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Abstract 

Human perceptual grouping of sequential auditory cues has 
traditionally been modeled using a mechanistic approach. The 
problem however is essentially one of source inference – a 
problem that has recently been tackled using statistical 
Bayesian models in visual and auditory-visual modalities. 
Usually the models are restricted to performing inference over 
just one or two possible sources, but human perceptual 
systems have to deal with much more complex scenarios. To 
characterize human perception we have developed a Bayesian 
inference model that allows an unlimited number of signal 
sources to be considered: it is general enough to allow any 
discrete sequential cues, from any modality. The model uses a 
non-parametric prior, hence increased complexity of the 
signal does not necessitate more parameters. The model not 
only determines the most likely number of sources, but also 
specifies the source that each signal is associated with. The 
model gives an excellent fit to data from an auditory stream 
segregation experiment in which the pitch and presentation 
rate of pure tones determined the perceived number of 
sources. 

Keywords: Bayesian modeling; Cognitive model; Causal 
reasoning; Computational neuroscience; Audition. 

Introduction  
Ambiguity in perceptual systems is a blight for inference. 
When we hear two sounds sequentially, we may infer that 
they came from two different sources, A and B, or the same 
source repeated. A third sound is heard - are the sources 
AAA, AAB, ABA, ABB or ABC? By the time four, five and 
six sounds are heard the number of combinations reaches 
15, 52, 858. The ambiguity breeds to generate a 
combinatorial explosion, and yet the human auditory system 
is able to reliably allocate multiple sources of sound in 
complex, real world situations. Features of the signal are 
consistently associated with different sources, allowing us to 
keep track of a speaker’s voice and the wail of an ambulance 
siren, separate from the noise of background traffic and 
falling rain.  

For several decades, the human ability to segregate 
sequential sounds into streams corresponding to sources has 
been investigated using simple sequences of either pure 
tones or more complex sounds (reviewed in (B. C. J. Moore 
& Gockel, 2012)). The time interval between tones, their 
pitch difference and the duration of a sequence are among 
the factors that play an important role (Anstis & Saida, 

1985; Bregman & Campbell, 1971; van Noorden, 1975): 
explanations of how the factors are used based on principles 
such as Gestalt laws and Occam’s razor have been 
incorporated into the sophisticated conceptual model of 
Bregman (Bregman, 1994). Descriptive models based on 
peripheral excitation (Beauvois & Meddis, 1997), coherence 
of coupled oscillators (Wang, 1996) and cortical streaming 
modules (McCabe & Denham, 1997) provide mechanisms 
to estimate the number of streams, but do not specify which 
sound is associated with which source. While some of the 
models are expandable to allow more sources to be inferred, 
it is not known if they would cope with the combinatorial 
explosion. Furthermore, Moore & Gockel (B. Moore & 
Gockel, 2002) conclude from an extensive review of the 
literature that any sufficiently salient factor can induce 
stream segregation. This indicates that a more general model 
of inference is needed, that can incorporate any auditory 
perceptual cue and multiple sounds with different sources. 

If ambiguity is a blight for inference, regularities in 
natural signals are the cure. Not all combinations of signal 
sources are equally likely – when perceptual systems 
generate a model of the world, we assume that they infer the 
most likely interpretation because the perceptual systems are 
optimized to the statistics of natural signals (Barlow, 1961; 
McDermott & Simoncelli, 2011). Bayesian inference has 
had considerable success in modeling many visual and 
multi-sensory percepts as a generative, probabilistic process 
(Shams, et al. 2005; Weiss et al. 2002). Despite these 
successes, and the increasing evidence for the importance of 
predictability for auditory perception (for a review see 
Bendixen, 2014), we still have no general, principled model 
of how the auditory system solves the source inference 
problem.    

A Bayesian approach to auditory stream segregation has 
been used to model the dynamics of perceptual bistability 
(Lee & Habibi, 2009) but assumes that only two percepts are 
possible. Turner (2010) has developed methods of analyzing 
statistics of sounds based on Bayesian inference, and 
constructed a model to synthesize realistic auditory textures. 
Promisingly, inference in the model can qualitatively 
replicate many known auditory grouping rules. 

In our model the probability of many alternative stream 
configurations (given the input signal) are calculated and the 
percept generated corresponds to the most probable 
configuration. The probabilities are calculated using Bayes’ 
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rule to combine the likelihood of generating a signal given a 
postulated stream configuration, with the prior probability of 
sounds being associated with different sources. The 
likelihood and prior probability distributions are iteratively 
updated in a principled manner as information accumulates. 
The forms of the distributions are presumably optimized to 
natural signal statistics: the likelihood distribution we use is 
based on considerations of the physical limitations of 
oscillators. However, the framework of the model allows 
formulations of multiple explanatory factors, such as those 
determined by Bregman (1994) from psychophysics 
experiments, to be simply incorporated in the distributions. 
Furthermore, while the current study uses simple pure tones 
(replicating work by Bregman), the framework allows more 
complex cues from audition and other modalities to be used 
as long as their perceptual difference can be quantified.  

Human inference model 
Pure tones are the indivisible atoms of input to the model – 
each being assigned to just one sound source, or stream. 
Inspired by work done on non-parametric priors (Froyen, 
Feldman, & Singh, 2015; Orbanz & Teh, 2010; Wood, 
Goldwater, & Black, 2006) we assume the existence of an 
infinite number of potential sources, leading to a sequence 
of tones with pitch f1, f2…, onset time t1

on, t2
on… and an 

offset time, t1
off, t2

off… and the sound sources/streams that 
generated the tones are denoted by positive integers S1, S2... 
We rename the sources when necessary so that the first tone 
heard will always be generated by source 1 (i.e. S1 = 1), and 
a subsequent tone, Sn can be associated with source 
1:max(S1…Sn-1)+1. 

Generative model  
Given a source Si we assume that the frequency of tone i is 
governed by physical constraints and statistical regularities 
of the source. If two sounds f1 and f2 with frequencies F1 and 
F2 are produced by the same source, the pitch cannot change 
at an infinitely fast rate: to make an oscillator change its 
frequency discontinuously would require an infinite impulse 
of energy. We assume that, all things being equal, a pure 
tone sound source is most likely to continue oscillating at 
the same frequency as it has in the past, and the probability 
of it changing at a rate ΔF/Δt will decrease as ΔF/Δt 
increases. More specifically we assume a normal probability 
distribution:  

𝑝 𝑓#	 𝑆#, 	𝑓#'(, 𝑆) = 𝑆#'( = +
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where σ is a constant. We here assume that the observer 
has a perfect noise free access to the generated frequency. 

Inference 
The task of the observer is to infer the sources generating 
each of the tones, i.e. to find the S1 S2 S3… that maximize 
p(S1 S2 S3… | f1 f2 f3…), as illustrated in figure 1. As an 
example we use a sequence of three tones f1 f2 f3, for which 
the observer wishes to infer the likely sources S1 S2 S3. Thus 
the probability p(S1 S2 S3 | f1 f2 f3) that a sequence of three 

tones was generated by sources S1 S2 S3, has to be calculated 
over the five combinations: [S1=1, S2=1, S3=1], [S1=1, S2=1, 
S3=2], [S1=1, S2=2, S3=1], [S1=1, S2=2, S3=2], [S1=1, S2=2, 
S3=3] corresponding to the five unique configurations of 
sources generating three sounds. Note that the first source is 
always assigned the value 1, the next different source is 
assigned 2, etc.. Bayes’ rule relates each conditional 
probability (the posterior distribution) to the likelihood     
p(f1 f2 f3| S1 S2 S3) of each configuration of sound sources 
generating the sequence of tones, by  

p(S1 S2 S3 | f1 f2 f3) = p(f1 f2 f3| S1 S2 S3) p(S1 S2 S3)/Z  (2) 

where Z is a normalization constant, and p(S1 S2 S3) is the 
prior probability of the particular configuration of sound 
sources, regardless of the frequency, etc. of the tones 

Assuming conditional independence of the tones and 
tone-source causality, this can be rewritten as  

p(S1 S2 S3 | f1 f2 f3)     (3) 

= p(f3| S1 S2 S3)/ p(f3)× p(S3 | S1 S2) × p(S1 S2| f1 f2)          

The final term is the posterior generated from the first two 
tones. The latter two terms can be considered together as the 
prior for the third source, allowing us to use an iterative 
approach to the inference. After each tone we grow the tree 
of possible source sequence (e.g. 11 → 111 and 112), by 
multiplying the previous posterior p(S1 S2| f1 f2) with two 
terms; the likelihood p(f3| S1 S2 S3) and a prior for how likely 
the next ‘branch’ is, p(S3 | S1 S2).  

We now consider how to determine the likelihood and 
prior probabilities. The first source can only be associated 
with one source, so p(S1=1) = 1. The principle of Occam’s 
razor would suggest that p(S1=1,S2=1) > p(S1=1,S2=2), i.e. 
if we haven’t heard any of the sounds, the most probable 
acoustic scene is the simplest one:  all sounds come from the 
same source. The value of p(S1=1,S2=1) for an individual 
can be determined  from fitting their data, and the value 
p(S1=1,S2=2) is simply 1– p(S1=1,S2=1). The values may 
depend on factors such as the environment, which are not 
considered in the model: natural signal statistics may 

Figure 1: a) Example of the integration or segregation of 
tones, either as 1 stream or 2 streams. b) Example of the 
condition [3 1 9 1 3 9] from Exp. 2 (top) and the model’s 
sequential maximum a posteriori assignment of tones 
within a stream (bottom). As each tone arrives the model 
reassigns the entire set of tones to streams (1->12->123 
etc.).  
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provide guidance for how the prior probabilities are 
assigned. For successive sources, we use the probability 
given by a Chinese restaurant process (CRP) (Aldous, 
1985), which can be considered as an extension of Occam’s 
rule: 

p(SN = i | S1...SN-1)  = ni/(N – 1 + α)    (4) 
           when ni of the previous sources S1...SN-1 is equal to i 
p(SN = i | S1...SN-1)  = α/(N – 1 + α)   
           when none of the previous sources is equal to i 
 

where N is the total number of sounds heard.  
Regarding the likelihood function, the observer assumes 

the generative probability p(fi | Si, fi-t, , Si =Si-t). Note that this 
applies even when the sounds generated by the same source 
are separated by one or more sounds associated with 
different sources. The only transition that matters is that 
between the most recent tone and the last tone in the same 
stream, so if three tones f1 f2 and f3 had all been associated 
with the same stream, we would only consider the transition 
from f2 to f3, whereas if f2 was associated with a different 
stream, we would only consider the transition from f1 to f3. 

If a sound comes from a new source, then we assume that 
the likelihood is independent of previous tones: 

p(fn | S1,…Sn-1,  SnÏS1…Sn-1) =
+

,-./
𝑒'

5675
/
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where 𝑓 is the midpoint of the range of auditory frequencies 
presented for the trial. The final model has two parameters, 
α and σ. 

Posterior approximation  
Using the iterative scheme above we can calculate 
analytically the possible combinations of tones, but as 
the tone sequence progresses the number of possible source 
combinations - and hence the size of the posterior 
distribution - increases exponentially. To prevent 
combinatorial explosion two methods are used to generate 
an approximation of the full posterior distribution. The first 
limits the number of tones that are retained when using the 
previous posterior as the next prior, i.e. the algorithm only 
retains e.g. the last 10 tones and their potential allocations to 
sources 

Limiting the number of tones eases the computational 
load, and can also be seen as a crude model of a limited 
memory capacity. Although the iteratively constructed prior 
retains some stream information of all previous tones, when 
a very short memory is used this may not be sufficient to 
generate stable stream allocation as the CRP prior 
probabilities fluctuate greatly when the number of previous 
tones is small. Furthermore, if the structure of the sequence 
is an important cue for streaming, a larger memory may be 
necessary to determine regularities in the sequence. 

Even when the memory is limited to the previous six 
tones, allocating a stream to the seventh tone requires a 
posterior distribution taking 858 values, most of which must 
necessarily have very small probabilities. A second method 
to limit the size of the posterior is simply to select only the 
most probable stream combinations by imposing a 
probability threshold, hence we only used stream 

combinations with p>0.001. Together these approximation 
methods allow a reasonable memory length of 10 tones (to 
avoid instability), while avoiding combinatorial explosion. 

Experiment 1 
To compare the model to human performance we conducted 
a psychophysics experiment, in which six participants with 
normal hearing listened to simple auditory sequences and 
performed a subjective judgment task (a variant of 
experiments by van Noorden (1975)). Subjects were under-
graduate students and received course credits for their 
participation. Each subject was fully briefed, provided 
informed consent and was given brief training on the task 
through exposure to 5 trial stimuli. 

Experimental setup  
Figure 1a shows a schematic of the stimuli used – each 

sequence comprised 30 tones in repeated LHL- triplets, 
where the dash represents a silent gap. Each tone was 50 ms 
in duration, including 10 ms raised cosine onset and offset 
ramps. A 2×2 factorial design was used: the pitch of the 
high tones taking values of 3, 6, 9, 12 and 15 semitones 
above the low tone, which had a fixed frequency of 1000 
Hz, and the offset to onset interval taking values 17, 33, 50 
and 67 ms. The duration of the silent gap was equal to the 
tone duration plus the offset-onset interval. Conditions were 
ordered randomly – each condition was tested 20 times over 
5 runs, each run lasting approximately 7 minutes. Stimuli 
were presented through Sennheiser 280 headphones at a 
comfortable supra-threshold level. At the end of the 
sequence participants pressed a key to report whether the 
percept at the end of the sequence was most like a single 
stream (a galloping rhythm) or two separate streams of 
notes. The fraction of 2-stream responses per condition is 
shown in figure 2b for all six participants.  

Model response 
To determine the response of the model to a tone 

sequence, the posterior for each possible sequence, C, is 
calculated tone-by-tone until all 30 tones have been 
presented. To relate the final posterior over sequences to 
subject responses, sr (‘1 or 2 streams’) Pmodel(sr|tones,C), we 
defined a metric between two sequences. While the simple 
Hamming distance was considered we found it did not 
capture the similarities and differences between sequences. 
As an example, the Hamming distance between the 
sequence [11111] and [12222], H(11111,12222)=4, does not 
capture the intuition that a change of labels (2->1) implies a 
distance of 1. Instead we define a transition matrix, MC with 
elements mi,j=Ci-Cj i.e. the difference in the stream number 
for entry i and j of sequence C.  

A transition matrix MpC is calculated for each posterior 
stream combination C, and also for the ‘ideal’ one or two 
stream response percepts (i.e. M1 corresponding to 111 
111... and M2 corresponding to 121 121...). The sum of the 
absolute difference between elements of MpC and both M1 
and M2, dC1=| MpC - M1| and dC2=| MpC - M2| give measures 
of the distances dC1 and dC2 from C to the ideal response 
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percepts. This method can also give the fixed distance d12 
between the ideal responses, d12=|M1- M2|, thus streams C, 
111 111... and 121 121... are represented by a triangle with 
sides of length dC1, dC2 and d12. The vertex corresponding to 
stream C can be projected onto the side d12 giving D1, the 
relative difference between C and the two response percepts: 

D1= (d12
2 + dC1

2 - dC2
2)/2d12

2 

D1 is restricted to the range [0, 1], and each projected 
point is weighted by its posterior probability to give the 
marginal distribution of the posterior projected onto the axis 
joining the two responses. The distance D1 gives the 
probability of subjects response, sr, 1 or 2, given C, i.e. P(sr 
=2|C) = D1 and P(sr =1|C) = 1-P(sr =2|C). Lastly we 
marginalize over the possible sequences, and assume that 
participants draw a sample from the posterior when 
responding, giving 

Pmodel(sr |tones)=SCP (sr |tones,C) P(C|tones)  

The parameters of the model (as well as for the alternative 
models below) were optimised using the MATLAB 
fminsearch routine to maximise the log-likelihood of the 
data, S ln(Pmodel(sr |tones)) independently for each subject. 
During each iteration of the search, a sequence of 30 tones 
was presented to the model for each condition, and the 
probability of response ‘1’ was calculated per condition. 

Model performance and comparison  
The model was compared against three alternatives that used 
different priors to constrain the number of possible streams 
to two: 
A. When the stream combination comprised only one 

stream (repeated), the prior probability of the next 
stream being 1 or 2 was allocated according to the CRP, 
but if the combination already contained two streams, 
the prior probability of allocating stream 1 or 2 was 
simply the fraction of previous tones that were allocated 
to stream 1 or 2 respectively. 

B. The prior probabilities of a new tone being allocated to 
stream 1 or stream 2 was given by P1, and 1-P1 
respectively, where P1 is a free parameter. 

C. The prior probabilities of a new tone being allocated to 
stream 1 or 2 were fixed at 0.5.  

As mentioned earlier, an alternative response measure based 
on the Hamming distance was also tested: in this case we 
used the original, unconstrained CRP prior model. In the 
results, this is referred to as alternative D. 

Because alternative model C has only one free parameter 
(all others have two), we use the Bayesian information 
criterion (BIC=-2log P(resp|tones)+k*log(n), where k is the 
number of parameters and n is the number of data points 
fitted over) to compare model performance in table 1. With 
the exception of participant LHH, the unconstrained model 
gives a better fit (smaller BIC) than all the alternatives 
considered. The mean ± SEM of the optimised parameters 
for the unconstrained model are α = 0.81 ± 0.12 
(equivalently P(11) = 0.56 ± 0.04) and σ= 105 ± 7 
[semitones/sec].  Data from all subjects and the 
unconstrained model output for participant KC is shown in 
figure 2.  

Partici-
pant 

Uncon-
strained 

Alternative 
A 

B C D 

SAG 246.3 328.9 276.6 395.2 286.1 

TAY 219.5 279.8 225.3 313.3 302.7 

KC 287.4 345.4 314.1 414.1 489.9 

LHH 288.5 335.9 257.8 424.1 284.5 

GM 200.7 303.7 207.8 323.9 227.3 

MLP 308.7 338.7 322.1 431.3 566.3 

Figure 2: a) Model prediction, based on fitted parameters from subject KC, giving the fraction of trials in which 
participant responded ‘2’ for the number of streams perceived. Axes give the pitch difference for the middle tone and 
the inter stimulus interval (ISI): the time between the offset of one tone and the onset of the next. b) The results from 6 
subjects. 
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Table 1. BIC per participant. A smaller number indicates 
better relative performance (best model for each subject 
indicated in bold). 
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Experiment 2  
While the model above theoretically allows an unlimited 
number of tones to be segregated into an unrestricted 
number of streams, the classical experiment (presented 
above) only allows a sequence of 3 tones to be separated 
into 1 or 2 streams. However, the model predicts that 
subjects should generally segregate based on frequency and 
temporal distances between tones. To test this further we 
performed a novel follow-up experiment where subjects 
were presented with seven tones and had to indicate the 
number of streams perceived. Nine conditions were created 
with sequentially larger discrepancy in frequency between 
tones and thus a larger probability of being assigned to 
different streams according to the model. The temporal gap 
between tones (ISI) were kept constant at 33.3 ms, unlike 
experiment 1. For each condition, of the seven tones (see fig 
1b for one condition) three tones were unique. Five further 
subjects (see above) performed this new task. Results 
showed that subjects perceived an increasing number of 
streams (fig. 3), in accordance with predictions from the 
model, rising from 1 to close to 3 (p<0.0001, F=20.39, one-
way anova, df=8). None of the subjects perceived more than 
3 streams for any of the conditions.  

Discussion 
We have presented a simple Bayesian statistical model for 
grouping of discrete sequential stimuli. Utilizing a non-
parametric Bayesian prior the model iteratively updates the 
posterior distribution over the assigned group of each 
stimuli and provides an excellent description of the 
perceptual interpretation of simple auditory sequences in 
human observers. 

With just two parameters, the model gives a good account 
of the basic characteristics of auditory stream segregation – 
the variation in the probability of perceiving a single sound 
source as a function of the repetition rate and pitch 
difference of the sounds. Although the ultimate goal is to 
characterize complex problems such as human speech 

segregation, for experimental simplicity we tested a well 
known paradigm from auditory psychophysics. The 
proposed model gave a better fit to the data than alternative 
models that were constrained to interpret the sounds as 
being produced from just one or two streams. Predictions 
from the model were also in accordance with results from a 
novel experiment with larger number of tones (exp. 2). 

Importantly the model goes beyond giving just the 
number of sources, but says which sounds are produced by 
each source. While the combinatorial space of the posterior 
distribution in experiment 1 was collapsed to give a 
marginal distribution in a continuous 1-d response space 
(leading to an estimate of response probability), the 
maximum a posterior (MAP) for all participants was always 
located at either 111-111... or 121-121..., depending on the 
stimulus condition (figure 2b). This is reassuring as it is 
consistent with the anecdotal evidence that participants 
always perceive either a galloping rhythm (streams 111-
111...) or a high-pitch and a low pitch stream (121-121...), 
i.e. the percept is always at the MAP. Indeed, the percept 
cannot in general be at the mean because the space of 
possible percepts is discrete: there is no percept between, 
say, 111 and 121.  

One consequence of the inference model that is not 
addressed by mechanistic models of stream segregation is 
that when a percept changes from say 111-111 to 121-121, 
the source allocation of previous sounds is changed. 
Ironically, this ‘non-causal’ effect is essentially a feature of 
causal inference – when an observer decides that the percept 
has changed to 121-121, this is based on previous evidence, 
and yet at the time that the previous tones were heard, they 
were all associated with one source. A similar effect is 
commonly encountered when mis-interpreted speech 
(perhaps mis-heard due to background noise) suddenly 
makes sense when an essential word is heard – the previous 
words are reinterpreted, similar to the letters in predictive 
text message systems.  

The framework of the model is very general, and allows 
for the incorporation of other factors into the likelihood to 
describe other aspects of auditory stream segregation. 
Adding terms in the likelihood function may be able to 
explain other effects seen in the literature, such as 
segregation based on bandwidth (Cusack & Roberts, 2000), 
or build-up and resetting of segregation (Roberts, Glasberg, 
& Moore, 2008). Furthermore, in the current study we 
assume that there is no ambiguity in the percept of the pure 
tones, the uncertainty arises from lack of knowledge about 
the underlying generative structure of the data. In a realistic 
situation perceptual ambiguity would have to be taken into 
account using an approach such as suggested by Turner and 
Sahani (Turner & Sahani, 2011). Nevertheless, we should 
emphasize that even though we are dealing with a Markov 
property (each tone within a stream only depends on the 
previous tone), the mixture of streams makes the problem 
very different from work on e.g. Hidden Markov Models (or 
even Infinite Hidden Markov Models) for which the goal 
would be to infer underlying states despite perceptual 
ambiguity. Note also that while there are algorithms 
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Figure 3: Averaged subject responses as a function of 
the auditory tone condition (see example in Fig. 1b). The 
horizontal labels indicate the tone-sequence of the 
condition, ordered by increasing step sizes. Error bars 
are standard errors. 
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developed to separate audio signals (e.g. Roweis, 2001), 
these are not meant to mimic human perception, although a 
future comparison would be very interesting. 

In the current implementation we used numerical 
approximations in order to handle the complexity of the 
model. As an alternative to calculating our results 
analytically we could use Monte Carlo techniques (e.g. 
Markov Chain Monte Carlo sampling, a different type of 
approximation), which have become a standard tool for 
solving complex statistical models.  

The proposed model of auditory stream segregation is a 
specific instantiation of an iterative probabilistic approach 
towards inference of perceptual information. A major issue 
for this approach is the problem of dealing with multiple 
sources, as represented by the work done on causal 
inference (Shams & Beierholm, 2010). Until now models of 
causal inference have been unable to handle more than two 
sources, due to the escalating number of parameters needed 
for parametric priors. The use of a non-parametric prior 
allows a complex of many stimuli to be interpreted without 
running into this problem, potentially allowing for an 
arbitrary number of causes in the world. This approach is 
very general – it can be applied to any set of discrete 
sequential cues involving multiple sources – and it gives a 
simple, principled way to incorporate natural signal 
constraints into the generative model. 
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