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Abstract

In metagenomic analysis, the integration of various sources of information is a difficult
task since produced datasets are often of heterogeneous types. These datasets can be
composed of species counts, which need to be analysed with distances, but also species
abundances, interaction networks or phylogenetic information which have been shown
relevant to provide a better comparison between communities. Standard integration
methods can take advantage of external information but do not allow to analyse
heterogenous multi-omics datasets in a generic way.

We propose a multiple kernel framework that allows to integrate multiple datasets of
various types into a single exploratory analysis. Several solutions are provided to learn
either a consensus meta-kernel or a meta-kernel that preserves the original topology of
the datasets. This kernel is subsequently used in kernel PCA to provide a fast and
accurate visualisation of similarities between samples, in a non linear space and from
the multiple source point of view. A generic procedure is also proposed to improve the
interpretability of the kernel PCA in regards with the original data. We applied our
framework to the multiple metagenomic datasets collected during the TARA Oceans
expedition. We demonstrate that our method is able to retrieve previous findings in a
single analysis as well as to provide a new image of the sample structures when a larger
number of datasets are included in the analysis.

Proposed methods are available in the R package mixKernel, released on CRAN. It
is fully compatible with the mixOmics package and a tutorial describing the approach
can be found on mixOmics web site http://mixomics.org/mixkernel/.

1 Introduction 1

The development of high-throughput sequencing technologies has substantially improved 2

our ability to estimate complex microbial communities composition, even for organisms 3

that cannot be cultured. The sequence reads, produced by amplicon sequencing such as 4

16S rRNA sequencing, can be taxonomically classified into taxa or clustered into 5

operational taxonomic units (OTUs). Important insights have been gained from the 6

analysis of such data by profiling microbial communities and differences between 7

communities in a wide range of applications from the human enterotypes [3] to the 8

plankton [5]. In microbiome studies, differences among various samples are often 9

extracted to understand associations between organisms and external factors [10,44]), or 10

to characterize microbial diversity patterns [14,17]. 11
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However, the analysis of metagenomic datasets is complex due to their sparse and 12

compositional structure: OTU counts are often converted to relative, rather than 13

absolute, abundances because the sequencing depth strongly varies between samples. 14

The resulting measures are constrained to a simplex space and the standard Euclidean 15

distance is thus irrelevant to compare samples [1]. As a consequence, directly using 16

standard statistical methods on these data may lead to spurious results [28]. The most 17

widely used approaches to address this issue include transforming the compositional 18

datasets using log-ratio in order to release the simplex constrain [21] or using β-diversity 19

measures to assess the dissimilarity between communities. These dissimilarity measures 20

compute absolute [18] or relative [7] overlaps between two communities. In microbiome 21

studies, they are often used as inputs for an ordination analysis, such as the Principal 22

Coordinates Analysis (PCoA, or Multidimensional Scaling), to identify features that 23

explain differences between studied communities. 24

However, [30] shows that integrating information about differences among species in 25

the analysis (i.e., by means of phylogenetic dissimilarity) is relevant to reveal 26

phylogenetic patterns in comparing communities. Integrating the philogenetic 27

information is usually performed by using specific dissimilarities, such as the Unifrac 28

and weighted Unifrac measures [26,27] in ordination methods. Alternatively, [31] 29

propose the DPCoA to analyze the relations between the abundance data and external 30

information corresponding to differences among species (phylogenetic, morphological, 31

biological...). [13] extend this approach to also integrate external variables measured on 32

communities, using a prior clustering of the communities based on these variables. [34] 33

and [9] show that these methods can be generalized by using a kernel framework and 34

extend them to incorporate context-dependent non-Euclidean structures with 35

abundance data into a regression framework. 36

In the present work, we use a similar kernel framework to propose a generic approach 37

that can incorporate various types of external information to metagenomic data or that 38

can integrate multiple metagenomic datasets. More precisely, β-diversity measures or 39

phylogenetic-based dissimilarities or any other dissimilarity measuring a specific kind or 40

dissemblance between two samples are viewed as kernels and integrated using an 41

unsupervised multiple kernel approach. Such a kernel can be subsequently used in 42

combination with KPCA [39] for exploratory analysis. To improve the interpretability 43

of our approach, indexes of the importance of the various features of the samples are 44

proposed. The method is evaluated on the TARA Oceans expedition datasets [5, 19]. 45

Results show that not only our approach allows to retrieve the main conclusions stated 46

in the different TARA Oceans papers in a single and fast analysis, but that, integrating 47

a larger number of information, it can also provide a different overview of the datasets. 48

2 Methods 49

2.1 Unsupervised multiple kernel learning 50

2.1.1 Kernels and notations 51

For a given set of observations (xi)i=1,...,N , taking values in an arbitrary space X , we 52

call “kernel” a function K : X × X → R that provides pairwise similarities between the 53

observations: Kij := K(xi, xj). Moreover, this function is assumed to be symmetric 54

(Kij = Kji) and positive 55

(∀n ∈ N, ∀ (αi)i=1,...,n ⊂ R, ∀ (xi)i=1,...,n ⊂ X ,
∑n
i,i′=1 αiαi′Kii′ ≥ 0). According 56

to [2], this ensures that K is the dot product in a uniquely defined Hilbert space 57

(H, 〈., .〉) of the images of (xi)i by a uniquely defined feature map φ : X → H: 58

Kij = 〈φ(xi), φ(xj)〉. In the sequel, the notation K will be used to denote either the 59

kernel itself or the evaluation matrix (Kij)i,j=1,...,N depending on the context. 60
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This setting allows us to deal with multiple source datasets in a uniform way, 61

provided that a relevant kernel can be calculated from each dataset (examples are given 62

in Section 3.2 for standard numeric datasets, philogenetic tree, ...). Suppose now that 63

M datasets (xmi )i=1,...,N (for m = 1, . . . ,M) are given instead of just one, all obtained 64

on the same samples i = 1, . . . , N . M different kernels (Km)m=1,...,M provide different 65

views of the datasets, each related to a specific aspect. 66

Multiple kernel learning (MKL) refers to the process of linearly combining the M
given kernels into a single kernel K∗:

K∗ =
M∑
m=1

βmK
m subject to

{
βm ≥ 0, ∀m = 1, . . . ,M∑M
m=1 βm = 1

. (1)

By definition, the kernel K∗ is also symmetric and positive and thus induces a feature 67

space and a feature map (denoted by φ∗ in the sequel). This kernel can thus be used in 68

subsequent analyses (SVM, KPCA, ...) as it is supposed to provide an integrated 69

summary of the samples. 70

A simple choice for the coefficients βm is to set them all equal to 1/M . However, 71

this choice treats all the kernels similarly and does not take into account the fact that 72

some of the kernels can be redundant or, on the contrary, atypical. Sounder choices aim 73

at solving an optimization problem so as to better integrate all informations. In a 74

supervised framework, this mainly consists in choosing weights that minimize the 75

prediction error [15]. For clustering, a similar strategy is used in [45], optimizing the 76

margin between the different clusters. However, for other unsupervised analyses (such 77

as exploratory analysis, KPCA for instance), such criteria do not exist and other 78

strategies have to be used to choose relevant weights. 79

As explained in [46], propositions for unsupervised multiple kernel learning (UMKL) 80

are less numerous than the ones available for the supervised framework. Most solutions 81

(see, e.g., [25, 46]) seek at providing a kernel that minimizes the distortion between all 82

training data and/or that minimizes the approximation of the original data in the kernel 83

embedding. However, this requires that the datasets (xmi )i (m = 1, . . . ,M) are standard 84

numerical datasets: the distortion between data and the approximation of the original 85

data are then directly computed in the input space (which is Rd) using the standard 86

Euclidean distance as a reference. Such a method is not applicable when the input 87

dataset is not numerical (i.e., is a phylogenetic tree for instance) or when the different 88

datasets (xmi )i (m = 1, . . . ,M) do not take value in a common space. 89

In the sequel, we propose two solutions that overcome this problem: the first one 90

seeks at proposing a consensual kernel, which is the best consensus of all kernels. The 91

second one uses a different point of view and, similarly to what is suggested in [46], 92

computes a kernel that minimizes the distortion between all training data. However, 93

this distortion is obtained directly from the M kernels, and not from an Euclidean input 94

space. Moreover, it is used to provide a kernel representation that preserve the original 95

data topology. Two variants are described: a sparse variant, which also selects the most 96

relevant kernels, and a non sparse variant, when the user does not want to make a 97

selection among the M kernels. 98

2.1.2 A consensus multiple kernel 99

Our first proposal, denoted by STATIS-UMKL, relies on ideas similar to 100

STATIS [20,23]. STATIS is an exploratory method designed to integrate multi-block 101

datasets when the blocks are measured on the same samples. STATIS finds a consensus 102

matrix, which is obtained as the matrix that has the highest average similarity with the 103

relative positions of the observations as provided by the different blocks. We propose to 104

use a similar idea to learn a consensus kernel. 105
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More precisely, a measure of similarity between kernels can be obtained by
computing their cosines1 according to the Frobenius dot product: ∀m, m′ = 1, . . . , M ,

Cmm′ =
〈Km,Km′〉F
‖Km‖F ‖Km′‖F

=
Trace(KmKm′

)√
Trace((Km)2)Trace((Km′)2)

. (2)

Cmm′ can be viewed as an extension of the RV-coefficient [37] to the kernel framework, 106

where the RV-coefficient is computed between (φm(xmi ))i and (φm
′
(xm

′

i ))i (where φm is 107

the feature map associated to Km). 108

The similarity matrix C = (Cmm′)m,m′=1,...,M provides information about the 109

resemblance between the different kernels and can be used as such to understand how 110

they complement each other or if some of them provide an atypical information. It also 111

gives a way to obtain a summary of the different kernels by choosing a kernel K∗ which 112

maximizes the average similarity with all the other kernels: 113

maximizeβ

M∑
m=1

〈
K∗v,

Km

‖Km‖F

〉
F

= v>Cv (3)

for K∗v =
M∑
m=1

vmK
m

and v ∈ RM such that ‖v‖2 = 1.

The solution of the optimization problem of Equation (3) is given by the 114

eigen-decomposition of C. More precisely, if v = (vm)m=1,...,M is the first eigenvector 115

(with norm 1) of this decomposition, then its entries are all positive (because the 116

matrices Km are positive) and are the solution of the maximization of v>Cv. Setting 117

β = v∑M
m=1 vm

thus provides a solution satisfying the constrains of Equation (1) and 118

corresponding to a consensual summary of the M kernels. 119

Note that this method is equivalent to performing multiple CCA between the 120

multiple feature spaces, as suggested in [43] in a supervised framework, or in [35] for 121

multiple kernel PCA. However, only the first axis of the CCA is kept and a L2-norm 122

constrain is used to allow the solution to be obtained by a simple eigen-decomposition. 123

This solution is better adapted to the case where the number of kernels is small. 124

2.1.3 A sparse kernel preserving the original topology of the data 125

Because it focuses on consensual information, the previous proposal tends to give more 126

weights to kernels that are redundant in the ensemble of kernels and to discard the 127

information given by kernels that provide complementary informations. However, it can 128

also be desirable to obtain a solution which weights the different images of the dataset 129

provided by the different kernels more evenly. A second solution is thus proposed, which 130

seeks at preserving the original topology of the data. This method is denoted by 131

sparse-UMKL in the sequel. 132

More precisely, weights are optimized such that the local geometry of the data in the 133

feature space is the most similar to that of the original data. Since the input datasets 134

are not Euclidean and do not take values in a common input space, the local geometry 135

of the original data cannot be measured directly as in [46]. It is thus approximated 136

using only the information given by the M kernels. To do so, a graph, the k-nearest 137

neighbor graph (for a given k ∈ N∗), Gm, associated with each kernel Km is built. Then, 138

1Cosines are usually preferred over the Frobenius dot product itself because they allow to re-scale
the different matrices at a comparable scale. It is equivalent to using the kernel K̃m = Km

‖Km‖F
instead

of Km.
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a (N ×N)-matrix W, representing the original topology of the dataset is defined such 139

that Wij is the number of times the pair (i, j) is in the edge list of Gm over 140

m = 1, . . . ,m (i.e., the number of times, over m = 1, . . . ,M , that xmi is one of the k 141

nearest neighbors of xmj or xmj is one of the k nearest neighbors of xmi ). 142

The solution is thus obtained for weights that ensure that φ∗(xi) and φ∗(xj) are 143

“similar” (in the feature space) when Wij is large. To do so, similarly as [25], we propose 144

to focus on some particular features of φ∗(xi) which are relevant to our problem and 145

correspond to their similarity (in the feature space) with all the other φ∗(xj). More 146

precisely for a given β ∈ RM , we introduce the N -dimensional vector 147

∆i(β) =

〈
φ∗β(xi),

 φ∗β(x1)
...

φ∗β(xN )

〉 =

 K∗β(xi, x1)
...

K∗β(xi, xN )

. But, contrary to [25], we do not 148

rely on a distance in the original space to measure topology preservation but we directly 149

use the information provided by the different kernels through W. The following 150

optimization problem is thus solved: 151

minimizeβ

N∑
i,j=1

Wij ‖∆i(β)−∆j(β)‖2 (4)

for K∗β =
M∑
m=1

βmK
m

and β ∈ RM such that βm ≥ 0 and

M∑
m=1

βm = 1.

The optimization problem of Equation (4) expands as 152

minimizeβ

M∑
m,m′=1

βmβm′Smm′ (5)

for β ∈ RM such that βm ≥ 0 and
M∑
m=1

βm = 1,

for Smm′ =
∑N
i,j=1Wij〈∆m

i −∆m
j ,∆

m′

i −∆m′

j 〉 and ∆m
i =

 Km(xi, x1)
...

Km(xi, xN )

. The 153

matrix S = (Smm′)m,m′=1,...,M is positive and the problem is thus a standard Quadratic 154

Programming (QP) problem with linear constrains, which can be solved by using the R 155

package quadprog. Since the constrain
∑M
m=1 βm = 1 is an L1 constrain in a QP 156

problem, the produced solution will be sparse: a kernel selection is performed because 157

only some of the obtained (βm)m are non zero. While desirable when the number of 158

kernels is large, this property can be a drawback when the number of kernels is small 159

and that using all kernels in the integrated exploratory analysis is expected. To address 160

this issue, a modification of Equation (5) is proposed in the next section. 161
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2.1.4 A full kernel preserving the original topology of the data 162

To get rid of the sparse property of the solution of Equation (5), an L2 constrain can be 163

used to replace the L1 constrain, similarly to Equation (3): 164

minimizev

M∑
m,m′=1

vmvm′Smm′ (6)

v ∈ RM such that vm ≥ 0 and ‖v‖2 = 1,

and to finally set β = v∑
m vm

. This problem is a Quadratically Constrained Quadratic 165

Program (QCQP), which is known to be hard to solve. For a similar problem, [25] 166

propose to relax the problem into a semidefinite programming optimization problem. 167

However, a simpler solution is provided by using ADMM (Alterning Direction Method 168

of Multipliers; [6]). More precisely, the optimization problem of Equation (6) is 169

re-written as 170

minimizex and z xTSx + I{x≥0}(x) + I{z≥1}
such that x− z = 0

and is solved with the method of multipliers. Final weights are then obtained by 171

re-scaling the solution β := z∑
m zm

. The method is denoted by full-UMKL in the sequel. 172

2.2 Kernel PCA (KPCA) and enhanced interpretability 173

2.2.1 Short description of KPCA 174

KPCA, introduced in [39], is a PCA analysis performed in the feature space induced by 175

the kernel K∗. It is equivalent to standard MDS (i.e., metric MDS or PCoA; [41]) for 176

Euclidean dissimilarities. Without loss of generality, the kernel K∗ is supposed 177

centered2. KPCA simply consists in an eigen-decomposition of K∗: if 178

(αk)k=1,...,N ∈ RN and (λk)k=1,...,N respectively denote the eigenvectors and 179

corresponding eigenvalues (ranked in decreasing order) then the PC axes are, for 180

k = 1, . . . , N , ak =
∑N
i=1 αkiφ

∗(xi), where αk = (αki)i=1,...,N . ak = (aki)i=1,...,N are 181

orthonormal in the feature space induced by the kernel: ∀ k, k′, 182

〈ak, ak′〉 = α>kK
∗αk′ = δkk′ with δkk′ =

{
0 if k 6= k′

1 otherwise
. Finally, the coordinates of 183

the projections of the images of the original data, (φ∗(xi))i, onto the PC axes are given 184

by: 〈ak, φ∗(xi)〉 =
∑N
j=1 αkjK

∗
ji = K∗i.αk = λkαki, where K∗i. is the i-th row of the 185

kernel K∗. 186

These coordinates are useful to represent the samples in a small dimensional space 187

and to better understand their relations. However, contrary to standard PCA, KPCA 188

does not come with a variable representation, since the samples are described by their 189

relations (via the kernel) and not by standard numeric descriptors. PC axes are defined 190

by their similarity to all samples and are thus hard to interpret. 191

2.2.2 Interpretation 192

There is few attempts, in the literature, to help understand the relations of KPCA with 193

the original measures. When the input datasets take values in Rd, [36] propose to add a 194

representation of the variables to the plot, visualizing their influence over the results 195

2if K∗ is not centered, it can be made so by computing K∗ − 1
N
K∗IN + 1

N2 I
>
NK∗IN , with IN a

vector with N entries equal to 1.
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from derivative computations. However, this approach would make little sense for 196

datasets like ours, i.e., described by discrete counts. 197

We propose a generic approach that assesses the influence of variables and is based 198

on random permutations. More precisely, for a given measure j, that is used to compute 199

the kernel Km, the values observed on this measure are randomly permuted between all 200

samples and the kernel is re-computed: K̃m,j . For species abundance datasets, the 201

permutation can be performed at different phylogeny levels, depending on the user 202

interest. Then, using the weights found with the original (non permuted) kernels, a new 203

meta-kernel is obtained K̃∗ =
∑
l 6=m βlK

l + βmK̃
m,j . The influence of the measure j on 204

a given PC subspace is then assessed by computing the Crone-Crosby distance [11] at 205

the axis level: ∀ k = 1, . . . , N , Dcc(αk, α̃k) = 1√
2
‖αk − α̃k‖, where αk and α̃k 206

respectively denote the eigenvectors of the eigen-decomposition of K∗ and K̃∗.3 207

Finally, the KPCA interpretation is done similarly as for a standard PCA: the 208

interpretation of the axes (ak)k=1,...,N is done with respect to the observations 209

(xi)i=1,...,N which contribute the most to their definition, when important variables are 210

the ones leading to the largest Crone-Crosby distances. 211

Methods presented in the paper are available in the R package mixKernel, released 212

on CRAN. Further details about implemented functions are provided in Supplementary 213

Section S1. 214

3 Implementation on TARA Oceans datasets 215

3.1 Overview on TARA Oceans 216

The TARA Oceans expedition [5, 19] facilitated the study of plankton communities by 217

providing oceans metagenomic data combined with environmental measures to the 218

scientific community. During the expedition, 579 samples were collected for 219

morphological, genetic and environmental analyses, from 75 stations in epipelagic and 220

mesopelagic waters across eight oceanic provinces. The TARA Oceans consortium 221

partners analyzed prokaryotic [40], viral [8] and eukaryotic-enriched [12] size fractions 222

and provided an open access to the raw datasets and processed materials. 223

Some integrated analyses have already been performed with these datasets: by 224

integrating prokaryotic, eukaryotic and viral datasets, [24] created the global plankton 225

interactome, i.e., a taxon-taxon co-occurrence network. This integrated network, 226

associated to a sparse partial least square analysis, allowed [16] to detect associations 227

between genomic datasets and carbon export. A similar co-occurrence strategy is used 228

in [42] to perform an integrated analysis across domains of life to study the 229

environmental characteristics of the Agulhas rings. 230

So far, all articles related to TARA Oceans that aim at integrating prokaryotic, 231

eukaryotic and viral communities, took advantage of the datasets only by using 232

co-occurrence associations. The integration analysis of the whole material aims at 233

providing a more complete overview of the relations between all collected informations. 234

3.2 Dissimilarities and kernels for TARA Oceans datasets 235

Selected samples are precisely described in Supplementary Section S2. Using these 236

samples, 8 (dis)similarities were computed: 237

• The phychem kernel is a similarity measure obtained from environmental 238

variables. To compute this kernel, 22 numerical features were used, including, e.g., 239

3Note that a similar distance can be computed at the entire projection space level but, since axes
are naturally ordered in PCA, we chose to restrict to axis-specific importance measures.
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temperature, salinity, . . . This dataset was extracted from Table W8, available on 240

the companion website of [40]4. Missing values were previously imputed using a 241

k-nearest neighbor approach, as implemented in the R package DMwR (for k = 5). 242

Finally, the linear kernel, K(xi, xj) = xTi xj , was computed between pairs of ocean 243

samples from this dataset; 244

• The pro.phylo dissimilarity describes the phylogenetic dissimilarities between 245

ocean samples. The companion website of [40]2 gives access to the abundance 246

table of 35,650 OTUs summarized at different taxonomic levels as well as to the 247

OTUs of 16S ribosomal RNA gene sequences. A phylogenomic tree was built from 248

these data using fasttree [33]. The weighted Unifrac distance was then computed 249

using the R package phyloseq [29]: dwUF (xi, xj) =
∑

e le|pe−qe|∑
e(pe+qe)

, in which, for each 250

branch e, le is the branch length and pe (respectively qe) is the fraction of the 251

community of ocean sample xj (respectively of ocean sample xj) below branch e; 252

• The pro.NOGs dissimilarity provides a measure of prokaryotic functional
processes dissimilarities between ocean samples. It was obtained using the
Bray-Curtis dissimilarity

dBC(xi, xj) =

∑
s |nis − njs|∑
s(nis + njs)

, (7)

computed on the gene abundances of 39,246 bacterial genes. In Equation (7), nis 253

is the number of counts of bacterial gene number s in ocean sample xi. Genes 254

were annotated using the ocean microbial reference gene catalog2 and summarized 255

at eggNOG gene families (genes annotated by eggNOG version 3 database: [32]). 256

The gene abundance table is freely available from the companion website of [40]2; 257

• The ocean eukaryotic aspect is assessed by four dissimilarities, one for each 258

eukaryotic organism size collected: euk.pina for piconanoplankton, euk.nano for 259

nanoplankton, euk.micro for microplankton and euk.meso mesoplankton. The 260

Bray-Curtis dissimilarity, defined in Equation (7), is computed on the abundance 261

table of ∼ 150, 000 eukaryotic plankton OTUs. The dataset can be downloaded 262

from the companion website of [12] 5; 263

• The vir.VCs dissimilarity measures ocean viral communities and was computed 264

using the Bray-Curtis dissimilarity, defined in Equation (7), on the abundance 265

table of 867 Viral Clusters (VCs) available from the supplementary materials 266

of [38]. 267

All dissimilarities, d, described above (pro.phylo, pro.NOGs, euk.pina, 268

euk.nano, euk.micro, euk.meso and vir.VCs) were transformed into similarities as 269

suggested in [22]: Kij = − 1
2

(
d(xi, xj)− 1

N

∑N
k=1 (d(xi, xk) + d(xk, xj)) + 270

1
N2

∑N
k, k′=1 d(xk, xk′)

)
, where d is the weighted Unifrac distance or the Bray-Curtis 271

dissimilarity. The eight similarities obtained are all positive and are thereby kernels, 272

which are all centred by definition. To avoid scaling effects in kernel integration, all 273

kernels were scaled using the standard cosine transformation [4]: K̃ij =
Kij√
KiiKjj

. 274

4 Results and discussion 275

This section is divided into two parts: Section 4.1 performs the exploratory analysis 276

only with the datasets studied in [40]. The results described in this paper are used as a 277

4http://ocean-microbiome.embl.de/companion.html
5http://taraoceans.sb-roscoff.fr/EukDiv/
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ground truth to validate the relevance of our strategy. A further step is taken in 278

Section 4.2 in which a larger set of datasets are analyzed to illustrate the use of the 279

method and its efficiency to perform an integrated exploratory analysis. In both 280

sections, analyses are performed with the full-UMKL approach presented in Section 2.1. 281

An analysis of the correlation between kernels is provided in Supplementary Section S3 282

and a comparison with the other multiple kernel strategies that explains the choice of 283

full-UMKL is discussed in Supplementary Section S4. 284

4.1 Proof of concept with a restricted number of datasets 285

In the present section, only the datasets analyzed in [40] are analyzed. These kernels are 286

the environmental kernel, phychem, and the two prokaryotic kernels, pro.phylo and 287

pro.NOGs, all computed on the 139 prokaryotic samples described in Section 3. 288

Figure 1 (left) provides the sample projection of the first two axes of the KPCA 289

(full-UMKL kernel). The 10 most important variables for each dataset are displayed in 290

Figure 1 (first axis) and in Supplementary Figure S4 (second axis). Both figures were 291

obtained by randomly permuting the 22 environmental variables, the eggNOG gene 292

families at 23 functional levels of the gene ontology and the proteobacteria abundances 293

at 102 order levels. Additionally, the explained variance supported by the first 15 axes 294

is provided in Supplementary Figure S5. 295

Figure 1. Only datasets of [40]. Left: Projection of the observations on the first
two KPCA axes. Colors represent the oceanic regions and shapes the depth layers.
Right: The 10 most important variables for the first KPCA axis, ranked by decreasing
Crone-Crosby distance.

First, note that Figure 1 shows very similar results to the ones returned by the PCA 296

performed on community composition dissimilarities (Bray-Curtis) presented in [40]: 297

samples are separated by their depth layer of origin, i.e., SRF, DCM or MES, with 298

stronger differences for MES samples. 299

Figure 1 exhibits that both the abundance of clade SAR11 and the temperature lead 300

to the largest Crone-Crosby distances, meaning that they contribute the most to the 301

first KPCA axis definition. This result is validated by displaying the values of this 302

variable on the KPCA projection (see Supplementary Figures S6 and S7). On both 303

figures, a gradient can be observed on the first KPCA axis between the left (lowest 304

abundances of clade SAR11 and lowest temperatures), and the right (highest values of 305

these variables). Those results are similar to the ones presented in [40]: the vertical 306

stratification of prokaryotic communities is mostly driven by temperature and 307

proteobacteria (more specifically clade SAR11 and clade SAR86 ) dominate the sampled 308

areas. 309

Similarly, Supplementary Figure S4 shows that cyanobacteria abundance and the 310

nitracline mean depth (i.e. water layer in which the nitrate concentration changes 311

rapidly with depth) contribute the most to the second KPCA axis definition. The 312

display of the nitracline mean depth on KPCA projection (Supplementary Figure S8) 313
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shows a gradient on the second KPCA axis. Supplementary Figure S9, displaying 314

cyanobacteria abundance, shows a gradient between the top-left and the bottom-right of 315

the KPCA projection, because cyanobacteria abundance also ranks as the third 316

important variable on the first axis (see Supplementary Figure S10). Those results are 317

consistent with findings of [40]: cyanobacteria were found abundant and the nitracline 318

strongly correlated to the taxonomic composition (p-value ¡ 0.001). On both first two 319

axes of the KPCA, unknown functions lead to the largest Crone-Crosby distances 320

between variables used to compute the pro.NOGs kernel. Again, this result is in 321

agreement with a conclusion made in [40]: a large fraction of the ocean gene families 322

encode for unknown functions. 323

These results demonstrate that the proposed method gives a fast and accurate 324

insight to the main variability explaining the differences between the different samples, 325

viewed through different omics datasets. In particular, for both pro.phylo and 326

phychem kernels, the most important variables are those used in [40] to state the main 327

conclusions. 328

4.2 Integrating environmental, prokaryotic, eukaryotic and 329

viral datasets 330

In this section, environmental, prokaryotic, eukaryotic and viral datasets are integrated 331

together into a meta-kernel obtained using the full-UMKL method. Figure 2 (left) 332

displays the projection of the samples on the first two axes of the KPCA. Figure 2 333

(right) and Supplementary Figure S11 provide the 5 most important variables for each 334

datasets, respectively for the first and the second axes of the KPCA. To obtain these 335

figures, abundance values were permuted at 56 prokaryotic phylum levels for the 336

pro.phylo kernel, at 13 eukaryotic phylum levels for euk.pina, euk.nano, euk.micro 337

and euk.meso and at 36 virus family levels for the vir.VCs kernel. Variables used for 338

phychem and pro.NOGs were the same than in Section 4.1. Additionally, the 339

explained variance supported by the first 15 axes is provided in Supplementary Figure 340

S12. 341

First, note that Figure 2 does not highlight anymore any particular pattern in terms 342

of depth layers but it does in terms of geography. SO samples are gathered in the 343

bottom-center of the KPCA projection and SPO samples are gathered on the top-left 344

side. Second, Figure 2 shows that the most important variables come from the 345

phychem kernel (especially the longitude) and from kernels representing the eukaryotic 346

plankton. More specifically, large size organisms are the most important: rhizaria 347

phylum for euk.meso and alveolata phylum for euk.nano. The abundance of rhizaria 348

organisms also ranks first between important variables of the second KPCA axis, 349

followed by the opisthokonta phylum for euk.nano. The display of these variables on 350

the KPCA projection reveals a gradient on the first axis for both the alveolata phylum 351

abundance (Supplementary Figure S13) and the longitude (Supplementary Figure S14) 352

and on the second axis for rhizaria (Supplementary Figure S15) and opisthokonta 353

(Supplementary Figure S16) abundances. This indicates that SO and SPO epipelagic 354

waters mainly differ in terms of Rhizarians abundances and both of them differ from 355

the other studied waters in terms of alveolata abundances. 356

The integration of TARA Oceans datasets shows that the variability between 357

epipelagic samples is mostly driven by geography rather than environmental factors and 358

that this result is mainly explained by the strong geographical structure of large 359

eukaryotic communities. Studied samples were all collected from epipelagic layers, 360

where water temperature does not vary much, which explains the poor influence of the 361

prokaryotic dataset in this analysis. 362
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Figure 2. Left: Projection of the observations on the first two KPCA axes. Colors
represent the oceanic regions and shapes the depth layers. Right: The 5 most important
variables for each of the eight datasets, ranked by decreasing Crone-Crosby distance.

5 Conclusion 363

The contributions of the present manuscript to the analysis of multi-omics datasets are 364

twofolds: firstly, we have proposed three unsupervised kernel learning approaches to 365

integrate multiple datasets from different types, which either allow to learn a consensus 366

meta-kernel or a meta-kernel preserving the original topology of the data. Secondly, we 367

have improved the interpretability of the KPCA by assessing the influence of input 368

variables in a generic way. 369

The experiments performed on TARA Oceans datasets showed that presented 370

methods allow to give a fast and accurate insight over the different datasets within a 371

single analysis. However, the approach is not restricted to KPCA analyses: the 372

meta-kernel presented in this article could have been used in combination with kernel 373

clustering methods or with kernel supervised models, to integrate multi-omics datasets. 374
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