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Abstract

Integrative clustering is used to identify groups of samples by jointly analysing multiple
datasets describing the same set of biological samples, such as gene expression, copy
number, methylation etc. Most existing algorithms for integrative clustering assume
that there is a shared consistent set of clusters across all datasets, and most of the data
samples follow this structure. However in practice, the structure across heterogeneous
datasets can be more varied, with clusters being joined in some datasets and separated
in others.

In this paper, we present a probabilistic clustering method to identify groups across
datasets that do not share the same cluster structure. The proposed algorithm,
Clusternomics, identifies groups of samples that share their global behaviour across
heterogeneous datasets. The algorithm models clusters on the level of individual
datasets, while also extracting global structure that arises from the local cluster
assignments. Clusters on both the local and the global level are modelled using a
hierarchical Dirichlet mixture model to identify structure on both levels.

We evaluated the model both on simulated and on real-world datasets. The
simulated data exemplifies datasets with varying degrees of common structure. In such
a setting Clusternomics outperforms existing algorithms for integrative and consensus
clustering. In a real-world application, we used the algorithm for cancer subtyping,
identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm
to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA
methylation and proteomics. The algorithm extracted clinically meaningful clusters
with significantly different survival probabilities. We also evaluated the algorithm on
lung and kidney cancer TCGA datasets with high dimensionality, again showing
clinically significant results and scalability of the algorithm.

Author Summary

Integrative clustering is the task of identifying groups of samples by combining
information from several datasets. An example of this task is cancer subtyping, where
we cluster tumour samples based on several datasets, such as gene expression,
proteomics and others. Most existing algorithms assume that all such datasets share a
similar cluster structure, with samples outside these clusters treated as noise. The
structure can, however, be much more heterogeneous: some meaningful clusters may
appear only in some datasets.
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In the paper, we introduce the Clusternomics algorithm that identifies groups of
samples across heterogeneous datasets. It models both cluster structure of individual
datasets, and the global structure that appears as a combination of local structures.
The algorithm uses probabilistic modelling to identify the groups and share information
across the local and global levels. We evaluated the algorithm on both simulated and
real world datasets, where the algorithm found clinically significant clusters with
different survival outcomes.

Introduction

Current growth in high-throughput analysis methods in bioinformatics gives access to
many different types of data measuring behaviour in complex biological systems. It is
now possible to observe multiple levels of a complex biological process simultaneously.
For example, we can look at DNA copy number changes, gene expression patterns,
epigenetic features such as DNA methylation, and protein expression - all giving a view
of different aspects of the underlying process. Analysis of such data is non-trivial
because of the need to integrate information from the different levels. Integrative
methods that look at the combined effects of several levels of biological processes in the
cell have the potential to identify more features that lead to complex phenotypes.

We introduce a novel algorithm for integrative clustering for heterogeneous
multilevel data: context-dependent clustering. In general, integrative clustering is the
task of identifying clusters in a set of related datasets across the same samples.

As a motivating example, we use the problem of cancer subtyping. Cancer is a
heterogeneous process where even cancers originating from the same tissue behave
differently in relation to their original driver mutations [1]. Cancer subtyping is the task
of identifying types of cancer which are typically associated with different patient
outcomes, therapy responses or tumour aggressiveness. Finding such cancer subtypes
then allows identification of the differences between their molecular behaviour. By
integrating different levels of data we can get a better understanding of the interplay of
different steps in cancer biochemical pathways.

In the cancer subtyping problem, we use integrative clustering to characterise
different types of cancer, based on the tumours’ genomic and other omic profiles. The
tumour samples are simultaneously analysed using different technologies, for example
gene expression, methylation, and sequencing, yielding a set of related datasets.
Integrative clustering looks for a partitioning of tumour samples based on their
exhibited behaviour across the datasets.

Compared to standard clustering methods, the main challenges in integrative
clustering come from the fact that individual datasets are not directly comparable: each
of them describes a different aspect of the underlying biological process. Datasets may
even have different data types - continuous gene expression values, binary
presence/absence of chromatin modifications or even time-series observations and
clinical markers.

Because each data set originates from a different context, clusters obtained from
different datasets are not consistent in general. Cluster membership and/or the number
of clusters may differ between datasets. This discrepancy originates both from noise and
from biological heterogeneity. For example, Ovaska et al. [2] report unexpectedly poor
concordance between gene amplification, expression of the genes from the amplicons,
and patient survival in a study on childhood brain tumour glioblastoma multiforme.
Kristensen et al. [3] analysed results from dataset-specific clustering analyses on
different types of omic data and note that only a minority of the samples were grouped
together across all datasets.

These examples show that the notion of a cluster itself is ambiguous in the context
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of integrative clustering. Most existing methods aim to extract a common cluster
structure that is shared across all datasets. However, due to the multiple different
sources of heterogeneity, biases and high level of noise, a single cluster structure that
would be common to all datasets may not exist or it may not be identifiable in some of
the datasets. The assumption of a common cluster structure is well suited to model only
the processes that show consistent behaviours across all datasets. However, this
assumption is limiting in modelling complex heterogeneous processes such as cancer.

Using a simple example from breast cancer research, both increase in copy number of
the HER2 gene, and increase in expression of the corresponding protein are correlated
with poor prognosis in patients [1]. One would naively expect that the oncogene copy
number amplification leads to over-expression of its protein. However, the relation is
not always this straightforward: some tumours over-express HER2 even without the
original gene amplification [1]. The over-expression is apparently achieved through a
mechanism other than a change in gene copy number. However, the samples would not
be distinguishable based on gene expression data alone, but can be separated by taking
genomic information into account as well.

By assuming a single common cluster structure, these heterogeneous situations are
difficult to model. A set of samples may systematically belong to two distinct clusters
in one dataset (copy number aberration) and to a single joint cluster in a second dataset
(mRNA gene expression). This example shows that real biological processes display
different behaviours in different contexts, which leads to different cluster arrangements.

The existing algorithms for integrative clustering assume that there is only a single
common cluster structure across all analysed datasets. Individual samples then either
follow this structure or they are considered to be a noise. This treatment of inconsistent
samples is suitable for technical noise which does not bear biological significance, but it
can miss cases where the difference is biologically meaningful.

The proposed context-dependent clustering model assumes instead that a single
biological process (such as cancer) looks and behaves differently in different contexts. A
context might represent different stages of the process (early versus late carcinogenesis),
or different data domains (DNA modifications, mRNA expression, etc.).

Existing methods assume a common structure

Here we look at some of the existing approaches to integrative clustering and how they
use the assumption of a common clustering structure.

The iCluster algorithm [4,5] uses a Gaussian latent variable model to infer clusters.
It assumes that there is a common set of latent cluster membership variables across all
datasets. Differences in structure between different datasets are accounted for only via
individual noise terms, which correspond to within-dataset variances. iCluster uses the
k-means algorithm to extract the actual cluster assignments given latent variable values.

Using this approach, it is possible to obtain clusters where the data are well
separated across all datasets. However, if two clusters are joined together in one dataset
and separate in another dataset, this leads to ambiguous latent variable values and
iCluster fails to infer the correct partitioning. Also, using k-means for cluster inference
from latent variable values makes the algorithm strongly dependent on the correct
specification of the number of clusters. We demonstrate this behaviour on a simulated
dataset later in the paper.

A similar algorithm to iCluster is the Joint and Individual Clustering (JIC) [6]. This
algorithm uses the connection between principal component analysis and k-means
clustering to integrate data from multiple datasets and infer both joint clusters and
dataset-specific clusters. The dataset-specific clusters are estimated so that they are
independent of the joint clusters, and thus capture independent structure that exists
only within individual datasets. This algorithm still uses the assumption of one global
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cluster structure across the datasets, which is augmented by additional cluster structures
within individual datasets that are independent of the overall global structure.

Bayesian consensus clustering (BCC) [7] relaxes the assumption of a common cluster
structure by allowing different datasets to follow individual local clustering models.
Apart from the local clusters, BCC introduces a global cluster structure as well. This
depends on the local clusters through a parameter α, which regulates how much the
local clusters correspond to the global clusters. The split between global and local
structure brings flexibility in modelling inconsistent cluster structures across many
datasets. The consensus global cluster assignments then define a common clustering
based on partial agreement between context datasets.

However, this again assumes that there is a common set of clusters which are
exhibited in a similar way across all datasets. Deviances from this structure are
considered to be dataset-specific noise, which might lead to omission of any additional
structure that is present in the data.

Multiple Dataset Integration (MDI) [8] uses a different approach. This model does
not assume a common clustering but it looks only at pair-wise relations between
datasets. In this formulation, every dataset can have a flexible set of clusters, and a
pairs of samples are considered fused, if they belong to the same set of pairs of clusters
across datasets. This limits the interpretability of a solution. Although the model
allows enough flexibility for combinations of clusters, it does not explicitly encourage
any sharing of clusters across more than pairs of datasets.

Another approach is taken by the Similarity Network Fusion (SNF) [9]. This
algorithm uses an iterative approach on dataset-specific similarity networks that
intensifies strong similarities and diminishes weak similarities across samples. This
again implies the existence of a common structure that is consistent across the datasets.

Context-dependent integrative clustering

We introduce the context-dependent clustering model to address the issues outlined in
the introduction. Compared to existing integrative clustering algorithms, the proposed
model does not generally assume a single partitioning of the data that is consistent
across heterogeneous datasets.

If a process is allowed to follow different cluster structures across several contexts,
we have to modify our notion of clustering. We assume that there is a set of clusters
within each context (dataset), but these clusters do not generally correspond directly to
each other. However, some dependency between the clusters is expected:

1. Clustering structure in one context should influence clustering in other contexts.
If two samples are clustered together in one context, they should be more likely to
be clustered together in other contexts as well.

2. Different degrees of dependence should be allowed between clusters across contexts.
For example, datasets may not share the same numbers of clusters. We should be
able to model cases where all contexts share the same cluster structure, as well as
cases where the clusters are completely independent in the different contexts.

Using the example of the HER2 oncogene from the Introduction, there are two levels
of complexity we can analyse. If we consider only tumour samples which over-express
HER2, the first level is formed by the individual contexts: there are two clusters in
DNA amplification dataset (amplified or neutral), and one cluster when we consider
mRNA expression of HER2 (over-expressed). If we assumed a globally consistent cluster
structure, we would have to either artificially split the cluster of samples which
over-express HER2, or artificially join the two clusters with different copy number
aberrations. When we look at the problem from the global level, we get two groups of
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Figure 1. Illustration of heterogeneous cluster structures in two contexts (datasets).
Each context corresponds to different data source (gene expression, ribosome profiling,
proteomics etc.) describing the same set of biological samples. In the first context, there
are two distinct clusters on the local level. In the second context, there is only a single
local cluster. From the overall perspective, there are two global clusters defined by the
combined behaviour across the two contexts.

samples that behave in a different way across contexts. The behaviours are defined by
different combinations of context-specific clusters. The concepts are illustrated in Fig. 1.

The context-dependent clustering model as proposed here uses a Bayesian clustering
framework to infer both the local structure within each dataset, as well as the global
structure which arises from the combination of cluster assignments. We use probabilistic
framework, with hierarchical Dirichlet mixture models to model clusters across the
contexts. We fit the model using Gibbs sampling. Details of the model formulation and
inference algorithms are presented in the Methods section.

In the next section we focus on a comparison of the proposed algorithm with
alternative context dependent clustering approaches on simulated as well as on
real-world datasets.

Results

We evaluate the proposed context-dependent clustering model both on simulated
dataset to compare its performance with other currently used methods, and on real
world datasets. The simulated example demonstrates that the proposed model identifies
clustering structure within datasets where the dependence of individual contexts varies.
The applications to the real world datasets (breast cancer, lung cancer and kidney
cancer) from The Cancer Genome Atlas (TCGA) show that the algorithm identifies
biologically meaningful structure, which is characterized by significantly different
survival outcomes. Finally, we demonstrate the robustness of the results to changes in
parameter settings.
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Figure 2. Example of the simulated data for p = 0 and p = 0.5, which show different
degrees of dependence. The x axis corresponds to the data in the first dataset (context),
the y axis represents the data in the second dataset (context). The two subfigures show
the two extreme situations: (a) For p = 0, we get two global clusters. Cluster
membership is fully dependent on each other in both datasets. (b) For p = 0.5, we get
four global clusters, where cluster membership in one dataset is fully independent on
cluster membership in the second dataset.

Case Study: Simulated Datasets with Heterogeneous Structure

In this section, we look at how the proposed context-dependent clustering method
performs in a situation where there is no single common clustering structure. We
compare its performance with popular alternative clustering algorithms on a set of
simulated data with various degrees of dependence between contexts.

The simulated data are formed by two 1-dimensional datasets, which represent a
dataset with two contexts. Each context contains two clusters: both clusters are
normally distributed with unit variance but with different means. Cluster 1 in both
contexts is centred at -2 and Cluster 2 is centred at 2. The two clusters are well
separated and they do not overlap significantly. We combine the clusters to simulate
different degrees of independence between context-specific cluster structures.

We generate 100 data sets each with 200 samples according to the following
procedure. For each data set we sample a mixture probability p uniformly from the
interval (0, 0.5). For the first group of 100 samples we sample each of the two context
values independently from N (−2, 1) or from N (2, 1) with probability 1− p and p,
respectively, that is, since p < 0.5 mostly from Cluster 1, but occasionally also from
Cluster 2. For the next group of 100 samples we sample the each of two context values
independently from N (−2, 1) or from N (2, 1) with probability p and 1− p, that is,
mostly from Cluster 2 this time, but occasionally from Cluster 1.

For mixture probabilities p close to 0, the clusterings of the two contexts largely
agree by putting the first 100 samples into Cluster 1, and the rest into Cluster 2,
leading to two global clusters. At the other extreme, if p is close to 0.5, cluster
assignments are more or less random and there is little agreement between contexts,
leading to four global clusters.

Fig. 2 shows data sampled from the two opposing scenarios. If the data distributions
are fully dependent across the contexts, we get two global clusters (Fig. 2a). Because
the data are assigned to the same cluster in both contexts, there is a single common
cluster structure. On the other hand, if the two contexts are independent, we get four
global clusters (Fig. 2b) which correspond to the combinations of context-specific cluster
assignments. This scenario is difficult to model if we look at individual contexts
separately.
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Figure 3. ARI comparing global clustering of simulated datasets for varying values of
p (see Fig. 2). Each point corresponds to the corresponding algorithm applied to one
dataset, the plot shows also the loess curve for each method. Higher values correspond
to better agreement between the estimated cluster assignments and the true cluster
membership.

Results We use the simulated data to evaluate the following integrative clustering
algorithms:

1. The proposed Context-Dependent Clustering (Clusternomics)

2. Bayesian Consensus Clustering (BCC) [7]

3. Multiple Dataset Integration (MDI) [8]

4. iCluster [4, 5]

5. Similarity Network Fusion [9]

Methods 1, 2 and 3 are Bayesian probabilistic methods fitted using MCMC sampling,
4 uses a latent variable model fitted with an EM algorithm combined with k-means
clustering and finally 5 is an algorithm based on summarised distances between samples.

We ran the listed methods on the 100 simulated datasets. Details on the settings of
the individual algorithms are given in S1 Appendix. The results are only comparable on
the level of global clustering due to the properties of the algorithms themselves: SNF
and iCluster only compute the global clustering across all contexts. BCC and MDI have
a notion of local clustering within each context, but they do not allow the number of
clusters to differ between the global and local level. All methods except for MDI use the
number of global clusters as their input: we set this equal to 4.

We use the adjusted Rand Index (ARI) [10] to compare the true cluster assignments
used to generate the data, and the results estimated by each algorithm. The ARI
measures agreement between two partitions of the same set of samples; the value of 1
corresponds to complete agreement between two cluster assignments, and 0 means the
agreement between partitions is caused by chance. Fig. 3 shows ARI values comparing
the different algorithms for the 100 simulated datasets.

For small values of p, which correspond to two fully dependent global clusters, all
probabilistic methods Clusternomics, BCC and MDI perform similarly well. For higher
values of p, which represent higher degrees of independence of clusters between contexts,
Clusternomics and iCluster have the best performance. However, overall only
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Figure 4. ARI comparing global clustering of simulated datasets with misspecified
number of clusters for varying values of p, when we set the number of global clusters to
5. Each point corresponds to a corresponding algorithm applied to one dataset, the plot
shows also the loess curve for each method. Higher values correspond to better
agreement between the estimated cluster assignments and the true cluster membership.

Clusternomics is able to recover the underlying cluster structure across all different
values of p.

The disappointing performance of MDI is caused by the algorithm allocating all the
samples to a single cluster for higher values of p. One should note, however, that the
MDI algorithm was disadvantaged in this setting because it infers the number of
clusters from the data instead of using a pre-specified value.

The iCluster and SNF algorithms were also disadvantaged specifically for small
values of p because these algorithms use k-means and spectral clustering respectively to
extract the number of clusters. This makes them very sensitive to mis-specification. As
an illustration, Fig. 4 shows the behaviour of all analysed algorithms when we set the
number of global clusters to 5, and allowed up to 3 clusters in every context in the
Clusternomics algorithm. We can see that the change in the number of clusters does not
affect probabilistic algorithms but iCluster and SNF are strongly dependent on this
setting.

In real world applications, it is often very difficult to estimate the number of clusters
correctly. Although Dirichlet process-type methods are inconsistent in terms of the true
number of clusters [11], their results are generally consistent in the number of large
clusters that appear in the data.

We also provide an additional comparison in S1 Appendix with an ad-hoc integrative
clustering, where we first cluster data in each context individually, and then we
construct global clusters manually as a combination of local cluster assignments. For the
small simulated dataset, the results of this ad-hoc integration are equivalent to
Clusternomics. They differ in larger real-world applications, where the probabilistic
integrative model encourages data points from different contexts to share global clusters,
as opposed to crude manual construction of global clusters.
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Case Study: Discovering Subtypes in Breast Cancer

In this section we apply the context-dependent clustering to a breast cancer dataset
obtained from The Cancer Genome Atlas (TCGA) database. The dataset contains
measurements of 348 patients diagnosed with breast cancer, and it comprises of four
different data types: DNA methylation for 574 probes, RNA gene expression for 645
genes, expression for 423 microRNA molecules and reverse-phase protein array (RPPA)
measurements for 171 proteins.

The dataset was originally presented in Koboldt et al. [12], and it was also
previously used to evaluate integrative clustering methods in Lock and Dunson [7]. An
advantage of the dataset is that it also contains clinical information on the patients
including their survival. This information can be used to validate the clustering results.

We used the proposed context-dependent clustering algorithm to identify subtypes of
breast cancer across the four data contexts. We applied the proposed algorithm with
several different settings of both the global number of clusters, and the local
context-specific number of clusters. The details of the algorithm’s settings are provided
in S1 Appendix.

To provide an overview of the results, we first look at a specific clustering obtained
from the model to illustrate the working of the algorithm. Then we look at consistency
of the results with respect to varying number of clusters, and also at results from two
other cancer datasets from TCGA.

To illustrate the results from the model, we use an example with the number of local
clusters set to 3 in all the four contexts (gene expression, DNA methylation, miRNA
expression and RPPA) and 18 global clusters. The number of global clusters acts as an
upper bound on the number of clusters that can be represented in the data by the
clustering model. The number of clusters that the model identified in the presented
result was 16. Fig. 5 shows the size distribution of these 16 clusters. There are several
larger clusters and a larger number of smaller clusters.

Figure 5. Sizes of global clusters identified in the breast cancer dataset from TCGA,
using the model with 3 context-specific clusters and up to 18 global clusters.

The global combinatorial clusters identified by the model showed clinical significance
in terms of survival probabilities. Fig. 6 shows the different survival curves
corresponding to each of the clusters. The survival probabilities in each cluster are
significantly different with p = 0.038 using the log-rank test with a null hypothesis that
assumes that the survival rates are the same. Here, identification of the global structure
helps clustering within individual datasets. Looking at the local cluster structure within
each dataset, the differences in cluster survival curves are not individually significant.
By looking at the overall global structure, we can identify groups that are characterised
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by different survival outcomes.

Figure 6. Survival curves for global clusters in the breast cancer dataset from TCGA,
using the model with 3 context-specific clusters and up to 18 global clusters. The
differences between the survival curves are significant with p = 0.0382 using the
log-rank test.

Fig. 7 shows the global clusters as they appear in the four individual contexts in the
first two principal components. The clusters are better defined for the gene expression
and the protein assay context. However, the samples corresponding to each cluster also
occupy distinguishable regions in the remaining contexts. Because the plots show only
the first two principal components, we also provide an overview of variance captured by
these components in S1 Appendix.

In contrast to the global clusters in Fig. 7, Fig. 8 shows the inferred local clusters
within each dataset. The clusters are well defined in all contexts except the miRNA
expression dataset, where the model did not identify any structure. However, by sharing
information from other contexts we see that some of the global clusters are
distinguishable in this context as well. For example, in Fig. 7c Cluster 3 (violet)
occupies a distinguishable region in the miRNA context although the dataset itself does
not show any pronounced clustering tendency within the first two principal components.
This indicates that the identified clusters represent some feature of the underlying
process even within datasets that, by themselves, contain only a vague structure.

To highlight some of the features of the presented context-dependent clustering
model, we look at two clusters in more detail, namely clusters 1 and 6. Fig. 9 shows the
two highlighted clusters. We can see that they are similar in all contexts except gene
expression, where they belong to different clusters. This is the type of structure where
two clusters are merged into one in some of the contexts and separate in other contexts,
which we illustrated at the beginning of this chapter using the example of the HER2
gene. This type of structure relates to the interplay of different levels in the underlying
biological process.

The differences between the two clusters are also biologically relevant. Fig. 10 shows
the highlighted survival curves for the two clusters. The green cluster (Cluster 6)
contains 40 samples and has significantly different survival outcomes from the dark blue
cluster (Cluster 1) containing 19 patient samples, with a log-rank test p-value of 0.012.
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Figure 7. PCA projection of the global clusters in individual contexts in the breast
cancer dataset from TCGA, from the model with 3 context-specific clusters and up to
18 global clusters. The colours correspond to the colours used in the survival curves in
Fig. 6.
(a) Gene expression context. (b) DNA methylation context. (c) miRNA expression
context. (d) RPPA context.

The presented result from the model shows that the identified structure is clinically
relevant. The assumptions behind the Clusternomics algorithm also help identify
combined global clusters that would be missed by other algorithms, as demonstrated on
the simulated datasets.

Stability of Inferred Clusters

The illustration of the results looked at a specific size of the model. The algorithm also
allows the user to specify the number of clusters both on the local context-specific level,
and on the global level. We fitted the model with varying numbers of clusters on both
levels and we look at the stability of results with respect to different parameter settings.
The results show that the estimated global clustering structure is stable when the
number of clusters is large enough to give the model sufficient flexibility to fit the data.

Fig. 11 shows a comparison of log likelihoods of the fitted models for 10 different
numbers of global clusters. The maximum of the log likelihood corresponds to the
model with 18 global clusters that we highlighted as an example in the previous section.
The same model also corresponds to the lowest p-value with respect to the differences in
the survival function, as shown in Fig. 11b.

The number of global clusters specified in the algorithm serves only as the upper
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Figure 8. PCA projection of the local clusters identified in individual contexts in the
breast cancer dataset from TCGA, from the model with 3 context-specific clusters and
up to 18 global clusters. (a) Context 1 represents the gene expression dataset which
contains three local clusters. (b) Context 2 represents the DNA methylation dataset
and contains two local clusters. (c) Context 3 represents the miRNA expression dataset
with only 1 cluster. (d) Context 4 corresponds to the RPPA dataset, which contains
three local clusters.

limit on the number of occupied clusters. To investigate this relation we also look at the
number of clusters that are actually occupied for different settings of the number of
global clusters. Fig. 14 shows the posterior average number of clusters that had samples
assigned to them. The figure shows both the average total number of occupied clusters
across Gibbs samples for each run, and the average number of large clusters (clusters
that have at least five samples assigned to them). The number of large clusters is more
reflective of the actual underlying structure, because Dirichlet mixture models with
large number of components are inconsistent with respect to the true number of
clusters [11]. Fig. 14 shows that both the number of larger clusters and the number of
all clusters is stable between the different settings, when the model is saturated (with 18
or more global clusters) and provided that the corresponding chain reached convergence.
The only exception is the solution with 45 global clusters where the algorithm identified
an alternative clustering solution, with lower likelihood. In this case the probabilistic
algorithm remained in a local optimum. We provide additional analysis of convergence
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Figure 9. PCA projections of the global clusters identified in individual contexts in
the breast cancer dataset from TCGA. The two highlighted clusters differ only in the
gene expression context but they are merged in the other contexts. (a) Context 1
represents the gene expression dataset where the two clusters are separate. (b) Context
2 represents the DNA methylation dataset. (c) Context 3 represents the miRNA
expression dataset. (d) Context 4 corresponds to the RPPA dataset.

of the presented algorithm in S1 Appendix.
Even though the number of estimated clusters changes with parameter settings, the

cluster structures might still be very similar. In order to explore these similarities, the
ARI between pairs of clusterings of different sizes is displayed graphically in Fig. 12. As
the area of high ARI values (that is, similarity of clusterings) in the upper right corner
indicates, the solution with 18 global clusters is a part of a larger group of solutions
with similar cluster assignments. The result with 18 global clusters corresponds to the
maximal log likelihood also corresponds to the smallest number of global clusters for
which the results stabilise and then remain consistent for larger numbers of global
clusters. The result with 45 global clusters is again an outlier.

Fig. 13 shows the pairwise ARI values for local cluster assignments. The local
assignments become stable at various sizes of the model. Generally, the larger number
of possible global clusters give the model more flexibility to model cluster structures in
individual datasets, as opposed to modelling a common global structure. Again, 18
global clusters represent the parameter setting where all the context-specific clusters
converge to similar cluster assignments.

We also look at the effect of setting different numbers of local clusters. We look in
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Figure 10. Survival curves for clusters in Fig. 9. The highlighted clusters have
different survival probabilities with p = 0.012 under the log-rank survival model.

detail at 3, 4 and 5 local clusters in every local context-specific dataset. Fig. 15 shows
the agreement between the results as measured by the ARI. All the cluster assignments
are relatively consistent given different model sizes with high pairwise ARI values.

In general, the number of clusters tends to saturate for larger sizes of the model.
Because the model asymptotically approaches a Dirichlet process when the number of
global/local clusters is large, the model automatically infers the number of clusters that
is needed to represent the data (see the Methods section for details). However, smaller
sizes of the model are more computationally efficient in real-world scenarios. To infer a
reliable clustering of real-world data, it is necessary to explore several different settings
of the model’s parameters, where stability of the clustering can serve as an indicator of
clustering tendencies in the dataset [13].

To assist with selecting the number of clusters, the package clusternomics also
provides the Deviance Information Criterion (DIC, [14]). DIC is a criterion for model
selection for Bayesian models, combining posterior likelihood with penalty for model
complexity. Number of clusters should be chosen so that the value of DIC is minimized.
Fig. 16 shows the DIC values for the number of global clusters for the breast cancer
dataset. Based on this measure, the optimal number of clusters is 18, which is also the
value where the cluster results become stable.

Case Study: Prognostic Clusters in Lung and Kidney Cancer

To evaluate the general utility of the model, we also examined two additional smaller
cancer datasets from The Cancer Genome Atlas repository:

� Lung cancer samples from 106 patients with 3 contexts: gene expression (12,042
genes), DNA methylation (23,074 loci) and miRNA expression (352 miRNAs)

� Kidney cancer samples from 122 patients with 3 contexts: gene expression (17,899
genes), DNA methylation (24,960 loci) and miRNA expression (329 miRNAs)

The datasets were normalised to zero mean and unit variance for every feature, but the
total size of the data was not reduced. For both datasets we again fit models with 3 to 5
local clusters in each context and varying numbers of global clusters.

In this case, the size of the problem in terms of number of genes and DNA
methylation loci is problematic for the iCluster algorithm. For larger problems with
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Figure 11. Log likelihoods (a) and survival p-values (b) of models with different
numbers of global clusters. The first significant difference in survival corresponds to the
model with the highest log likelihood.

Figure 12. Consistency between global clustering results for different number of global
clusters with 3 context-specific clusters, as measured by the ARI.
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Figure 13. Consistency between local clustering results for different number of global
clusters with 3 context-specific clusters, as measured by the ARI. The ARI values show
several local optima. (a) Gene expression context. (b) DNA methylation context. (c)
miRNA context. (d) RPPA context.

more features it becomes increasingly memory intensive (at least 60 GB of memory were
required to run iCluster on the lung dataset, and the algorithm did not terminate in a
reasonable period of time).

Fig. 17 shows the summary of the results on the lung cancer dataset, using the
clinical survival information. The differences in survival prospects in the clusters are
statistically significant for all clusterings of this dataset. The consistency of results
reveals that there are three versions of stable cluster assignments across the models of
different sizes. Fig. 19 shows similar results for the kidney cancer dataset. Here, the
survival p-values drop below the significance threshold when the cluster assignments
become more stable and consistent. In both cancer datasets, the Clusternomics
algorithm identified clinically relevant clusters.

Methods

The context-dependent clustering model

The context-dependent clustering model explicitly represents both the local clusters
within each dataset (local context), and the global structure that emerges when looking
at the combination of cluster assignments across the individual datasets.

When we consider a local structure within several datasets, each dataset has its own
context-specific set of clusters. When we look at the combination of the context-specific
clusters, we get a combined structure which defines clusters on the global level while
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Figure 14. Average number of occupied clusters across different numbers of global
clusters. The number of clusters is the average of the posterior number of global clusters
that have any samples assigned to them across the MCMC iterations. The figure shows
both the total number of occupied clusters and the number of clusters that have more
than 5 samples assigned to them.

Figure 15. Consistency between global clustering results for different number of local
context-specific clusters, as measured by the ARI. The compared models were trained
with 18 global clusters and 3 to 5 context-specific clusters.

keeping information about cluster membership on the local level. For example, if one
context (dataset) contains two clusters of samples labelled 1 and 2, and second dataset
contains three clusters, labelled A,B and C, we get a combined structure with six
potential global clusters where each cluster corresponds a combination of assignments
on the local level:

(1, A), (2, A), (1, B), (2, B), (1, C), (2, C).

Figure 21 provides a schematic illustration of the concepts. Using this formulation,
we can model groups of data that are joined in one context and separated in another
context, because they correspond to different global clusters.

We use this intuition to develop the context-dependent clustering model, which is
based on a Bayesian probabilistic clustering. The algorithm is based on Dirichlet
mixture models [15] and their infinite generalisation, the Dirichlet process mixture
model [16,17].

The probabilistic model accounts both for probabilities of individual samples
belonging to a specific cluster on the local level, and for the global probabilities of
samples belonging to a global cluster. The global clusters are modelled as a combination
of local clusters, and bound together by a Bayesian hierarchical model. This assures
that a local cluster assignment changes the posterior probabilities of corresponding
global cluster assignments.
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Figure 16. Deviance information criterion (DIC) as a method for selecting number of
clusters. The plot shows the DIC for a range of numbers of global clusters when the
number of local clusters is set to three. The DIC is minimized for 18 global clusters.

Continuing with the two dataset example, when a sample is assigned to cluster 1 in
the first dataset, it increases the posterior probability of the cluster within the first
dataset, but it also increases the probability of global clusters (1, A), (1, B) and (1, C).
This dependence is defined by the Bayesian hierarchical model, and encodes the
objectives stated in the Introduction.

Model description

In this section we introduce two alternative Bayesian probabilistic models for
context-specific clustering. The first model looks explicitly at all possible combinations
of local clusters which define the global combinatorial clusters. The second formulation
of context-dependent clustering only models a restricted set of combinations of local
clusters, that are data-driven.

Both models are asymptotically equivalent (for details see S1 Appendix). The first
formulation of the model provides an intuition that leads to the second formulation of
the model. Because the second formulation uses only a smaller number of local clusters,
it is more computationally efficient than the first formulation, and it was therefore used
to compute the results presented in the Results section.

We introduce the following notation: xn, n = 1, . . . , N , are data items where xn is
composed of a set of observed values coming from contexts c = 1, . . . , C:

xn =
(
x(1)
n , . . . ,x(C)

n

)
For example, for C = 2, xn may represent a tumour sample from patient n with gene

expression values x
(1)
n and DNA copy number states x

(2)
n .

Basic Dirichlet mixture model The basis of the integrative hierarchical model is
standard Bayesian model-based clustering with Dirichlet prior [15]. This basic model is
used to cluster data within each context c.

This clustering model has been previously applied to gene expression studies, see for
example Medvedovic et al. 2002 [18]. Lock and Dunson 2013 [7] used the same model as
the basis of their integrative BCC model.

K(c) is a fixed parameter for the maximum number of clusters in dataset c and z
(c)
n

is an indicator variable which defines the cluster assignment of sample x
(c)
n ,
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Figure 17. Consistency of results and survival p-values for clusters identified in the
Lung cancer dataset, with a range of numbers of global clusters and 3 local clusters.
(a) Consistency of results with respect to the ARI between different settings of numbers
of global clusters. (b) p-values corresponding to the different numbers of global clusters.
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Figure 18. Deviance information criterion (DIC) for selecting number of clusters in
the Lung cancer dataset. The plot shows the DIC for a range of numbers of global
clusters when the number of local clusters is set to three. The DIC is minimized for 53
global clusters.

z
(c)
n ∈

{
1, . . . ,K(c)

}
. The probability of a sample belonging to a cluster k in context c is

π
(c)
k ,

π
(c)
k = p(z

(c)
i = k)

Values π(c) =
(
π
(c)
1 , . . . , π

(c)

K(c)

)
define the weights of each mixture component and

follow a Dirichlet distribution with concentration parameter α0

π(c) ∼ Dirichlet
( α0

K(c)
, . . . ,

α0

K(c)

)
We define a finite mixture distribution for samples x

(c)
1 , . . . ,x

(c)
N as

p
(
x(c)
n

)
=

K(c)∑
k=1

π
(c)
k p

(
x(c)
n

∣∣∣θ(c)k

)
where p

(
x
(c)
n

∣∣∣θ(c)k

)
defines a probability distribution for sample x

(c)
n under mixture

component k(c), with parameters θ
(c)
k .

The distributions in the mixture model for each context c are summarised as follows:

π(c) ∼ Dirichlet
( α0

K(c)
, . . . ,

α0

K(c)

)
z(c)n ∼ Categorical(π(c))

θ
(c)
k ∼ H(c)

x(c)
n | z(c)n = k ∼ F (c)

(
x(c)
n

∣∣∣θ(c)k

) (1)

where H(c) is some base prior distribution for parameters of each mixture component;

F (c) is a probability distribution for samples given parameters θ
(c)
k . Note that the

parameters θ(c) and data distribution F (c) depend on the context c and therefore can be
modelled differently for different contexts. In general, we can also use different
concentration parameters αc for each context.
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Figure 19. Consistency of results and survival p-values for clusters identified in the
Kidney cancer dataset, with a range of numbers of global clusters and 3 local clusters.
(a) Consistency of results with respect to the ARI between different settings of numbers
of global clusters. (b) p-values corresponding to the different numbers of global clusters.
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Figure 20. Deviance information criterion (DIC) as a method for selecting number of
clusters in the Kidney cancer dataset. The plot shows the DIC for a range of numbers
of global clusters when the number of local clusters is set to three. The DIC is
minimized for 16 global clusters.

First model formulation: fully combinatorial model

Using the basic model presented in the preceding section we can now construct a
composite model for integrative clustering, which we call Context-Dependent Clustering
(CDC). To keep the notation simple, we first present the model for only two contexts,
c ∈ {1, 2}. We start by specifying two mixture distributions as defined in the previous
section, one for each context. Each context has its own mixture weights π(1) and π(2),
with symmetric Dirichlet priors:

π(1) ∼ Dirichlet
( α1

K(1)
, . . . ,

α1

K(1)

)
π(2) ∼ Dirichlet

( α2

K(2)
, . . . ,

α2

K(2)

)
.

These two mixture distributions form the basis of local clustering within each context.
We link the two distributions together using a third mixture distribution, also with a
Dirichlet prior over the mixture weights ρ. This represents the global mixture
distribution, defined over the outer product of π(1) and π(2):

ρ ∼ Dirichlet
(
γ vec

(
π(1) ⊗ π(2)

))
Here the outer product of π(1) and π(2) is

π(1) ⊗ π(2) = π(1)
(
π(2)

)T

=


π
(1)
1 π

(2)
1 π

(1)
1 π

(2)
2 · · · π

(1)
1 π

(2)
K

π
(1)
2 π

(2)
1 π

(1)
2 π

(2)
2 · · · π

(1)
2 π

(2)
K

...
...

. . .
...

π
(1)
K π

(2)
1 π

(1)
K π

(2)
2 · · · π

(1)
K π

(2)
K


(2)

The vec operation takes a matrix and stacks its columns on top of each other to form
one column vector.
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Figure 21. Illustration of the concepts of global and local clusters. The first dataset
contains two clusters 1 and 2, the second dataset contains three clusters, A,B and C.
The combined structure contains six potential global clusters that correspond to
combinations of assignments on the local context level.

We use the outer product matrix in a vectorised form as the basis for the
(non-symmetric) concentration parameters of the Dirichlet distribution over global
mixture weights ρ. Each element of ρ corresponds to a specific pair of local cluster

probabilities π
(1)
i and π

(2)
j . This effectively creates a mixture model over all possible

combinations of cluster assignments on the level of individual contexts. The prior
probability of a data item being simultaneously assigned into cluster k in the first
context and cluster l in the second context corresponds to the element s in the ρ vector
which originated from the row k and column l in the outer product matrix (2):

p
(
z(1)n = k, z(2)n = l

)
= ρs where s = (k, l)

We also define a composite cluster indicator variable z for each sample that
represents a pair of z(c) values, one for each context c:

zn ∼ Categorical(ρ), zn =
(
z(1)n , z(2)n

)
x(c)
n | z(c)n = k ∼ F (c)

(
x(c)n

∣∣∣ θ(c)k

)
, c ∈ {1, 2}.

By fitting this model to a dataset, we obtain both local clusters on the level of the
original datasets (contexts) and the global composite clusters that represent different
combinations of individual local cluster assignments. Local clusters for context c can be
obtained by taking a projection of the z indicator variable onto the context c.

Going back to the HER2 oncogene example in the Introduction, the model explicitly
represents the local clusters with respect to DNA copy number changes and mRNA
expression, while forming two global clusters with respect to the overall behaviour.

The model satisfies the objectives presented in the Introduction. In the posterior,
assignments into a context-specific cluster affect the posterior distribution of π(c), which
in turn affects the probabilities of all global combinatorial clusters through the
hierarchical model. For example if we look at the outer product matrix (2) which is a

part of the prior for global mixture weights ρ, change in the value of π
(1)
k changes values

of the whole k-th row in the matrix.
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Figure 22. Graphical model representation of the fully combinatorial
context-dependent clustering model.

The model also represents different degrees of dependence by allowing any
combination of cluster assignments across contexts. When there is a single common
cluster structure across the two contexts, the occupied clusters will be concentrated
along the diagonal of the probability matrix (2).

For C > 2, the outer product of
{
π(c)

}C
c=1

generalises into a tensor product. Each
element of ρ represents the probability of a C-tuple of cluster assignments, i.e. a
specific combination of cluster assignments in specific contexts. To summarise the
model, we give a general formulation for C contexts.

π(c) | α0 ∼ Dirichlet
( α0

K(c)
, . . . ,

α0

K(c)

)
ρ | γ,

{
π(1), . . . ,π(c)

}
∼ Dirichlet

γ
 ⊗

c=1,...,C

π(c)




zn | ρ ∼ Categorical(ρ), zn =
(
z(1)n , . . . , z(c)n

)
θ
(c)
k ∼ H(c), k = 1, . . . ,K(c)

x(c)
n | z(c)n = k ∼ F (c)

(
x(c)
n

∣∣∣ θ(c)k

)
(3)

Fig. 22 shows the graphical model for the full context-dependent clustering model.
In general, the number of clusters K(c) can be different for each context c. Given

that the number of clusters in each dataset is O(K), the total length of ρ parameter
vector is O

(
KC

)
because the model represents all possible combinations of cluster

assignments. This yields a very large number of potential combinatorial clusters.
However, only a small number of clusters is actually represented in the data and many
of the clusters remain empty as shown by Rousseau et al. [19]. Also, by using small
values for the concentration parameter γ < 1, we encourage the data to be concentrated
in only a small number of global mixture components.

This model explicitly represents all the possible combinations of cluster assignments,
which may not be desirable in real-world applications, where the model may use some of
the structure to capture technical noise present in the data. Also, although the number
of clusters that are occupied is smaller in the posterior, the model size grows
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Figure 23. Graphical model representation of the decoupled context-dependent
integrative clustering model.

exponentially with the number of contexts. In the next section, we look at an
alternative model that circumvents this limitation.

Second model formulation: decoupled combinatorial model

To avoid the large number of potential cluster combinations in the previous model, we
decouple the number of context-specific clusters K(c), c = 1, . . . , C, and the number of
global clusters. First a mixture distribution over S global clusters is defined similarly to
the finite Dirichlet mixture model [15].

ρ | γ0 ∼ Dirichlet
(γ0
S
, . . . ,

γ0
S

)
zn | ρ ∼ Categorical (ρ)

where ρ are the mixture weights and zn are standard cluster assignment indicator
variables. We combine context-specific clusters with the global clusters using the
following method: we specify context mixture distributions and a set of assignment

variables k
(c)
s that associate global cluster s = 1, . . . , S with context-specific clusters:

π(c) | α0 ∼ Dirichlet
( α0

K(c)
, . . . ,

α0

K(c)

)
k(c)s | π(c) ∼ Categorical

(
π(c)

) (4)

In this formulation, k
(c)
s ∈

{
1, . . . ,K(c)

}
assigns the s-th global cluster to a specific

local cluster in context c. One could say that (k
(c)
s )Cs=1 are the coordinates of the global

cluster in terms of the local cluster identifiers. The variables zn then assign samples to
global clusters. This way, data are represented by a mixture of context-specific cluster
combinations. In the previous model (3) the mapping of global clusters to local clusters
was implicit, because each combination of context clusters mapped to a unique global
cluster. In this model, the mapping is probabilistic and forms a part of the model.

Note that compared to the previous model, we also have to specify the number of
potential global clusters S which is no longer determined by the number of clusters
within each context. This circumvents the problem of large dimensionality of the space
of potential cluster combinations across contexts.

To summarise, the complete model can be written as

ρ | γ0 ∼ Dirichlet
(γ0
S
, . . . ,

γ0
S

)
zn | ρ ∼ Categorical (ρ)

π(c) | α0 ∼ Dirichlet
( α0

K(c)
, . . . ,

α0

K(c)

)
k(c)s | π(c) ∼ Categorical

(
π(c)

)
θ
(c)
l |H(c) ∼ H(c)

x(c)
n | zn,

(
k(c)s

)S
s=1

, (θl)
K(c)

l=1 ∼ F (c)
(
x(c)
n | θ

(c)
kzn

)
(5)

Fig. 23 shows the graphical representation of this model.
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Inference in the model and implementation

We derived Gibbs sampling inference algorithms for both formulations of the
context-dependent clustering model, details and the inference equations can be found
in S1 Appendix.

For the fully combinatorial version of the model, computational complexity of each

iteration of the Gibbs sampling algorithm is O
(
NC

∏C
c=1K

(c)
)

, additionally

multiplied by the complexity of evaluating the data likelihood F (c) for each context. We
also derived approximate variational inference updates for this version of the model,
which achieves faster convergence than Gibbs sampling. Details on variational inference
in the model are also available in S1 Appendix.

For the decoupled formulation of the model, the computational complexity of each

Gibbs sampling iteration is O
(
NCS + S

∑C
c=1K

(c)
)

, again additionally increased by

the complexity of evaluating data likelihood F (c). Compared to the fully combinatorial
model, complexity of this algorithm is lower for S <

∏C
c=1K

(c) because of the
decoupled representation.

Implementation of the decoupled version of the context-dependent clustering model,
which was used to produce the results presented in the Results section, is available as
the R package clusternomics from CRAN.

Discussion

To summarize, in this paper we proposed a clustering algorithm for integrative analysis
of heterogeneous datasets. We described the probabilistic model behind the algorithm,
which is closely related to the hierarchical Dirichlet process [20]. The proposed
context-dependent clustering algorithm models both the local structure within each
dataset, and the global structure which arises from combinations of dataset-specific
clusters. This form of model enables modelling of heterogeneous related datasets that
do not share the same structure.

We described two representations of the model which are equivalent in their limit.
The first full model makes the assumptions behind the model explicit and represents all
possible combinations of context-specific cluster assignments. Given the number of
clusters in each context K(c), the model is a mixture model over all possible
combinations of cluster assignments in individual contexts.

The second type of representation is the decoupled CDC model which allows us to
specify the number of global clusters S that are identified in the data separately from
the number of context-dependent clusters K(c). For a large number of global clusters S
the model is equivalent to the full model. However, the number of global clusters allows
us to additionally tune the resulting cluster structure. For smaller numbers of clusters S,
the global and local cluster structures are forced to be more similar and the algorithm
enforces a common cluster structure across all datasets. For larger numbers of global
clusters, the model has more flexibility to model the local structure within each dataset.

We evaluated the proposed model both on simulated data and on a set of real-world
cancer datasets. The simulated data revealed that other algorithms for integrative
clustering do not model situations where there is a varying degree of dependence of
cluster structures across multiple datasets.

We also evaluated the proposed context-dependent clustering model on the breast
cancer dataset which includes four different contexts, and additionally on two datasets
studying lung and kidney cancer. The model successfully identified clinically meaningful
clusters as measured by the survival probabilities for each global cluster. We evaluated
the decoupled clustering model over a number of possible global clusters. Generally, the
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best clustering results are obtained when the cluster structure stabilises as measured by
the ARI. Senbabaoglu et al. [13] note that in real-world datasets there may be many
different numbers of clusters that are equally highly plausible. The comparison of
clustering results based on their agreement identifies the model sizes that lead to similar
sets of cluster assignments. Each group then corresponds to an alternative
interpretation of the data.

Overall, the model uses different assumptions about the cluster structure than other
currently used integrative clustering algorithms. By dropping the assumption of a single
common cluster structure, the model identifies both the local structure of individual
datasets, and a global structure that combines the local clusters.

Supporting Information

S1 Appendix

Model and implementation details. Details on the model, implementation,
algorithm setting and MCMC convergence.
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