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Abstract

Recent high-throughput sequencing advances have expanded the breadth of available
omics datasets and the integrated analysis of multiple datasets obtained on the same
samples has allowed to gain important insights in a wide range of applications. However,
the integration of various sources of information remains a challenge for systems biology
since produced datasets are often of heterogeneous types, with the need of developing
generic methods to take their different specificities into account.

We propose a multiple kernel framework that allows to integrate multiple datasets of
various types into a single exploratory analysis. Several solutions are provided to learn
either a consensus meta-kernel or a meta-kernel that preserves the original topology of
the datasets. We applied our framework to analyse two public multi-omics datasets.
First, the multiple metagenomic datasets, collected during the TARA Oceans
expedition, was explored to demonstrate that our method is able to retrieve previous
findings in a single KPCA as well as to provide a new image of the sample structures
when a larger number of datasets are included in the analysis. To perform this analysis,
a generic procedure is also proposed to improve the interpretability of the kernel PCA
in regards with the original data. Second, the multi-omics breast cancer datasets,
provided by The Cancer Genome Atlas, is analysed using a kernel Self-Organizing Maps
with both single and multi-omics strategies. The comparison of this two approaches
demonstrates the benefit of our integration method to improve the representation of the
studied biological system.

Proposed methods are available in the R package mixKernel, released on CRAN. It
is fully compatible with the mixOmics package and a tutorial describing the approach
can be found on mixOmics web site http://mixomics.org/mixkernel/.

1 Introduction 1

Recent high-throughput sequencing advances have expanded the breadth of available 2

omics datasets from genomics to transcriptomics, proteomics and methylomics. The 3

integrated analysis of multiple datasets obtained on the same samples has allowed to 4

gain important insights in a wide range of applications from microbial communities 5

profiling [14] to the characterization of molecular signatures of human breast 6

tumours [35]. However, multiple omics integration analyses remain a challenging task, 7

due to the complexity of biological systems, heterogeneous types (continuous data, 8

counts, factors, networks...) between omics and additional information related to them 9

and the high-dimensionality of the data. 10
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In the literature, several strategies have been proposed to analyse multi-omics 11

datasets. Multivariate approaches is a widely used framework to deal with such 12

problems and several such methods (including PLS and CCA) are provided in the R 13

package mixOmics [19]. Similarly, the multiple co-inertia analysis [8], use the variability 14

both within and between variables to extract the linear relationships that best explain 15

the correlated structure across datasets. However, these approaches are restricted to the 16

analysis of continuous variables and thus are not generic in term of data types used as 17

inputs. Some works use a case-by-case approach to integrate non numeric information 18

into the analysis: [42] propose a joint non-negative matrix factorization framework to 19

integrate expression profiles to interaction networks by adding network-regularized 20

constraints with the help of graph adjacency matrices and [12, 26] propose extensions of 21

the widely used PCoA approach to integrate information about phylogeny and 22

environmental variables. Finally, some authors propose to use a transformation of all 23

the input datasets into a unified representation before performing an integrated 24

analysis: [16] transforms each data types into graphs, which can be merged before being 25

analysed by standard graph measures and graph algorithms. However, graph based 26

representation are a very constraining and rough way to represent a complex and large 27

dataset. 28

In the present work, we take advantage of the kernel framework to propose a generic 29

approach that can incorporate heterogeneous data types as well as external information 30

in a generic and very flexible way. More precisely, any dataset is viewed through a 31

kernel, that provides pairwise information between samples. Kernels are a widely used 32

and flexible method to deal with complex data of various types: they can be obtained 33

from β-diversity measures [5, 23] to explore microbiome datasets. They can also account 34

for datasets obtained as read counts by the discrete Poisson kernel [7] and are also 35

commonly adopted to quantifies genetic similarities by the state kernel [17,39]. Our 36

contribution is to propose three alternative approaches able to combine several kernels 37

into one meta-kernel in an unsupervised framework. If multiple kernel approaches are 38

widely developed for supervised analyses, unsupervised approaches are less easy to 39

handle, because no clear a priori objective is available. However, they are required to 40

use kernel in exploratory analyses that are the first step to any data analysis. 41

To evaluate the benefits of the proposed approach, two datasets have been analysed. 42

The first one is the multiple metagenomic dataset collected during the TARA Oceans 43

expedition [3, 15] and the second one is based on a multi-omic dataset on breast 44

cancer [35]. A method to improve the interpretability of kernel based exploratory 45

approaches is also presented and results show that not only our approach allows to 46

retrieve the main conclusions stated in the different papers in a single and fast analysis, 47

but that it can also provide new insights on the data and the typology of the samples by 48

integrating a larger number of information. 49

2 Methods 50

2.1 Unsupervised multiple kernel learning 51

2.1.1 Kernels and notations 52

For a given set of observations (xi)i=1,...,N , taking values in an arbitrary space X , we 53

call “kernel” a function K : X × X → R that provides pairwise similarities between the 54

observations: Kij := K(xi, xj). Moreover, this function is assumed to be symmetric 55

(Kij = Kji) and positive 56

(∀n ∈ N, ∀ (αi)i=1,...,n ⊂ R, ∀ (xi)i=1,...,n ⊂ X ,
∑n
i,i′=1 αiαi′Kii′ ≥ 0). According 57

to [1], this ensures that K is the dot product in a uniquely defined Hilbert space 58

(H, 〈., .〉) of the images of (xi)i by a uniquely defined feature map φ : X → H: 59
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Kij = 〈φ(xi), φ(xj)〉. In the sequel, the notation K will be used to denote either the 60

kernel itself or the evaluation matrix (Kij)i,j=1,...,N depending on the context. 61

This setting allows us to deal with multiple source datasets in a uniform way, 62

provided that a relevant kernel can be calculated from each dataset (examples are given 63

in Section 3.1 for standard numeric datasets, phylogenetic tree, . . . ). Suppose now that 64

M datasets (xmi )i=1,...,N (for m = 1, . . . ,M) are given instead of just one, all obtained 65

on the same samples i = 1, . . . , N . M different kernels (Km)m=1,...,M provide different 66

views of the datasets, each related to a specific aspect. 67

Multiple kernel learning (MKL) refers to the process of linearly combining the M
given kernels into a single kernel K∗:

K∗ =
M∑
m=1

βmK
m subject to

{
βm ≥ 0, ∀m = 1, . . . ,M∑M
m=1 βm = 1

. (1)

By definition, the kernel K∗ is also symmetric and positive and thus induces a feature 68

space and a feature map (denoted by φ∗ in the sequel). This kernel can thus be used in 69

subsequent analyses (SVM, KPCA, KSOM, . . . ) as it is supposed to provide an 70

integrated summary of the samples. 71

A simple choice for the coefficients βm is to set them all equal to 1/M . However, 72

this choice treats all the kernels similarly and does not take into account the fact that 73

some of the kernels can be redundant or, on the contrary, atypical. Sounder choices aim 74

at solving an optimization problem so as to better integrate all informations. In a 75

supervised framework, this mainly consists in choosing weights that minimize the 76

prediction error [13]. For clustering, a similar strategy is used in [40], optimizing the 77

margin between the different clusters. However, for other unsupervised analyses (such 78

as exploratory analysis, KPCA for instance), such criteria do not exist and other 79

strategies have to be used to choose relevant weights. 80

As explained in [41], propositions for unsupervised multiple kernel learning (UMKL) 81

are less numerous than the ones available for the supervised framework. Most solutions 82

(see, e.g., [22, 41]) seek at providing a kernel that minimizes the distortion between all 83

training data and/or that minimizes the approximation of the original data in the kernel 84

embedding. However, this requires that the datasets (xmi )i (m = 1, . . . ,M) are standard 85

numerical datasets: the distortion between data and the approximation of the original 86

data are then directly computed in the input space (which is Rd) using the standard 87

Euclidean distance as a reference. Such a method is not applicable when the input 88

dataset is not numerical (i.e., is a phylogenetic tree for instance) or when the different 89

datasets (xmi )i (m = 1, . . . ,M) do not take value in a common space. 90

In the sequel, we propose two solutions that overcome this problem: the first one 91

seeks at proposing a consensual kernel, which is the best consensus of all kernels. The 92

second one uses a different point of view and, similarly to what is suggested in [41], 93

computes a kernel that minimizes the distortion between all training data. However, 94

this distortion is obtained directly from the M kernels, and not from an Euclidean input 95

space. Moreover, it is used to provide a kernel representation that preserve the original 96

data topology. Two variants are described: a sparse variant, which also selects the most 97

relevant kernels, and a non sparse variant, when the user does not want to make a 98

selection among the M kernels. 99

2.1.2 A consensus multiple kernel 100

Our first proposal, denoted by STATIS-UMKL, relies on ideas similar to 101

STATIS [18,20]. STATIS is an exploratory method designed to integrate multi-block 102

datasets when the blocks are measured on the same samples. STATIS finds a consensus 103

matrix, which is obtained as the matrix that has the highest average similarity with the 104

3/15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/139287doi: bioRxiv preprint 

https://doi.org/10.1101/139287
http://creativecommons.org/licenses/by-nc-nd/4.0/


relative positions of the observations as provided by the different blocks. We propose to 105

use a similar idea to learn a consensus kernel. 106

More precisely, a measure of similarity between kernels can be obtained by
computing their cosines1 according to the Frobenius dot product: ∀m, m′ = 1, . . . , M ,

Cmm′ =
〈Km,Km′〉F
‖Km‖F ‖Km′‖F

=
Trace(KmKm′

)√
Trace((Km)2)Trace((Km′)2)

. (2)

Cmm′ can be viewed as an extension of the RV-coefficient [30] to the kernel framework, 107

where the RV-coefficient is computed between (φm(xmi ))i and (φm
′
(xm

′

i ))i (where φm is 108

the feature map associated to Km). 109

The similarity matrix C = (Cmm′)m,m′=1,...,M provides information about the 110

resemblance between the different kernels and can be used as such to understand how 111

they complement each other or if some of them provide an atypical information. It also 112

gives a way to obtain a summary of the different kernels by choosing a kernel K∗ which 113

maximizes the average similarity with all the other kernels: 114

maximizeβ

M∑
m=1

〈
K∗v,

Km

‖Km‖F

〉
F

= v>Cv (3)

for K∗v =
M∑
m=1

vmK
m

and v ∈ RM such that ‖v‖2 = 1.

The solution of the optimization problem of Equation (3) is given by the 115

eigen-decomposition of C. More precisely, if v = (vm)m=1,...,M is the first eigenvector 116

(with norm 1) of this decomposition, then its entries are all positive (because the 117

matrices Km are positive) and are the solution of the maximization of v>Cv. Setting 118

β = v∑M
m=1 vm

thus provides a solution satisfying the constrains of Equation (1) and 119

corresponding to a consensual summary of the M kernels. 120

Note that this method is equivalent to performing multiple CCA between the 121

multiple feature spaces, as suggested in [38] in a supervised framework, or in [28] for 122

multiple kernel PCA. However, only the first axis of the CCA is kept and a L2-norm 123

constrain is used to allow the solution to be obtained by a simple eigen-decomposition. 124

This solution is better adapted to the case where the number of kernels is small. 125

2.1.3 A sparse kernel preserving the original topology of the data 126

Because it focuses on consensual information, the previous proposal tends to give more 127

weights to kernels that are redundant in the ensemble of kernels and to discard the 128

information given by kernels that provide complementary informations. However, it can 129

also be desirable to obtain a solution which weights the different images of the dataset 130

provided by the different kernels more evenly. A second solution is thus proposed, which 131

seeks at preserving the original topology of the data. This method is denoted by 132

sparse-UMKL in the sequel. 133

More precisely, weights are optimized such that the local geometry of the data in the 134

feature space is the most similar to that of the original data. Since the input datasets 135

are not Euclidean and do not take values in a common input space, the local geometry 136

of the original data cannot be measured directly as in [41]. It is thus approximated 137

1Cosines are usually preferred over the Frobenius dot product itself because they allow to re-scale
the different matrices at a comparable scale. It is equivalent to using the kernel K̃m = Km

‖Km‖F
instead

of Km.
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using only the information given by the M kernels. To do so, a graph, the k-nearest 138

neighbour graph (for a given k ∈ N∗), Gm, associated with each kernel Km is built. 139

Then, a (N ×N)-matrix W, representing the original topology of the dataset is defined 140

such that Wij is the number of times the pair (i, j) is in the edge list of Gm over 141

m = 1, . . . ,m (i.e., the number of times, over m = 1, . . . ,M , that xmi is one of the k 142

nearest neighbours of xmj or xmj is one of the k nearest neighbours of xmi ). 143

The solution is thus obtained for weights that ensure that φ∗(xi) and φ∗(xj) are 144

“similar” (in the feature space) when Wij is large. To do so, similarly as [22], we propose 145

to focus on some particular features of φ∗(xi) which are relevant to our problem and 146

correspond to their similarity (in the feature space) with all the other φ∗(xj). More 147

precisely for a given β ∈ RM , we introduce the N -dimensional vector 148

∆i(β) =

〈
φ∗β(xi),

 φ∗β(x1)
...

φ∗β(xN )

〉 =

 K∗β(xi, x1)
...

K∗β(xi, xN )

. But, contrary to [22], we do not 149

rely on a distance in the original space to measure topology preservation but we directly 150

use the information provided by the different kernels through W. The following 151

optimization problem is thus solved: 152

minimizeβ

N∑
i,j=1

Wij ‖∆i(β)−∆j(β)‖2 (4)

for K∗β =

M∑
m=1

βmK
m

and β ∈ RM such that βm ≥ 0 and
M∑
m=1

βm = 1.

The optimization problem of Equation (4) expands as 153

minimizeβ

M∑
m,m′=1

βmβm′Smm′ (5)

for β ∈ RM such that βm ≥ 0 and
M∑
m=1

βm = 1,

for Smm′ =
∑N
i,j=1Wij〈∆m

i −∆m
j ,∆

m′

i −∆m′

j 〉 and ∆m
i =

 Km(xi, x1)
...

Km(xi, xN )

. The 154

matrix S = (Smm′)m,m′=1,...,M is positive and the problem is thus a standard Quadratic 155

Programming (QP) problem with linear constrains, which can be solved by using the R 156

package quadprog. Since the constrain
∑M
m=1 βm = 1 is an L1 constrain in a QP 157

problem, the produced solution will be sparse: a kernel selection is performed because 158

only some of the obtained (βm)m are non zero. While desirable when the number of 159

kernels is large, this property can be a drawback when the number of kernels is small 160

and that using all kernels in the integrated exploratory analysis is expected. To address 161

this issue, a modification of Equation (5) is proposed in the next section. 162
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2.1.4 A full kernel preserving the original topology of the data 163

To get rid of the sparse property of the solution of Equation (5), an L2 constrain can be 164

used to replace the L1 constrain, similarly to Equation (3): 165

minimizev

M∑
m,m′=1

vmvm′Smm′ (6)

v ∈ RM such that vm ≥ 0 and ‖v‖2 = 1,

and to finally set β = v∑
m vm

. This problem is a Quadratically Constrained Quadratic 166

Program (QCQP), which is known to be hard to solve. For a similar problem, [22] 167

propose to relax the problem into a semidefinite programming optimization problem. 168

However, a simpler solution is provided by using ADMM (Alterning Direction Method 169

of Multipliers; [4]). More precisely, the optimization problem of Equation (6) is 170

re-written as 171

minimizex and z xTSx + I{x≥0}(x) + I{z≥1}
such that x− z = 0

and is solved with the method of multipliers. Final weights are then obtained by 172

re-scaling the solution β := z∑
m zm

. The method is denoted by full-UMKL in the sequel. 173

2.2 Kernel PCA (KPCA) and enhanced interpretability 174

The combined kernel can be used in subsequent exploratory analyses to provide an 175

overview of the relations between samples through the different integrated datasets. 176

Any method based only on dot product and norm computations can have a kernel 177

version and this includes a variety of standard methods, such as PCA (KPCA, see 178

below), clustering (kernel k-means, [32]) or more sophisticated approaches that combine 179

clustering and visualization like self-organizing maps (kernel SOM, [24]). In this section, 180

we focus on the description of KPCA because it is close to the standard approaches that 181

are frequently used in metagenomics (PCoA) and is thus a good baseline analysis for 182

investigating the advantages of our proposals. Moreover, we have used KPCA to 183

propose an approach that is useful to improve the interpretability of the results. 184

Section 4.2 illustrates that our method is not restricted to this specific analysis and is 185

straightforwardly extensible to other exploratory tools. 186

2.2.1 Short description of KPCA 187

KPCA, introduced in [31], is a PCA analysis performed in the feature space induced by 188

the kernel K∗. It is equivalent to standard MDS (i.e., metric MDS or PCoA; [36]) for 189

Euclidean dissimilarities. Without loss of generality, the kernel K∗ is supposed 190

centered2. KPCA simply consists in an eigen-decomposition of K∗: if 191

(αk)k=1,...,N ∈ RN and (λk)k=1,...,N respectively denote the eigenvectors and 192

corresponding eigenvalues (ranked in decreasing order) then the PC axes are, for 193

k = 1, . . . , N , ak =
∑N
i=1 αkiφ

∗(xi), where αk = (αki)i=1,...,N . ak = (aki)i=1,...,N are 194

orthonormal in the feature space induced by the kernel: ∀ k, k′, 195

〈ak, ak′〉 = α>kK
∗αk′ = δkk′ with δkk′ =

{
0 if k 6= k′

1 otherwise
. Finally, the coordinates of 196

the projections of the images of the original data, (φ∗(xi))i, onto the PC axes are given 197

2if K∗ is not centered, it can be made so by computing K∗ − 1
N
K∗IN + 1

N2 I
>
NK∗IN , with IN a

vector with N entries equal to 1.
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by: 〈ak, φ∗(xi)〉 =
∑N
j=1 αkjK

∗
ji = K∗i.αk = λkαki, where K∗i. is the i-th row of the 198

kernel K∗. 199

These coordinates are useful to represent the samples in a small dimensional space 200

and to better understand their relations. However, contrary to standard PCA, KPCA 201

does not come with a variable representation, since the samples are described by their 202

relations (via the kernel) and not by standard numeric descriptors. PC axes are defined 203

by their similarity to all samples and are thus hard to interpret. 204

2.2.2 Interpretation 205

There are few attempts, in the literature, to help understand the relations of KPCA 206

with the original measures. When the input datasets take values in Rd, [29] propose to 207

add a representation of the variables to the plot, visualizing their influence over the 208

results from derivative computations. However, this approach would make little sense 209

for datasets like ours, i.e., described by discrete counts. 210

We propose a generic approach that assesses the influence of variables and is based 211

on random permutations. More precisely, for a given measure j, that is used to compute 212

the kernel Km, the values observed on this measure are randomly permuted between all 213

samples and the kernel is re-computed: K̃m,j . For species abundance datasets, the 214

permutation can be performed at different phylogeny levels, depending on the user 215

interest. Then, using the weights found with the original (non permuted) kernels, a new 216

meta-kernel is obtained K̃∗ =
∑
l 6=m βlK

l + βmK̃
m,j . The influence of the measure j on 217

a given PC subspace is then assessed by computing the Crone-Crosby distance [9] at the 218

axis level: ∀ k = 1, . . . , N , Dcc(αk, α̃k) = 1√
2
‖αk − α̃k‖, where αk and α̃k respectively 219

denote the eigenvectors of the eigen-decomposition of K∗ and K̃∗.3 220

Finally, the KPCA interpretation is done similarly as for a standard PCA: the 221

interpretation of the axes (ak)k=1,...,N is done with respect to the observations 222

(xi)i=1,...,N which contribute the most to their definition, when important variables are 223

the ones leading to the largest Crone-Crosby distances. 224

Methods presented in the paper are available in the R package mixKernel, released 225

on CRAN. Further details about implemented functions are provided in Supplementary 226

Section S1. 227

3 Case studies 228

3.1 TARA Oceans 229

The TARA Oceans expedition [3, 15] facilitated the study of plankton communities by 230

providing oceans metagenomic data combined with environmental measures to the 231

scientific community. During the expedition, 579 samples were collected for 232

morphological, genetic and environmental analyses, from 75 stations in epipelagic and 233

mesopelagic waters across eight oceanic provinces. The TARA Oceans consortium 234

partners analysed prokaryotic [34], viral [6] and eukaryotic-enriched [11] size fractions 235

and provided an open access to the raw datasets and processed materials. So far, all 236

articles related to TARA Oceans that aim at integrating prokaryotic, eukaryotic and 237

viral communities, took advantage of the datasets only by using co-occurrence 238

associations [14,21,37]. The integration analysis of the whole material aims at providing 239

a more complete overview of the relations between all collected informations. 240

48 selected samples were collected in height different oceans or seas: Indian Ocean 241

(IO), Mediterranean Sea (MS), North Atlantic Ocean (NAO), North Pacific Ocean 242

3Note that a similar distance can be computed at the entire projection space level but, since axes
are naturally ordered in PCA, we chose to restrict to axis-specific importance measures.
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(NPO), Red Sea (RS), South Atlantic Ocean (SAO), South Pacific Ocean (SPO) and 243

South Ocean (SO). Using these samples, 8 (dis)similarities were computed using public 244

preprocessed datasets, which are all available from the TARA Oceans consortium 245

partners websites. These dissimilarities provide information about environmental 246

variables, phylogenetic similarities, prokaryotic functional processes, different aspects of 247

the eukaryotic dissimilarities and virus composition. Selected datasets as well as chosen 248

kernels are fully described in Supplementary Section S2. The meta-kernel was analysed 249

using a KPCA and the most important variables were assessed as described in 250

Section 2.2.2. 251

3.2 TCGA 252

[35] (TCGA) provides multi-omics datasets from different tumour types, such as colon, 253

lung and breast cancer. In this work, we consider normalized and pre-filtered breast 254

cancer datasets available from the mixOmics website 4. Using the 989 available samples, 255

three kernels were computed. The TCGA.mRNA kernel provides a gene expression 256

dissimilarity measure computed on the expression of 2,000 mRNAs, the 257

TCGA.miRNA describes the expression of 184 miRNAs and the methylation aspect 258

is assessed by the TCGA.CpG kernel, computed on 2,000 CpG probes. These three 259

kernels were obtained using the Gaussian kernel, Kij = e−σ‖xi−xj‖2 with σ equal to the 260

median of
{

1
‖xi−xj‖2

}
i<j

. The combined kernel was used in kernel self-organizing map 261

(KSOM) that has been implemented with the R package SOMbrero [2]. KSOM is an 262

exploratory tool that combines clustering and visualization by mapping all samples onto 263

a 2-dimensional (generally squared) grid made of a finite number of units (also called 264

clusters). It has been shown relevant, e.g. to provide a relevant taxonomy of Amazonian 265

butterflies from DNA barcoding in [25]. 266

The results of our analysis with the combined kernel were compared to the results 267

obtained with a simple analysis that uses only one of the kernel. The comparison was 268

performed using a quality measure specific to SOM, the topographic error (TE), which 269

is the ratio of the second best matching unit that falls in the direct neighbor, on the 270

grid, of the chosen unit over all samples [27]. In addition, breast cancer subtypes, i.e., 271

Basal, Her2, LumA or LumB are provided for every sample and were used as an a priori 272

class to compute clustering quality measures (they were thus excluded from the 273

exploratory analysis). More precisely, (i) the average cluster purity, i.e., the mean over 274

all clusters on the grid of the frequency of the majority vote cancer subtype and (ii) the 275

normalized mutual information (NMI) [10] between cancer subtype and cluster, which is 276

a value comprised between 0 and 1 (1 indicating a perfect matching between the two 277

classifications). 278

4 Results and discussion 279

Sections 4.1 and 4.2 provide and discuss results of exploratory analyses performed from 280

the two sets of datasets described in the previous section. More precisely, Section 4.1 281

explores the datasets studied in [34], [6] and [11] with KPCA. This illustrates how a 282

multiple metagenomic dataset can be combined with external information to provide an 283

overview of the structure of the different samples. In addition, Section 4.2 shows that 284

our approach is not restricted nor to metagenomic neither to KPCA by studying the 285

multi-omic dataset related to breast cancer with KSOM. 286

All analyses presented in this section use the full-UMKL strategy. However, for both 287

datasets, a study of the correlation between kernels in the line of the STATIS-UMKL 288

4http://mixomics.org/tcga-example/
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approach is provided in Supplementary Section S4 and shows how this approach helps 289

understand the relations between the multiple datasets. Moreover, a comparison 290

between the different multiple kernel strategies is discussed in Supplementary Section S5 291

and justifies the choice of full-UMKL for our problems. All combined kernels have been 292

implemented with our package mixKernel, as well as all KPCA results. 293

4.1 Exploring TARA oceans datasets with a single KPCA 294

In a preliminary study (fully reported in Supplementary Section S3), an exploratory 295

analysis was performed using a KPCA with only the three TARA Oceans datasets 296

studied in [34] and the full-UMKL strategy. The results show that the main variability 297

between the different samples is explained similarly as in [34]: the most important 298

variables returned by our method are those discussed in this article to state the main 299

conclusions. 300

A further step is then taken by integrating all TARA Oceans datasets described in 301

Supplementary Section S2. Supplementary Section S4.1 shows that pro.phylo and 302

euk.pina are the most correlated kernels to environmental and physical variables, 303

unlike large organism size fractions, i.e., euk.meso which are strongly geographically 304

structured. Figure 1 (left) displays the projection of the samples on the first two axes of 305

the KPCA. Figure 1 (right) and Supplementary Figure S16 provide the 5 most 306

important variables for each datasets, respectively for the first and the second axes of 307

the KPCA. To obtain these figures, abundance values were permuted at 56 prokaryotic 308

phylum levels for the pro.phylo kernel, at 13 eukaryotic phylum levels for euk.pina, 309

euk.nano, euk.micro and euk.meso and at 36 virus family levels for the vir.VCs 310

kernel. Variables used for phychem and pro.NOGs were the same than the one used 311

in the restricted analysis. Additionally, the explained variance supported by the first 15 312

axes is provided in Supplementary Figure S17. Using an R implementation of the 313

methods on a 1 CPU computer with 16GB memory, the computational cost to combine 314

the three kernels is only ∼3 seconds. Permutations to assess the eight kernels important 315

variables are computationally much more demanding if performed at a fine level as we 316

did. In our case, they took ∼13 minutes. 317

Contrary to the restricted analysis, Figure 1 does not highlight any particular 318

pattern in terms of depth layers but it does in terms of geography. SO samples are 319

gathered in the bottom-center of the KPCA projection and SPO samples are gathered 320

on the top-left side. Figure 1 shows that the most important variables come from the 321

phychem kernel (especially the longitude) and from kernels representing the eukaryotic 322

plankton. More specifically, large size organisms are the most important: rhizaria 323

phylum for euk.meso and alveolata phylum for euk.nano. The abundance of rhizaria 324

organisms also ranks first between important variables of the second KPCA axis, 325

followed by the opisthokonta phylum for euk.nano. The display of these variables on 326

the KPCA projection reveals a gradient on the first axis for both the alveolata phylum 327

abundance (Supplementary Figure S18) and the longitude (Supplementary Figure S19) 328

and on the second axis for rhizaria (Supplementary Figure S20) and opisthokonta 329

(Supplementary Figure S21) abundances. This indicates that SO and SPO epipelagic 330

waters mainly differ in terms of Rhizarians abundances and both of them differ from 331

the other studied waters in terms of alveolata abundances. 332

The integration of TARA Oceans datasets shows that the variability between 333

epipelagic samples is mostly driven by geography rather than environmental factors and 334

that this result is mainly explained by the strong geographical structure of large 335

eukaryotic communities. Studied samples were all collected from epipelagic layers, 336

where water temperature does not vary much, which explains the poor influence of the 337

prokaryotic dataset in this analysis. 338
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Figure 1. Left: Projection of the observations on the first two KPCA axes. Colors
represent the oceanic regions and shapes the depth layers. Right: The 5 most important
variables for each of the eight datasets, ranked by decreasing Crone-Crosby distance.

Table 1. Performance results (average cluster purity and NMI with respect to the
cancer subtype) of KSOM (average over 100 maps and standard deviation between
parenthesis) for the three single-omics datasets: TCGA.mRNA, TCGA.miRNA and
TCGA.CpG and the meta-kernel, TCGA.all.

TCGA.mRNA TCGA.miRNA TCGA.CpG TCGA.all
purity 0.67 (0.02) 0.62 (0.02) 0.66 (0.01) 0.70 (0.02)
NMI 0.31 (0.02) 0.17 (0.01) 0.18 (0.01) 0.34 (0.01)

4.2 Clustering breast cancer multi-omics datasets 339

KSOM was used to obtain a map from the three datasets presented in Section 3.2: 340

mRNAs, miRNAs and methylation datasets. The results were compared to a 341

single-omic analysis with the same method (KSOM). KSOM maps were trained with a 342

5× 5 grid, 5,000 iterations in a stochastic learning framework and a Gaussian 343

neighbourhood controlled with the Euclidean distance between units on the grid. The 344

computational cost to combine the kernels was ∼20 minutes and ∼12 seconds were 345

required to generate one map. 346

Table 1 reports KSOM performances obtained over 100 maps (mean and standard 347

deviation) for the three kernels: TCGA.mRNA, TCGA.miRNA and TCGA.CpG 348

and the meta-kernel, denoted TCGA.all. Results are reported in terms of average 349

cluster purity and NMI, with respect to the cancer subtypes. All TE were found to be 350

equal to 0. This indicates a good organization of the results on the grid, with respect to 351

the topology of the original dataset as represented in the input kernel. Finally the map 352

with the best NMI obtained for the meta-kernel is given in Figure 2. 353

For all quality criteria, the integrated analysis gives better results (with respect to 354

cancer subtype) than single-omics analyses (all differences are significant according to a 355

student test, risk 1%). This can be explained by the fact that the information provided 356

especially by mRNA and CpG are complementary, as described in the analysis of 357

correlations between kernels in Supplementary Section S4.2. In addition, Figure 2 shows 358

that the clustering produced by the KSOM is relevant to discriminate between the 359

different breast cancer subtypes and to identify their relations (e.g., subtypes LumA and 360

Basal are closer to subtypes LumB and Her2 than they are from each other). The 361

organization of cancer subtypes on the map is in accordance with what is reported 362

in [33] (from cDNA microarray). However, it has been obtained with additional datasets 363

and thus provides a finer typology of samples. It shows that some LumA samples are 364

mixed with LumB samples (cluster at the bottom left of the map) and that samples 365

classified in the middle of the map probably have an ambiguous type. It also gives clue 366

to define which samples are typical from a given cancer subtype. In addition, 367
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Figure 2. For each unit of the map, distribution of breast cancer subtypes. Colors
represent the different breast cancer subtypes (Basal, Her2, LumA or LumB) and the area
of the pie charts is proportional to the number of samples classified in the corresponding
unit.

Supplementary Section S6 shows the results obtained by KPCA that are consistent with 368

those of KSOM. It also provides a list of features (mRNA, miRNA and CpG probes) 369

that are potentially interesting to discriminate between breast cancer subtypes. 370

5 Conclusion 371

The contributions of the present manuscript to the analysis of multi-omics datasets are 372

twofolds: firstly, we have proposed three unsupervised kernel learning approaches to 373

integrate multiple datasets from different types, which either allow to learn a consensual 374

meta-kernel or a meta-kernel preserving the original topology of the data. Secondly, we 375

have improved the interpretability of the KPCA by assessing the influence of input 376

variables in a generic way. 377

The experiments performed on TARA Oceans and breast cancer datasets showed 378

that presented methods allow to give a fast and accurate insight over the different 379

datasets within a single analysis and is able to bring new insights as compared to 380

separated single-dataset analyses. Future work include the addition of more kernels and 381

post-processing methods for the analysis into our package mixKernel. 382
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