbreviations 
are used consistently throughout the manuscript and figures. Motion capture data were recorded at 480 
Hz using the Impulse system (PhaseSpace) and EMG was recorded at 2000 Hz with MA400-28 
(MotionLab Systems). The onset and offset of each movement was defined using a velocity threshold 
method using wrist and elbow LED markers. 

Figure 1 near here. 
Figure 1. Illustrations of experimental setup and arm models. A: Annotated photo of the setup; insert shows subject’s 
monocular view. Reaching target is in green, origin target is in red. Yellow sphere shows the location of subject’s fingertip 
and the black lines outline the major arm segments for visual feedback of arm location in VR. B: Color lines show fingertip 
trajectories of each of the three movements. Arrows indicate the direction of motion toward the reaching target. The grey 
blocks show the setup of the coordinate systems of the dynamic arm model in MATLAB used to obtain joint torques. C: 
Illustration of the OpenSim model used to derive muscle lengths for calculations of Ia primary afferent discharge. Red lines 
show the anatomical paths of each muscle, from which EMG was recorded during experiments. 

Models 
To calculate joint torques, an inverse dynamic model of the subject’s arm was constructed in Simulink 
(MathWorks). The model comprised five degrees of freedom (DOFs) including shoulder 
(flexion/extension, abduction/adduction, pronation/supination), elbow (flexion/extension), and wrist 
(flexion/extension) and three segments approximating inertial properties of the arm, forearm, and hand 
(Fig. 1B). Inertia of the segments was approximated with a cylinder with 3-cm radius and the length 
equal to that of the corresponding segment. The masses and centers of mass for each segment were 
determined by their anthropometric ratios to the subjects’ segment lengths and weights (Winter, 2009).  

Angular kinematics averaged per movement and per subject was used in the subject-specific inverse 
model to calculate joint torques (Fig. 2). These computed torques are proportional to the sum of all 
moments generated by muscles spanning the joints, so these torques are referred to as muscle torques in 
the rest of the manuscript. The muscle torques were then differentiated to obtain rotatums, whose sign is 
indicative of the directionality of the active forces produced to make a given movement. Rotatums were 
then separated into two separate positive signals based on the sign of the rotatum signals for comparison 
with EMG profiles (Fig. 2). Subjects moved primarily in a sagittal plane, therefore shoulder 
abduction/adduction and pronation/supination DOFs were excluded from all following analyses. 

 

Figure 2 near here. 

Figure 2. Signals calculated from motion capture. Thick lines show averages for each movement across all subjects, shaded 
areas show standard deviations across subjects. Only rotatum signals calculated for shoulder flexion/extension DOF that are 
included in the following analyses are shown. Movement phase represents normalized duration of each movement with 0 
indicating the start of movement and 1 indicating the end of movement. 
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To estimate the sensory contribution from muscle spindles during movement, we have used a published 
model of Ia primary afferent discharge (Prochazka, 1999). The model was derived from cat afferent 
recordings and validated for human afferent recording by Malik et al. (Malik et al., 2016). The offset of 
the model was adjusted from 80 to 10 impulses per second to reflect human microneurography data as in 
Malik et al. (2016). The spindle model relates afferent firing rate (Ia) to the rate of change of muscle 
length (v), muscle length (l), and normalized EMG (a) as follows: 

 �� � 65 · ��.� � 200 · � � 30 · � � 10              (1) 
 

Muscle length was normalized to vary between 0 and 1, which corresponded to minimal and maximal 
possible muscle lengths respectively, calculated as described below. Velocity was in the units of rest 
length per second; a given muscle rest length was defined as described below. EMG was high-pass 
filtered at 5 Hz, rectified, low-pass filtered at 20 Hz, and normalized to the maximum across all 
movements. 

Muscle lengths were calculated using a modified musculoskeletal model of the human arm in OpenSim 
(Saul et al., 2015; Gritsenko et al., 2016) (Fig. 1C). The model was scaled for each participant’s segment 
lengths by adjusting proportionally the muscle origin and insertion points and muscle paths to individual 
segment dimensions. We used the model to estimate muscle length changes during movement from joint 
kinematics. The recorded motion capture data were used to calculate averaged joint kinematics for each 
movement and each subject as described above. The DOFs of the OpenSim model were set using the 
angular kinematics and the corresponding muscle lengths were calculated for each sample. Muscle rest 
length was generalized as the average muscle length within the physiological range of motion. These 
data and EMG were used in equation (1). 

Analysis 
We used regression analysis to explore the relationships between muscle activations and Ia primary 
afferent discharge. All signals were aligned on movement start and normalized to the duration of 
movement using onset and offset events defined from motion capture as described above (Fig. 2 and 3). 
We created normalized EMG and Ia profiles for each muscle and each movement per subject by 
averaging signals across 20 repetitions. Then, we calculated correlation coefficients (r) between all pairs 
of EMG and Ia profiles. These r values were then converted into the heterogeneous variance explained 
(HVE) as follows:  

 

��� � �1 � ��, |� � 0, � � 0.05�1 � ��, |� � 0, � � 0.05�1, |� � 0.05� �                   (2) 

 

This transformed the large positive r values that were characteristic of agonistic relationships into short 
distances close to 0 and the large negative r values corresponding to antagonistic relationships into long 
distances close to 2. Lastly, we used hierarchical clustering across participants on unbiased HVE 
distance matrix using the linkage function with un-weighted average distance method (Gritsenko et al., 
2016). 

 

Figure 3 near here. 
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Figure 3. EMG and Ia profiles. Thick lines show averages for each movement across all subjects. Shaded areas show standard 
error of the mean across subjects for EMG and standard deviation across subjects for Ia signals. Movement phase represents 
normalized duration of each movement with 0 indicating the start of movement and 1 indicating the end of movement. 

 

Consistent muscles were determined based on belonging within the same clusters across the three 
movement types. Cluster labels were first matched across subjects and subsequently across movements 
based on the majority of signal types inside each cluster. Then the total number of signals that fall within 
clusters with the same label across all movements was calculated for hierarchical clustering of EMG and 
Ia and separately for hierarchical clustering of EMG and rotatums. The cluster assignments were 
obtained for 2 to 12 clusters for EMG/Ia clustering and 2 to 9 clusters for EMG/rotatum clustering. The 
upper limit of the total number of clusters was set at half the total number of signals, e.g. 24 EMG and Ia 
signals and 18 EMG and rotatum signals. Figures showing results of hierarchal clustering were done 
based on averaged HVE values across subjects per movement.  

Statistics 
Consistency of hierarchal clustering was evaluated using analysis of variance with repeated measures 
(rANOVA). Five rANOVAs were applied in MATLAB to the outcomes of hierarchical clustering for 
individual subjects (Table 1). rANOVA1, rANOVA2, and rANOVA3 will refer to the statistical analysis 
of cluster assignments of EMG and Ia signals, while rANOVA4 and rANOVA5 will refer to the 
statistical analysis of cluster assignments of EMG and rotatum signals. All rANOVAs compared cluster 
assignments of recorded data with noise estimated with a Bootstrap procedure (Efron and Tibshirani, 
1993). The Bootstrap procedure included random permutation of cluster assignments 900 times, 100 
times per subject. The rANOVAs were designed to test five null hypotheses. The null hypotheses of 
rANOVA1 and rANOVA4 were that the number of agonist signals in each cluster is equal to that 
occurring by chance (rANOVA1 on EMG/Ia and rANOVA3 on EMG/rotatum). EMG and Ia signals 
were considered agonistic if they originated from the same muscles. EMG and rotatum signals were 
considered agonistic if they span the same joint and acted in the same direction, e.g. BicL and elbow 
flexion rotatum. The other three null hypotheses were that the number of experimental clusters 
containing only signals of one type, e.g. only EMG, or only Ia, or only rotatum, is equal to that 
occurring by chance (rANOVA2, rANOVA3, and rANOVA5 respectively). All rANOVAs contained 
three factors. The first was a between-factor Group defining subject cluster assignments vs. randomized 
cluster assignments. The randomized cluster assignments were averaged across 100 permutations to 
match the number of subjects for a balanced ANOVA design. The second was a within-factor 
Movement defining data belong to the three movements. The third was a within-factor Cluster defining 
the level of hierarchy, i.e. 2-cluster breakdown, or 3-cluster breakdown, and so on until the number of 
clusters equaled half of the number of signals. Main and interaction effects were investigated using 
MATLAB ranova function, and post-hoc analysis between levels of the within factors was done using 
MATLAB multcompare function. 

 

Table 1. Summary of statistical analysis of hierarchal clustering. 

 rANOVA1 rANOVA2 rANOVA3 rANOVA4 rANOVA5 

Signals EMG and Ia EMG and Ia EMG and Ia EMG and 
rotatum 

EMG and 
rotatum 

H0 Nagonist/cluster = 
Nrandom  

NEMG/cluster = 
Nrandom  

NIa/cluster = 
Nrandom  

Nagonist/cluster = 
Nrandom  

Nrotatum/cluster = 
Nrandom  
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H0 is null hypothesis; N is the number of signals of a certain type included in the rANOVA. 

 

Results 
Subjects performed movements in a highly-consistent manner. The angular excursions of each joint 
were very similar across subjects for the three movements (Fig. 2, top row). This resulted in highly 
consistent muscle torques and their components, the flexion and extension rotatums (see Methods, Fig. 
2). Movement #1 was initiated with active extension shoulder torque accompanied by largely passive 
motion of elbow and wrist. This movement was stopped through primarily active elbow flexion and 
wrist extension torques. Movement #2 was initiated with active flexion torques at the shoulder and 
elbow and extension torque at the wrist. This movement was stopped through simultaneous active 
shoulder and elbow extension torques and wrist flexion torque. Movement #3 was initiated with active 
flexion torques at the elbow and wrist and accompanied by largely passive shoulder motion (Fig. 2, 
Shoulder). This movement was stopped through simultaneous active elbow extension torque and wrist 
flexion torque. The movements were accompanied by somewhat more variable muscle activation and Ia 
profiles (Fig. 3). The profiles of EMG were less variable during Movement #2 compared to the other 
movements. During Movement #2 shoulder was flexing, while during the other movements it was 
extending, thus the simulated profiles of Ia were markedly different for shoulder muscles during 
Movement #2 compared to the other movements. In contrast, the profiles of EMG during Movement #3 
were largely similar across most muscles, which reflects co-contraction. The Ia profiles that most closely 
followed the pattern of co-contraction were from wrist flexor muscles (Fig. 3, FCR and FCU). 

Overall, we found that EMG profiles were highly correlated with each other and with Ia profiles in all 
three recorded movements (Fig 4A). The clustering was very robust across subjects, so that most signals 
ended up in the same clusters at multiple levels of the hierarchy (Fig 5A). Surprisingly, EMG and Ia 
profiles from agonist muscles did not group together into the same clusters.  Statistical analysis has 
shown that there were fewer agonistic EMG and Ia profiles grouped into common clusters than expected 
by chance (Table 2, significant effects of Group factor). This was true for movements #2 and #3, but not 
#1 (Table 2, post-hoc tests per movement) at all hierarchal levels except for 2- and 3-cluster breakdown. 
We also found that EMG and Ia profiles tended to cluster into separate groups. EMG clustering changed 
between movements and EMG clusters included muscles spanning different joints that are not traditional 
agonists (Fig. 5, red lines). The number of homogeneous EMG clusters was higher than expected by 
chance (Fig 6A; Table 3, main effects and insignificant interactions). This was significant for 
movements 1 and 3 (Table 3, post-hoc tests) at all hierarchal levels except for 3- and 4-cluster 
breakdown.  

 

Figure 4 near here. 

Figure 4. Mean correlation matrices across subjects per movement. Only significant correlations are plotted (p < 0.05). A: 
Pearson correlation coefficient (r) between EMG and Ia profiles. Blue colors indicate negative correlations; yellow colors 
indicate positive correlations. B: Pearson correlation coefficient (r) between EMG and rotatum profiles. 

 

Figure 5 near here. 
Figure 5. Hierarchical clustering across subjects per movement. A: Clustering between EMG and Ia profiles is shown as polar 
dendrograms. Lines emanating from the center indicate the distance between signal clusters calculated from HVE. The 
clustering threshold that determines the cluster number breakdown is the distance from the center of the diagram, so that high 
threshold in the center means fewer clusters and low threshold on the periphery means more clusters. B: Polar dendrograms 
of hierarchal clustering between EMG and rotatum profiles. Formatting as in A. Se, Ee, and We are abbreviations for 
shoulder, elbow, and wrist extension rotatums respectively. Sf, Ef, and Wf are abbreviations for shoulder, elbow, and wrist 
flexion rotatums respectively. 
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Figure 6 near here. 

Figure 6. Numbers of homogeneous clusters across subjects per movement. A: The number of homogeneous EMG clusters as 
a function of cluster hierarchy determined by different clustering threshold, between 2 and 12 clusters. Thick lines show 
mean values and shaded ares show standard deviation across subjects (experiment) or across bootstrapped values (chance). B: 
The number of homogeneous Ia clusters as a function of cluster hierarchy, between 2 and 12 clusters. Formatting as in A. C: 
The number of homogeneous rotatum clusters as a function of cluster hierarchy, between 2 and 9 clusters. Formatting as in 
A. 

 

Table 2. Statistical analysis of hierarchal clustering between EMG and Ia profiles to test for grouping of 
agonist signals. 

rANOVA1 Sum of 
Squares 

Degrees of 
Freedom 

Mean Squared 
Error 

F p 

(Intercept): Within 2483.9 32 77.62 88.24 < 0.01 

Group: Within 12.5 32 0.39 0.45 0.80 

Error (Within) 540.4 512 0.88   

Post-hoc: experiment - noise Difference Standard Error  p 

Group  -0.80 0.22  < 0.01 

Movement #1  -0.63 0.41  0.15 

Movement #2  -0.86 0.37  0.03 

Movement #3  -0.93 0.29  0.01 

Within refers to two within factors Group and Cluster in this and all following tables. All post-hoc tests compared levels of 
the Group factor, i.e. experimental vs. Bootstrapped cluster assignments. 

 

Table 3. Statistical analysis of hierarchal clustering between EMG and Ia profiles to test for the presence 
of homogeneous EMG clusters. 

rANOVA2 Sum of 
Squares 

Degrees of 
Freedom 

Mean Squared 
Error 

F p 

(Intercept): Within 9.6 32 0.30 51.35 <0.01 

Group: Within 0.9 32 0.03 4.82 0.04 

Error (Within) 3.0 512 0.01   

Post-hoc: experiment - noise Difference Standard Error  p 

Group  0.1 0.01  <0.01 

Movement #1  0.14 0.02  <0.01 

Movement #2  0.04 0.03  0.22 
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Movement #3  0.13 0.02  <0.01 

 

 

The clustering of Ia profiles tended to change less across movements. Furthermore, Ia profiles from 
muscles that are traditional agonists tended to cluster together. For example, FCU and FCR were always 
closely correlated in all movements. This was also true for PDelt and TMaj, and for BicL, BicS, and Br 
(Fig 5A, blue lines).  The number of homogeneous Ia clusters was higher than expected by chance, but 
to a lesser degree than the number of homogeneous EMG clusters (Fig. 6B, Table 3). This was 
significant only for the movement #3 (Table 4, post-hoc tests) and only at 4-, 6- and 7-cluster 
breakdown. 

 

Table 4. Statistical analysis of hierarchal clustering between EMG and Ia profiles to test for the presence 
of homogeneous Ia clusters. 

rANOVA3 Sum of 
Squares 

Degrees of 
Freedom 

Mean Squared 
Error 

F p 

(Intercept): Within 5.5 32 0.17 29.46 <0.01 

Group: Within 0.7 32 0.02 3.91 <0.01 

Error (Within) 3.0 512 0.01   

Post-hoc: experiment - noise Difference Standard Error  p 

Group  0.03 0.02  0.17 

Movement #1  -0.04 0.03  0.16 

Movement #2  0.06 0.04  0.18 

Movement #3  0.08 0.02  <0.01 

 

During the same movements, fewer strong correlations were observed between EMG profiles and 
rotatums, although the latter were correlated among themselves (Fig. 4B). Statistical analysis has shown 
that there were fewer agonistic EMG and rotatum signals grouped into common clusters than expected 
by chance (Table 5, significant effects of Group factor). This was true for movements #2 and #3, but not 
#1 (Table 5, post-hoc tests per movement) at all hierarchal levels. Hierarchal clustering further showed 
that rotatums were mostly grouped into two clusters (Fig. 5B, green lines). One cluster consisted of 
Shoulder flexion, Elbow flexion, and Wrist extension, and the other cluster consisted of Shoulder 
extension, Elbow extension, and Wrist flexion. The only exception was movement #3, in which shoulder 
flexion rotatum was largely zero (Fig. 2) and both shoulder rotatums changed their cluster allocations. 
Statistical analysis has shown that the number of homogeneous rotatum clusters was higher than 
expected by chance (Fig 6C; Table 6, main effects and insignificant interactions). This was significant 
for movements #2 and #3 (Table 6, post-hoc tests) at all hierarchal levels except for 2-cluster 
breakdown. 
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Table 5. Statistical analysis of hierarchal clustering between EMG and rotatum signals to test for 
grouping of agonist signals. 

rANOVA4 Sum of 
Squares 

Degrees of 
Freedom 

Mean Squared 
Error 

F p 

(Intercept): Within 1442.4 23 62.71 66.91 <0.01 

Group: Within 46.7 23 2.03 2.17 0.08 

Error (Within) 344.9 368 0.94   

Post-hoc: experiment - noise Difference Standard Error  p 

Group  -1.56 0.23  <0.01 

Movement #1  -0.94 0.37  0.02 

Movement #2  -1.33 0.42  <0.01 

Movement #3  -2.29 0.32  <0.01 

 

 

Table 6. Statistical analysis of hierarchal clustering between EMG and rotatum signals to test for the 
presence of homogeneous rotatum clusters. 

rANOVA5 Sum of 
Squares 

Degrees of 
Freedom 

Mean Squared 
Error 

F p 

(Intercept): Within 2.7 23 0.12 13.74 <0.01 

Group: Within 0.6 23 0.02 2.85 0.05 

Error (Within) 3.1 368 0.01   

Post-hoc: experiment - noise Difference Standard Error  p 

Group  0.14 0.03  <0.01 

Movement #1  0.06 0.04  0.14 

Movement #2  0.17 0.04  <0.01 

Movement #3  0.18 0.03  <0.01 

 

Discussion 
The objective of this study is to quantify the contribution of Ia primary afferent discharge to the control 
of assistive and resistive limb dynamics during human pointing movements. The main finding of this 
study is that clustering of Ia profiles is distinct from that of EMG profiles during movements with 
distinct dynamic conditions. These results suggest that the primary afferent signals are providing 
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information that is of a different modality than the outgoing activity of motor neurons. Indeed, the 
ensemble firing rate of motor neurons has been closely linked to the forces produced by the muscles. In 
contrast, the primary afferent firing rate is most related to the muscle length and its rate of change 
(Prochazka, 1999). There is a known monosynaptic relationship between primary afferents and motor 
neurons innervating the same and synergistic muscles that underlies stretch reflexes, which compensate 
for perturbations. This anatomical arrangement would result in common signals that would be observed 
between profiles of the activity of primary afferents and the profiles of the activity of homologous motor 
neurons. However, our results have shown that there is very little common variance between the Ia 
profiles and EMG profiles from agonistic muscles. This indicates that the simple reflex relationship is 
not a major contributor to common muscle activations, or synergies, observed during reaching 
movements. This supports prior studies showing that short-latency stretch reflexes do not scale together 
with mechanical interactions between arm joints when perturbations are applied prior to movement 
(Kurtzer et al., 2009; Weiler et al., 2015). Instead, these studies have shown that long-latency reflexes, 
that presumably involve descending neural signals, do scale with mechanical interactions between arm 
joints in a goal-dependent manner. Our results add the evidence that during movement execution 
primary afferent feedback needs to be processed by the CNS prior to being incorporated into the 
ongoing motor commands.  

The movements selected for this study represent different dynamical contexts, where the movement #1 
was largely passive, movement #2 was against gravity and accompanied by resistive interaction torques 
between all joints, and movement #3 was with gravity and accompanied by assistive interaction torques 
between shoulder and elbow. To compensate for these dynamic conditions, the forces generated by the 
muscles, as reflected in active muscle torques, were different in the three movements, even when the 
joint motion resulting from these torques was the same (Fig. 2, wrist). Despite the varied dynamical 
conditions, we observed consistent clustering of rotatum signals from different joints across all 
movements. This occurred even though the movement trajectories were unconstrained. This suggests 
that there is a robust inter-joint coordination that is independent of dynamic condition. This is consistent 
with known invariant characteristics of motion kinematics and dynamics (Soechting and Lacquaniti, 
1981; Hollerbach and Flash, 1982). However, unlike joint torques, the common signals in muscle 
activation were not consistent with the observed invariances in inter-joint coordination. Indeed, EMG 
clustering changed between movements and did not appear to include consistent agonists or muscles 
spanning the same joints within a given cluster (Fig. 4 and 5). Instead, the common signals in EMG may 
be more likely related to the different dynamic conditions experienced by the limb during these 
movements. For example, in the movement #3 the clustering of antagonistic muscles with assistive 
interaction torques may serve to increase joint stiffness, which would help stabilize the movement. In 
movement #2, the clustering of predominantly antigravity flexors may serve to overcome resistive 
interaction torques and increasing gravity load experienced by the limb during that movement (Fig. 5). 
Thus, common activation of muscle groups may reflect the neural compensation for complex limb 
dynamics (Gritsenko et al., 2011).  

Most muscles span at least two joints and even more DOFs, because the anatomy of most joints support 
motion along several rotational DOFs. For example, shoulder can move along three rotational DOFs 
represented by functional motions of flexion/extension, abduction/adduction, and internal/external 
rotation. Although each DOF is independent by definition, muscle contractions would naturally couple 
the DOFs that belong to the joints that those muscles span. Thus, we would expect coupling between 
shoulder and elbow DOFs, because multiple muscles span both of those joints. In a prior computational 
study with the musculoskeletal model of the human arm, we have observed such coupling between 
muscle lengths across all joint excursions even without muscle contractions (Gritsenko et al., 2016). We 
termed it mechanical coupling, as it arose purely from the anatomical arrangement of muscles on the 
skeleton. Interestingly, the Ia clusters observed in the current study are similar to those identified 
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through mechanical coupling, i.e. common signals in Ia primary afferent profiles occurred among 
agonist muscles that span the same joints (Fig. 5 red lines). Notably, mechanical coupling separated 
muscles into proximal and distal groups, where lengths of muscles that spanned shoulder and elbow 
joints did not correlate with the lengths of muscles that spanned wrist and finger joints. This separation 
between proximal and distal muscles is also evident in the Ia primary afferent clusters of the present 
study. In contrast, we have observed clustering of rotatum signals across all three modeled joints, the 
wrist rotatums were not clustering separately from the shoulder and elbow rotatums (Fig. 5 green lines). 
Similarly, the clustering of EMG in different movements was not divided into proximal and distal 
groups. Altogether, this suggests that one of the functions of the neural motor command for the observed 
pointing movements may be to couple proximal and distal muscle groups defined by anatomy using the 
proprioceptive information about the state of each of these groups. 
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