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Abstract

A high-density microelectrode arrays (HDMEA) with 3,150 electrodes per square millime-
tre was used to capture neuronal activity across various scales, including axons, dendrites,
and networks. We present a new method for high-throughput segmentation of axons based
on the spatial smoothness of signal delays. Comparison with both ground truth and receiver
operator characteristics shows that the new segmentation method outperforms previous meth-
ods based on the signal-amplitude-to-noise ratio. Structural and functional neuronal network
connectivity were reconstructed using a common extension of “Peter’s rule” and a inter-spike
histogram method, respectively. Approximately one third of these connections are putative
chemical synapses. We evaluated the spike patterns but did not find evidence for “polychro-
nisation” (non-synchronous but precisely timed spike sequences). The developed framework
can be used to investigate the relationship between the topology of neuronal connections and
emerging temporal spike patterns observed in dissociated neuronal cultures.
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1 Introduction
A key problem in neuroscience is to understand the relationship between structure and function.
The combination of diffusion magnetic resonance imaging and functional magnetic resonance imag-
ing can be used to address this problem at the macroscopic level [57][25]. Recent efforts, such as
the BRAIN Initiative (US), the Human brain project (EU) as well as the Brain/MINDs initia-
tive (Japan) aim at the development of new technologies for mapping the functional connectome
and large-scale recording of neuronal activity. But even for more accessible model systems, such
as cultured dissociated primary neurons the relationship between the topological structure of the
neuronal networks and the emerging temporal activity patterns is not easy to understand. One
reason is that the structural connectivity graph, which is given in neuronal network simulations,
is usually not known for experimental data of network activity.

We propose that high-density microelectrode arrays (HDMEAs) could be used for the high-
throughput acquisition of single neuron electrical footprints revealing their axons and dendrites
according to their typical waveform [47] and this information could be used for the subsequent
reconstruction of their connectivity according to an extension of “Peter’s rule” [46][8]: the proba-
bility of two neurons being connected is proportional to the overlap of their axonal and dendritic
fields [50].

To evaluate the applicability of this concept, both sub-cellular and network-wide activity record-
ings were acquired at the same time from rat cortical neurons cultured at very low density on
HDMEAs. After identification of the axon initial segments (AISs), action potentials were tracked
across full axonal arbours of single neurons at sub-cellular resolution, and the dendritic field of sin-
gle neurons was inferred by the positive return current during action potential generation. The data
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showed that structural connectivity of a small network overlaps with the functional connectivity
obtained from pairwise inter-spike interval histograms.

In the present study, HDMEAs and optical imaging of primary rat cortical cultures were com-
bined in order to establish a framework for analysing the relationship between the topological
structure of the neuronal networks and the emerging temporal activity patterns, observed in disso-
ciated neuronal cultures, including: (1) considerations for efficient acquisition of network activity
at sub-cellular resolution, (2) segmentation of axons by considering the neighbourhood standard
deviation of the transmission delay, (3) segmentation of dendrites according to their positive signal
peak, (4) discrimination of GABA vs. glutamatergic neurons by peak width, (5) structural con-
nectivity inference by determining the overlap between axonal and dendritic fields, (6) inference
of functional connectivity according to inter-spike intervals, (7) network characterisation by graph
invariants, (8) comparison between structural and functional network connectivity, (9) detection
of putative chemical synapses, and (10) detection of spike patterns.

The HDMEA used in this study featured 11,011 electrodes at a resolution of 3,150 electrodes/mm2

(pitch of 17.8 µm) [18]. It employs the switch-matrix concept [45], to provide high signal quality
at very low noise levels. However, the number of parallel recording channels was limited to 126
channels connected to flexibly selectable subsets of electrodes in so-called "configurations".

2 Results
To initially identify the location of AISs, the whole array was scanned by using configurations
in which non-overlapping blocks of 6×17 electrodes were connected to the amplifiers through the
switch matrix [18]. A local maximum in the amplitude of the negative voltage peak correspond to
putative (proximal) AIS locations [5]. In the low-density cultures up to 100 AISs could be distin-
guished. So called “fixed electrodes” were selected as trigger electrodes at the putative locations of
the AISs, while the remaining “variable electrodes” were selected in sequential configurations (see
next section) to map the axonal arbours over the entire array. For the selection of fixed electrodes
all electrodes were ranked according to their median negative peak amplitude. The electrode with
the highest rank was selected, afterwards all electrodes in its proximity (within 60 µm distance)
were discarded from the list, and the procedure was repeated. Taking advantage of the large neg-
ative peak amplitude near the AIS, the threshold for event detection was set to 6 times the noise
level. This prevented crosstalk from other neurons while still reliably detecting the activity of that
single neuron.

2.1 Optimal recording configurations for high-throughput scanning
The extracellular signals originating from axons and dendrites are very small with respect to the
background electrical activity and noise, so that spike-triggered averaging must be applied. We
developed a set of recording configurations to map the electrical footprint of several neurons in
parallel by utilising the switch matrix of our HD-MEA. The switch matrix can be dynamically
configured to connect a large number e of electrodes to a smaller number a of amplifiers. A naive
method would use one electrode as trigger and the remaining electrodes to scan the neuronal
footprint, which results in a large number of configurations cw needed to scan the whole array,
cw = e/a. If we instead intend to record axonal arbours of n neurons, electrodes near the AISs
of these neurons have to be always connected, each to one amplifier (n fixed electrodes). The
remaining amplifiers can then be connected to the remaining electrodes in successive configurations
(variable electrodes). In this way the whole array can be scanned in

c(n) =
e− n
a− n

configurations. For n neurons we need c(n) configuration, which means on average C(n) = c(n)/n
configurations for one neuron. An optimal strategy means to choose n such that C(n)→ min for
0 < n < a. With n < a � e, the number of neurons being much smaller than the number of
electrodes, we can approximate by:

C(n) =
e− n

(a− n)n
≈ e

(a− n)n
.
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The right hand side has a minimum for n = a/2. Therefore, approximately half of the amplifiers
should be connected to fixed electrodes. The other half of the amplifiers can then be used to
scan the whole array in c ≈ e/(a/2) = 2cw configurations, or on average C ≈ e/(a/2)2 = 4e/a2

configurations per neuron. The axonal arbours of a single neuron may extend over the whole
array, but by scanning the axonal arbours of many neurons in parallel, the average number of
configurations per neuron is much less than required for scanning the whole array C ≈ 4e/a2 �
cw = e/a for large a. This is because increasing the number of amplifiers decreases quadratically
the average time to scan a single neuron, which allows for high-throughput acquisition of axonal
delay maps.

2.2 Identification of axonal arbours
Previously (see Figure 6 in [4]), axonal arbours were traced according to the negative peaks in the
spike triggered averages that exceeded 5 times the background noise (sV ). This method (hereafter
termed “method I”) evaluates the spike-triggered averages for each electrode separately, without
considering their spacial arrangement and correlation between neighbouring electrodes. Interest-
ingly, more realistic axonal contour can be drawn by humans in visual observations of the spatial
movement of signal peaks in movies [49]. This motivated us to explore several methods of com-
puter vision to segment axons after extraction of the axonal signals, e.g. Markov random fields and
optical flow, and compared their results with a ground truth as well as with method I. It turned
out, that a simple method (hereafter “method II”), based on thresholding the “spatial smoothness”
of the delay of the negative peak is fast and reliable. When we mapped the delay of the negative
peaks present in the spike triggered averages this map showed a distinct region of locally “smooth”
delays against a background of random delays (Figure 1b). This is due to the fact that signals
originating from a common source, e.g. from axons of the same neuron, their delays are very similar
at neighbouring electrodes, whereas for a random signal the negative peak could occur anywhere
in the interval [∆tpre,∆tpost] for which the spike triggering was performed. ∆tpre and ∆tpost rep-
resent the boundaries relative to the spike trigger, thus the total spike triggered average has the
length T = ∆tpost−∆tpre. To quantify the smoothness of the delay map the delay was sampled in
the Neumann neighbourhood (compare Figure 2h) around each electrode and the sample standard
deviation sτn was calculated. Note, that in the case of a uniform distribution over the interval
[0, 1], the standard deviation of that sample is bounded by 0 ≤ s ≤ 0.5 and shows a characteristic
distribution depending on the number of observations N in each sample. This distribution shows
a sharp peak around at the mean standard deviation:

s̄random =
1√
12
.

There is no analytical expression for this distribution, but after a coordinate transformation of the
interval it can be approximated by a beta distribution B(α, β).

In case where axonal signals are present, for each electrode with a negative peak at t the delays
of its neighbourhood are distributed in the interval [t − r/c; t + r/c] depending on the velocity
c of the action potential and the distance r between the electrodes. Therefore, we can assume
a similar distribution of the sample standard deviation for axonal delays distributed around the
mean standard deviation:

s̄axon = 2r/
√

12c = r/
√

3c.

For a HDMEA with r = 18 µm and a typical conduction velocity for short range projecting axons
in rat neocortex of 0.3− 0.44 m/s [37][62] a standard deviation around 30 µs can be expected. At
the boundary, more and more neighbouring electrodes do not pick up the axonal signal and the
sample standard deviation shifts towards

s̄background = T/
√

12.

Empirically, the distribution of saxon can be approximated by an (truncated) exponential distribu-
tion E(γ) (see below). Therefore, axons have distribution of sτn with a peak close to zero and which
is clearly distinguishable from the distribution for the background. A threshold smin placed at
the local minimum in the sτn distribution (Figure 1g) separates both populations. The electrodes
with a sτn below this threshold represent negative peaks that are consistent across neighbouring
electrodes (Figure 1i). If these peaks appear after the negative peak at the AIS (Figure 1h) they
are assumed to originate from the axonal arbour of the neuron (Figure 1j).
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Figure 1: Segmentation of the axonal arbour based on the spatially correlated spontaneous activity
of a single neuron. Spike-triggered averages (a) for electrodes located close to the (proximal) axon
initial segment (AIS) (red trace), close to axons (black) and recording background activity and
noise (grey). The negative peak at the AIS appears slightly earlier than at the trigger electrode.
Mapping (b) and histogram (c) of the delay of the negative peak, τ , showing an irregular shaped
area with a “smooth” grey value outlining the axonal arbour, which is surrounded by a “salt-and-
pepper” patterned background area. Axonal signals appear at 0 ms < τ < 2 ms. Spike-triggered
averages for N = 7 neighbouring electrodes located in the “salt-and-pepper” region (d) have a
large sample standard deviation for the delays, sτn , as compared to those located in the “smooth”
region (e). Mapping (f) and histogram (g) of sτn . The small irregular shaped area outlining the
axonal arbour is dark, whereas the surrounding area features lighter colors. Segmentation is done
by placing the threshold sthr ≈ 0.5 ms in the valley between the sharper peak (black) close to 0 ms
and the broad peak (gray) around the expected s̄background = 8/

√
12 ms (open triangle) for random

delays. Mapping of electrodes where the negative peak appears after the negative peak of the AIS
(h), with sτn < smin (i), and presumably axonal signals(j), corresponding to the intersection of
both. Legend: The crosshair symbol shows the location of the (proximal) AIS, the green and blue
dots represent a patch of 7 neighbouring electrodes located in the “salt-and-pepper” and “smooth”
areas, respectively. Corresponding negative peaks are indicated by triangles of the same colour.
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Figure 2: Evaluation of axon segmentation based on ground truth. Mappings and Hausdorff
distance H are shown for method I (a, d, f) and II (b, e, g). The high threshold employed by
method I leads to a higher false negative rate and a larger H ≈ 150 µm compared with H ≈ 100 µm
for method II. Lowering the threshold from 5sV (a) to 3sV (d) for method I leads to more false
positive electrodes far away from the axon (black outlines) and H ≈ 300 µm. In contrast, method
II is robust (g) to an increased electrode distance (h): increasing the distance from r ≈ 18 µm
(b) to r ≈ 36 µm (e) ensures a higher true positive rate and H ≈ 200 µm. Axons were manually
traced from fluorescence images (DsRed, LUT inverted) (c).
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For a limited number of neurons the ground truth was available and we could compare the new
method (method II) with the method I employing a fixed threshold at 5sV [4]. An example of an
transfected neuron is shown in Figure 2c. More electrodes were selected by method II than by
method I, which could be compensated by lowering the threshold, e.g. to 3sV . In order to compare
the electrode selection E with the ground truth axon label A, we used the Hausdorff distance H,
which is commonly used in computer vision to measure how far two shapes are from each other.
Thus, after registering the label image to the electrode coordinate system, we calculated:

H = max

{
sup
a∈A

inf
e∈E

d(a, e), sup
e∈E

inf
a∈A

d(a, e)

}
using the Euclidean distance d(a, e) between the electrode e recording an axonal signal and the
pixel a labelled axon. Method I showed a smaller deviation from the ground truth than method II.
This was mainly due to the fact that by decreasing the threshold, more electrodes far away from the
axonal arbours were selected. The new method, inherently relying on the adjacency, rejected these
“outliers” and produced more compact maps that more closely followed the ground truth. In other
words, the distributions for activity classified as axonal signals and as background show a larger
overlap for method I than method II. We tested the robustness of method II against the spatial
distance of the electrodes by increasing the spatial extension of the neighbourhood while keeping
the number of electrodes in each neighbourhood constant (N=7). When hexagonal patterns with
r = 2 × 18 µm or r = 3 × 18 µm distance between electrodes was selected, the distance to the
ground truth only slightly increased (Figure 2g). However, it seems that for a carefully chosen
threshold (e.g. around 4.5sV , H ≈ 100 µm, Figure 2f), the results of the original method perform
as well as the new method.

Both segmentation methods are binary classifiers, and we compared them using their receiver
operator characteristic (ROC)[17]. We fitted the respective empirical distributions of their scores
with a mixture of two partially overlapping distributions representing axonal signals (“positive”
class, P) and background activity (“negative” class, N):

1. two normal distributions (Figure 3a):

log
Vn
sV
∼ N (µN , σ

2
N )︸ ︷︷ ︸

background

+ N (µP , σ
2
P )︸ ︷︷ ︸

axonal signals

with µN < µP ,

2. a beta distribution and a truncated exponential distribution (Figure 3b):

sτn
T/2

∼ B(αN , βN )︸ ︷︷ ︸
background

+ E(λP )︸ ︷︷ ︸
axonal signals

with E(x;λ) =
λe−λx

1− e−λ
for 0 ≤ x ≤ 1.

For each threshold, true positive rate (TPR) and false positive rate (FPR) were calculated from
the confusion matrix and plotted as a ROC curve (Figure 3c). The area under the curve (AUC)
showed that the new method consistently has a better performance than the original method for a
total n = 23 neurons (Figure 3f). Furthermore, the automatic threshold procedure yields a much
better TPR at the expense of a slightly increased false positive rate FPR compared with the
original method (Figure 3g).

2.3 Dendritic arbours
In a rough approximation, the dendrite reveals itself by the positive extracellular potential [47]
generated by passive and active properties of the dendrites. The passive component is associated
with the sodium influx at the AIS, which leads to a return current, which charges the membranes
and its amplitude is proportional to the membrane capacitance and inversely proportional to the
electrotonic distance. To determine the time point of the sodium influx at the AIS, the full width
at half maximum amplitude of the negative peak (|δh|, commonly FWHM, full width at half peak)
is used. It is given by the time interval the voltage trace crosses the half maximum amplitude right
before and after the negative peak at the AIS:

δh = supp(VAIS =
1

2
minVAIS).
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Figure 3: Comparison of the axon segmentation methods based on the receiver operator character-
istic (ROC). Distributions and mappings are shown for the segmentation of an individual neuron
segmented by method I (a, d) and II (b, e). The empirical distribution (NP) of amplitude Vn (log
normalised by signal noise, σV ) and the sample standard deviation of the delay sτn (normalised by
T/2) of the negative peaks were fitted (fitNP) to obtain the distributions of axonal signals (positive
class, P) and background activity (negative class, N). Respective true positive rate (TPR) and false
positive rate (FPR) were calculated for each possible threshold and plotted as ROC curve (c). The
cross depicts the position of the (fixed) threshold of method I (FPR=0.00009, TPR=0.7), whereas
the circle indicates the (adaptive) threshold of method II (FPR=0.011, TPR=0.85). Method II
(blue shading) performs better than method I (grey shading) as shown by the larger area under
the curve (AUC). This was true for all n = 23 neurons (f), and, although method I has a lower
FPR (h), its TPR (g) is much lower than that of method II, as it misses more than 50% of axonal
signals.
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Figure 4: Segmentation of the dendritic arbour of a single neuron based on the return current
generated during action potential initiation. Spike-triggered averages (a) for electrodes located
close to the proximal fraction of the axon initial segment (AIS; red trace), close to the dendrite
(black) and recording background activity (grey). The return current appears as positive peak
during the negative peak at the AIS (red trace). Mapping (b) and histogram (c) of the sample
standard deviation for neighbouring positive peaks, sτp . Note that axonal signals also possess a
positive signal component and small peak, therefore smaller values of sτp may represent to both,
dendrites and axons (dark), whereas larger values around the expected value of s̄random = 8/

√
12ms

(open triangle) indicate random delays. Segmentation is performed using a threshold sthr ≈ 0.8ms,
which is slightly higher than that used in (Figure 1G). Mapping of electrodes for which the positive
peak appears during the half width of the negative peak at the AIS (d), electrodes with with sτp <
sthr (e), and electrode with presumptive dendritic signals(f), corresponding to the intersection of
both. Legend: The crosshair symbol shows the location of the (proximal) AIS.
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The map of the positive peaks that occur during the negative peak in the extracellular signal
from the AIS (VAIS) shows the spatial extension of the dendritic field (Figure 4). Although it
is clear that larger amplitudes correspond to dendrites whereas smaller amplitudes could also
originate from axons (Figure 1e), it is difficult to determine an exact threshold that could be used
to distinguish between them. Nevertheless, if the positive peaks appear during the half negative
peak δh at the AIS (Figure 1g) it can be assumed to originate from the dendrite(Figure 4f). Note
that, although the estimation of connectivity depends on dendrites and axons, the spreading of the
axon is the major defining factor, especially in case of long-range axons. Therefore, an estimation
of the dendrites is less important.

2.4 Estimation of structural and functional connectivity
Structural connectivity is reconstructed according to a extension [50] of “Peter’s rule” [46][8], that
the probability of two neurons being connected is proportional to the overlap of their axonal and
dendritic fields (Figure 5a,b,c). It is possible to apply this rule on our data, because we segmented
axonal and dendritic fields from the electrical footprint [47] of each individual neuron.

If the overlap (area) between the axonal and dendritic fields was larger than a threshold ρ, we
assumed a “structural connection” (instead of “apposition”). The axonal delay τaxon was calculated
as the median of the delays within the overlap.

There are several measures of functional connectivity, such as cross correlation, Granger causal-
ity, and transfer entropy, but these are derived for continuous time-series data (spike rate, calcium
imaging) and lack robustness against bursting activity, which is present in cortical cultures (but
see [59]). Therefore, we used a metric that is based on the relative timing of individual action
potentials of two neurons (Figure 5d,e,f). Briefly, we calculated the probability distribution P
for time lags τlag between individual spikes of two neurons (inter-spike interval histogram, ISIH).
Usually, the bursting dynamics results in a broad peak around τlag ≈ 0ms. Surrogate spike trains
preserving the bursting dynamics were used to remove this peak by subtracting the mean of the
surrogate ISIHs, and the significance of the remaining peaks was assessed by the standard deviation
of the surrogate ISIHs [63].

Surrogate spike trains were generated for each neuron by randomly swapping adjacent inter-
spike intervals ∆ti = ti − tt−1 with 1 ≤ i ≤ m. The idea was to choose a random index 1 ≤
i ≤ m, swap the neighbouring inter-spike intervals ∆ti ↔ ∆ti+1, repeat this ml times, and add
up the inter-spike intervals t′i = t′i−1 + ∆t′i, t′0 = t0 to obtain a surrogate spike train. The new
series of inter-spike intervals was locally shuffled ∆t′i = ∆ti′ and the displacement i′ − i follows
a binomial distribution with variance σ2 = l. Thus the temporal structure of the spike train was
only locally disturbed, preserving both the inter spike interval histogram and a non-stationary
spike rate (bursting).

For each pair of neurons, surrogate spike trains (N = 20, with l = 2) were created and the
within-bin mean µτlag

and standard deviation sτlag
of their histograms were calculated. These were

used to transform the original histogram P into a standard score z using the mean and standard
deviation of the surrogate data, according to

z = (P − µτlag
)/sτlag

.

If the peak zmax located at τspike of this standard score, exceeded a fixed threshold, zmax > ρ
(Figure 5D, red peak above dashed line), we assumed a “functional connection” (instead of a
“synapse”) with a defined timing between pre- and post-synaptic spike, τspike.

Note, that the probability of observing a significance z or larger, if the null hypothesis is true,
is given by p = erfc(z/

√
2) [63]. Thus z values for all pairwise connections can be transformed to

p values.

2.5 Comparison of structural and functional connectivity
First, the pairwise, directed, structural and functional connectivity between all recorded neurons
was estimated. The structural and functional connectivity graphs S and F of n neurons were
represented by two matrices of n × n elements with the element with index ij equal to 1, if the
i-th neuron was connected to the j-th neuron and 0 otherwise. Like the pairwise connectivity,
the estimated structural and functional connectivity of the network depends on the thresholds for
overlap ρ and the threshold for the score ζ, respectively.
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Figure 5: Estimation of structural and functional connectivity for a small network of n = 23
neurons from the spontaneous activity of the individual neurons. Structural connectivity graph
(c) for an threshold ρ = 3000 µm2 for the pairwise overlap of axonal and dendritic fields. From a
total of k = n(n− 1) = 506 possible pairwise connections, two examples are shown representing a
pair of connected (a) and a pair of unconnected (b) neurons. Functional connectivity graph (f) for
an threshold ζ = 10 for the z-score obtained from inter-spike interval histograms. From a total of
k = n(n−1) = 506 possible pairwise connections, two examples are shown: for a pair of connected
(d) and a pair of unconnected (e) neurons. Note, that structural and functional connectivity are
estimated from the spatial extension of spike-triggered averages and the temporal interdependence
of individual spike trains, respectively. Although the examples show a match in structural and
functional connectivity, the network graphs differ in a significant number of connections. Network
layout (c, f) is plotted with respect to the position of the axon initial segments of its neurons.
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Figure 6: Comparison of structural and functional connectivity for a small network of n = 23
neurons. The number of edges (k), the clustering-coefficient (C), characteristic path length (L),
and the average degree (D) of structural (a) and functional (b) connectivity graphs depend on the
thresholds, ρ and ζ, respectively. Both graphs overlap, and this overlap is largest for the smallest
thresholds (ρ = 300 µm2 and ζ = 2). Each connection is described by the strength (overlap
between axon and dendrites, A ∩ D, vs. z-score, zmax) and the delay (axonal delay, τaxon, vs.
spike timing, tauspike). Surprisingly, the strength of structural and functional connections is only
weakly correlated (c) with Pearson’s correlation test on log-transformed values, n=219, p<0.001,
r=0.27 for all (black), n=66, p=0.02, r=-0.28 for delayed (green), and n=153, p<0.001, r: 0.41 for
simultaneous (red) connections). Scatterplot (d) and graph (e) for synaptic delays (τsynapse) and
z-scores (zmax) reveal a network (green) of neurons connected by presumptive chemical synapses
(τsynapse > 1 ms) with lower than average functional strength (median, z̄max = 3.1). However for
most connection the spike occurs almost instantaneous (τaxon = τspike) and with greater reliability
(median, z̄max = 6.5). The difference in strength z is significant (Mood’s median test, χ2=58.3,
p<0.001, n=149 vs. 70).
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We calculated some characteristic parameters [20] of these graphs, including the average clustering-
coefficients, CS and CF , the average shortest path lengths, LS and LF , and the average degrees,
DS and DF .

The degree of a single neurons d is the number of its pre- and postsynaptic neurons. Therefore,
the average structural and functional degree for all n neurons can be calculated by DS = kS/n
and DF = kF /n, where kS and kF are the total number of connections, respectively.

The clustering coefficient of a single neuron c measures how much the pre- and post-synaptic
neurons of neurons are connected themselves. It is calculated by counting the triangles k that a
neuron form with its connected neurons. This number is then divided by the maximum number of
these triangles to obtain a value between 0 and 1:

c =
k

d(d− 1)/2
.

This value is 0, if pre- and post-synaptic neurons are not connected to each other, and it is 1 if
they are all connected to each other. The average clustering coefficient C is obtained by averaging
over the individual clustering coefficients c of all neurons in the network.

Looking at any two neurons in the network, in most cases the two neurons are not directly
connected and there are several synapses between them. Here we use the estimated functional or
structural connections as proxy for ‘synapses. The minimal number of the “synapses”, l that are
necessary to link between the two neurons is also called the shortest path length. The characteristic
path length, or average shortest path length, L is the average of the shortest path length l between
any two connected neurons in the network. And in case the network consists of two or more,
disconnected, smaller networks, we calculate LS and LF for the largest of these sub-networks.

Structural connectivity was calculated from the overlap of axonal and dendritic fields between
all neurons. Although some axons extended over the whole recording area, most of them were rather
short, representing a few long range and mostly short range connections. Therefore, some neurons
could be structurally connected, whereas others could not be structurally connected, because they
were well separated. An example connectivity graph for a rather high threshold on the overlap
area of ρ = 3, 000 µm2 (corresponding to 10 electrodes) is shown in Figure 6c, with kS = 75. For
n = 23 neurons the maximum number of unidirectional connections between two neurons, would
amount to k = n(n − 1) = 506. Instead, we observed only k̂S = 219 connections even for the
lowest possible threshold (corresponding to 1 electrode). Therefore, the information provided by
determining the axonal and dendritic arbours can exclude 57% of all possible connections. More
connections can be excluded by raising the threshold for detection, as the number of structural
connections kS decreases nearly linearly with log ρ. This is followed by a similar decrease in the
average degree (Figure 6a). In contrast, the average minimum path length showed a peak L̂S ≈ 2.6
for an overlap threshold around ρ ≈ 1000 µm2. The average clustering CS ≈ 0.7 of each neuron
was constant below that threshold.

Functional connectivity was accessed using a binning method and by that definition each neuron
pair has such a prominent delay τspike. However, the corresponding maximum scores have a rather
large range, 2 ≤ zmax ≤ 110. Thus for a low threshold of ζ < 2, all neurons were functionally
connected, hence kF = 506, but for ζ > 3 the estimate of functional connectivity decreased (Figure
6b). This was accompanied by a increase in average minimum path length, which showed a clear
peak at L̂S ≈ 4 for a z-score threshold of ζ ≈ 20.

2.6 Estimation of synaptic delays
The first attempt to compare the structural and functional connectivity is to compare the strength
of corresponding connections, whether a large overlap in axonal and dendritic fields is correlated
with a stronger functional connectivity. Surprisingly, this correlation is weak (Figure 6c). The
second attempt is to compare the delays, thus comparing the axonal delays with the spike timings
(Figure 6d). Assuming chemical synapses, the prominent delay between two spike trains is a result
of both, axonal conduction and the synaptic delay, caused by neurotransmitter release, diffusion,
binding and action, thus τspike = τaxon+τsynapse. This can be used to calculate the synaptic delay
of presumably chemical synaptic connections,

τsynapse ≈ τspike − τaxon,

because we could measured both, the spike timing and the axonal delay. Most of the presumably
synaptic delays were clustered around τsynapse ≈ 0 ms (red dots, Figure 6d), which means that these
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Figure 7: Absence of polychronisation in cultured neocortical neurons. Spike patterns consistent
with measured axonal delays as well as synaptic delays of chemical synapses between the individual
neurons were detected. Two different methods were used to generate surrogate networks (a),
together with surrogate spike trains. All surrogates showed the same size distribution for the
putative polychronous groups (b), thus the spike patterns detected in the original data arise just
by chance. An example for a putative polychronous group is shown as scatterplot (c) of connected
spikes. Only a part (red) of the putative chemical synapses (grey) participated in this spike
pattern(d) .

were either coincident spikes or caused by electric synapses which do not rely on neurotransmitters.
A substantial number of delays were rather small, τsynapse � 1 ms. Additionally, their functional
score, zmax is lower than that of “zero delay” functional connections, which is consistent with the
lower reliability of chemical synapses.

2.7 Search for polychronous groups
The chemical synapses of cortical neurons are known to exhibit spike-timing-dependent plasticity
(STDP) at millisecond precision[38]. The connecting axons conduct action potentials at millisec-
ond precision[60]. Therefore, it has been hypothesised that these networks exhibit reproducible
time-locked, but not synchronous firing patterns with millisecond precision, which are called poly-
chronous groups[27].

To find polychronous groups, the possible (structural and functional) connections were re-
stricted to those with putative chemical synapses. All spikes that occurred within the admissible
delay

τ∗ = τaxon + τsynapse ± τjitter = τspike ± τjitter
were connected and many connected spikes formed a spike pattern of a putative polychronous
group. The spike pattern size varies from 2 to over 1000 spikes, and different neurons participated
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in the generation of these spike patterns.
In order to see how many spike patterns could be expected by chance this procedure was

repeated for surrogate time series (see functional connectivity) as well as surrogate networks (Figure
7a). In the first surrogate network, the post-synaptic neurons were shuffled, but the number of
post-synaptic neurons for each neuron and the delays of these connections τ∗ (which are mainly
determined by its axons) were preserved. In the second surrogate network, all connections were
preserved, but the delays τ∗ were shuffled within the network. All surrogates showed the same size
distribution for the spike patterns, for a total of 7 cultures examined (see supplement), so that it
could be concluded that the detected patterns arose just by chance (Figure 7d).

2.8 Distinguishing neuron subtypes
Some classes of inhibitory neurons can be distinguished from excitatory neurons according to their
spike waveform. For the electrode closest to the proximal fraction of the AIS the extracellular spikes
always contained a large narrow negative spike, presumably caused by Na+ currents, followed by
a wider positive peak, at least partially caused by potassium currents during the repolarization
phase of the action potential [56][19]. This can be quantified by the delay between the negative
peak and the positive peak δp, also termed peak-to-peak width [14]:

|δp| = arg maxV − arg minV.

For fast spiking GABAergic neurons the latter is very short, |δp| < 0.350ms [52]. All recordings
were performed >28 DIV, when the chloride ion transporter KCC2 was already highly expressed
in glutamatergic neurons, which decreased their intracellular chloride ion concentration [58], and
therefore GABAergic neurons generally act as inhibitory neurons [51]. In our cultures, all recorded
neurons showed a peak width |δp| > 0.350ms so that they presumably represented excitatory,
glutamatergic neurons. This was consistent with results obtained by GABA immunolabelling
showing that the amount of GABAergic neurons was very low (<5%) (data not shown).

3 Discussion
We have presented a general framework to infer structural and functional connectivity to study
emergent network behaviour. Although recording from axons and dendrites requires close proximity
to the recording electrodes and therefore our methods is limited to neurons cultured on top of
HDMEAs, it offers a novel and unique approach to study neuronal networks.

3.1 “Electrical imaging” of neuronal morphology
HDMEAs with more than 3,000 electrodes per square millimetre and dedicated low-noise on-chip
amplifiers are a suitable tool to reveal the single-cell morphologies of cultured neurons.

We use HDMEAs to segment an electrical footprint into neuronal compartments (AIS, axonal
arbours, dendritic arbour) or background activity according to the waveforms of the extracellular
field potentials [47]. Typically, such information is not available or can only be obtained for a few
cells by either intracellular dye injection [49], sparse transfection [4], or the Brainbow technique [36].
On the other hand, the dense reconstruction of neuronal networks from serial electron microscopic
sections [7][32] is still very challenging.

We validated our method by comparing the axon segmentation with the ground truth morphol-
ogy obtained by sparse transfection [4]. Our method works well for axons, because (a) they actively
propagate action potentials and (b) they extend over large distance (� 200 µm) without densely
covering large areas of the array. This yields point-source-like signals that are clearly distinct from
the background noise. In the case of dendrites only a rough outline can be obtained, because (a)
they reveal themselves only by passive properties as the return current, (b) the extensive branching
densely covers a small area, and (c) their signal is obscured by the action potential originating at
the AIS, which is - at the same time - the very source of the return current. To some extent (b)
could be resolved by increasing the electrode density.

Similar to optical imaging, there is a “resolution limit” for the electrode density of HDMEAs.
The point spread function (PSF) for electrical recordings [35], can be calculated by

A(z, r) =
V (r)

V (0)
=

z√
z2 + r2

.
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where z is the vertical distance of the signal source from the HDMEA and r the radial distance
from the foot point. By solving A(z, dh/2) = 1/2 we find that the half-width dh = 2

√
3z of this

PSF depends on the distance z. This distance is very small for planar cell cultures (z = 3µm) so
that the maximum resolution is about dh = 10 µm, which is about half the electrode distance in
the HDMEA that was used in this study.

An optimised recording scheme for the switch matrix HDMEA design uses combinations of
fixed and variable recording sites for high-throughput parallel mapping of the entire network of
neurons. The method described here shows a promising way to obtain axonal arbours at large
scale and potentially from all neurons during a single recording session.

3.2 Estimating both structural and functional connectivity
HDMEAs can be used to investigate how structural and functional connectivity are interrelated: Is
functional connectivity present in the absence of structural connectivity? Is structural connectivity
predictive for functional connectivity? The difficulty in answering these questions is the difficulty to
obtain both, structural and functional connectivity for the very same experimental subject. There
have been considerable achievements on the macroscopic level (whole brain) using a combination
of fibre tracking through diffusion tensor imaging with mapping of macroscopic (brain metabolic)
activity by BOLD imaging [57][25]. On the mesoscopic level, the use of various all-optical methods
has been put forward, but the combination of optical tracers with imaging of activity-dependent
calcium signals and optical stimulation is difficult due the limited number of discernible wavelengths
and limited temporal resolution.

Here we propose an all-electrical method to estimate the structural connectivity according to
a common extension of Peter’s rule [46][8], which assumes that the probability of two neurons
being connected is proportional to the overlap of their axonal and dendritic fields [50]. Currently,
this rule is controversial and refuting [55][41][10][29][32] and confirming [48][22] evidence has been
reported.

At the same time we used pairwise inter-spike interval histograms for the estimation of the
functional connectivity. The significance has been accessed by surrogate time series. This approach
is more general than previous methods, using bin-less methods [40] or including higher order
interactions [6].

3.3 Testing a spike-based theory of neuronal computation
Theories of neuronal computation are usally divided into two types [9]: “Rate-based” theories
are based on the firing rate, for example rank order coding [64] and predictive spike coding [15],
whereas “spike-based” theories propose some kind of synchrony between neurons leading to repeated
spike patterns, such as synfire chains [1] and polychronization [27]. Polychronisation refers to the
theoretical phenomenon that recurrent networks with axonal delays and spike timing depended
plasticity (STDP) [38] exhibit complex activity patterns [27]. These precisely timed spikes are
produced by so called polychronous groups of neurons for which the combination of axonal delays
is just right to favour their sustained recurrent activation. In simulations, these groups form both
spontaneously and in response to patterned stimulation, which has been used as an argument that
this phenomenon might underlie memory processes [61].

For the first time, the direct measurement of axonal delays between each neuron in the network
and the identification of chemical synapses allowed us to experiment on this popular spike-based
theory of neuronal computation. Here we can show that spike patterns consistent with axonal
delays between pre- and post-synaptic neurons arise just by chance, thus favouring rate-based
neuronal computation.

Another explanation lies in the difficulty to observe STDP in bursting cultured neuronal net-
works. Whereas numerous studies demonstrate that neuronal networks show short-term plasticity
(elasticity) upon single stimulations in cultures [16], the reports regarding long term effects have
been conflicting [67]. Although we found that some synaptic delays are consistent with chemical
synapses observed in dissociated cortical neuron cultures [43], the exact nature and plasticity of a
synaptic connection can only be examied by combining single-cell stimulation of the pre-synaptic
cell with intracellular recording of post-synaptic potentials [28].

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 18, 2017. ; https://doi.org/10.1101/139436doi: bioRxiv preprint 

https://doi.org/10.1101/139436


3.4 High-throughput electrophysiology of full axonal arbours
The presented method to automatically segment axons of a large number of individual neurons
also holds potential for high-throughput single cell applications to study the physiology of full
axonal arbours [2][53][30][31][13]. Up to now, axonal physiology has been investigated using either
very large axons (giant squid axon) [24][26] or paired patch recordings that are possible if either
naturally or experimentally induced swelling enables patching of an individual axonal branch [54].

Axonal signals have been recorded extracellularly with standard planer multi-electrode arrays
(MEAs) [3][65], but their spatial resolution is limited by the larger distance of the electrodes in
MEAs (r = 100µm) compared to HDMEAs (r = 18µm), which allow the reconstruction of axonal
arbors [4]. It has been argued, that HDMEAs produce very large data files that may limit the
high-throughput use of this technology as well as limit the increased signal to noise obtained by
averaging many hundreds of waveforms obtainable in a longer recording [65]. Here we show that
we can isolate full axonal arbors of up to 52 neurons in parallel from a single two hour recording
session (see Supplemental figure 1 for more examples). This time can be further improved using a
HDMEA design with increased number of recording channels [42], decreasing the average number
of configurations per neuron to C = 4e/a2 = 4 × 26400/10242 = 0.1 (see section 2.1). With a
recording time of 2 min/configuration for spike-triggered averaging the full axonal arbors of 500
neurons can be reconstructed from a single 2 hour recording session.

Although our method is limited to neurons in planar culture, it offers the advantage of recording
(a) at the entire axonal arbour from the AIS to the terminal branches and everywhere in between
and (b) from several neurons in parallel. The criss-cross pattern of axonal branches might even be
advantageous when combined with local application of drugs, because even for local application
several branches of different neurons can be screened in parallel. A motorised micro-manipulator
[35] can be used map out the distribution of a specific ion channel [44] over many individual neurons
by using a specific inhibitor in a single experiment.

3.5 Conclusion
Our all-electrical framework for neuron cultures on a planar HDMEAs enables the estimation of
structural connectivity along with an investigation of functional coupling. Our data show that the
“structural” connectivity for a small network overlaps with the “functional” connectivity obtained
from the pairwise inter-spike interval histograms. For 31% of these connections, the estimated
synaptic delay was consistent with that of chemical synapses [43]. We did not find any evidence
for polychronisation [27].

Currently, our cortical preparation is quite artificial, as it contains most excitatory neurons,
but using preparations of other brain areas (e.g., striatum) any excitatory-inhibitory balance (E/I)
can be obtained and its functional significance can be investigated [12]. Furthermore, the lack of
input from thalamic areas [33] drives the activity into the bursting regime reminiscent of sleep.
Chemical stimulation [23] or patterned focal stimulation can be used to induce an active wake-like
state exhibiting random sparse firing. This would make it possible to study more natural properties
of cortical networks closer to the cortex of behaving animals [11].

Interestingly, neuron dynamics can be reduced in most cases to a leaky integrate-and-fire (LIF)
model with only a few free parameters, which can, together with measured axonal delays, be used
to reconstruct the network in silico [68]. Comparing the activity of these simulated networks with
actual activities of networks from which they were reconstructed, would provide a “test-bed” for
the validation of recent large-scale cortical simulations.

In general, our method can be used to investigate the relationship between the topology of neu-
ronal connections and emerging temporal spike patterns observed in dissociated neuronal cultures.
This new framework can be used to test a wide range of rate-based vs. spike-based theories of
neuronal computation as well as to evaluate axonal and synaptic plasticity in neuronal networks.

4 Methods

4.1 Animal use
Timed pregnant rats (Wistar) were obtained from a commercial vendor (Nihon SLC, Japan).
Animals were sacrificed on the day of arrival to obtain embryos for primary neuron cultures. All
experimental procedures on animals were carried out in accordance with the European Council
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Directive of 22 September 2010 (2010/63/EU) and had been approved by the local authorities
(Animal Care and Use Committee of RIKEN; QAH24-01).

4.2 High-density microelectrode array (HDMEA)
Sub-cellular resolution extracellular recordings were obtained using a complementary metal-oxide-
semiconductor (CMOS)-based HDMEA [18] with 11,011 electrodes arranged in a hexagonal pattern
yielding an electrode density of 3,150 electrodes/mm2. The culture chamber of the HDMEA was
prepared as described before [21] with minor modifications: after attaching the chamber ring
(polycarbonate, 19 mm inner diameter, 8 mm high) using epoxy resin (EPO-TEK 301-2, Epoxy
Technology Inc.), GlobTop was used to cover the bond wires while keeping the electrode area clean,
and the remaining area was covered by a thin film of PDMS (Sylgard 184, Dow Corning). Platinum
black was electrochemically deposited [39] with modification by [21] on the electrodes to decrease
their impedance in order to reduce recording noise and increase signal gain [66]. One day before
plating, the surface of the HDMEAs was rendered hydrophilic by oxygen plasma treatment (40s,
20W), coated for 4 hours with of 50 µg/ml Poly-D-Lysine (Sigma-Aldrich, P7280) in PBS, washed
twice with Aqua dest. and air-dried for one hour.

4.3 Primary neuron cultures
Adult rats were anaesthetised with Isofluorane and killed using a guillotine. The embryos were
removed from the uterus and decapitated. Their neocortex was dissected in ice-cold dissection
medium (HBSS without Ca2+ and Mg2+; Gibco, NO. 14175) and incubated for 20 minutes at
37◦C in Trypsin/EDTA (Sigma-Aldrich). After washing twice with plating medium (Neurobasal
A supplemented with 10% Fetal bovine serum, 2% B27 Supplement, 1:100 GlutaMax, all from
Gibco, and 10 µg/ml Gentamicin, Sigma-Aldrich), the tissue was mechanically dissociated, passed
through a 40 µm nylon mesh, and centrifuged 6 min at 200 g. The supernatant was removed;
the cells were suspended and counted. A 20 µl drop containing 10,000 cells was placed on the
electrode area of the HDMEA in the middle of the culture chamber. The cultures were covered
by a membrane permeable to gas but not to water vapour (Potter and DeMarse, 2001) and placed
in a standard incubator (37◦C, 5% CO2, 80% relative humidity). The neurons were allowed to
settle and attach to the surface for 30 minutes. Thereafter, the culture chamber was filled with
600 µl serum-free, astrocyte conditioned DMEM/Hams’s F12 medium (Nerve Culture Medium,
Sumitomo, #MB-X9501). Medium was exchanged completely with 600 µl conditioned medium
after 4 days and then every 7 days.

4.4 Statistical significance
A total of 8 cultures from 3 different neuron preparations were examined. For 7 cultures the struc-
tural and functional connectivity was estimated; the networks consisted of 14–52 neurons/culture
(see supplemental figure 1). One culture was transfected with an expression plasmid for DsRed,
and the spike-triggered averages for a single, isolated, DsRed-expressing neuron were extracted
from the recordings.

4.5 Live imaging
Live-cell visualisation of whole neurons was performed by transfection [4] [49]. Transfection was
performed using a pLV-hSyn-RFP plasmid from Edward Callaway (Addgene, #22909) and Lipofec-
tamine 2000 (Life Technologies) in accordance with the manufacturer’s protocol. A Leica DM6000
FS microscope, Leica DFC 345 FX camera, and the Leica Application Suite software were used to
produce micrographs.

4.6 Recordings
For recording, HDMEAs were place in a bench-top incubator (TOKAI HIT, INU-OTOR-RE) with
temperature control, and 5% CO2 was supplied by a gas-mixer and humidified by a water bath.
In order to avoid the evaporation of medium during prolonged recording intervals, the water bath
and the lid temperature set point was set 1◦K and 3◦K above the sample temperature set point,
which was 35◦C.
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The HDMEA was attached to the adapter, and the recordings were performed using custom
scripts written in LabView (National Instruments), Matlab (Mathworks), C++ and Python run-
ning on a standard PC with a Linux operating system. Data underwent lossless data compression
and were directly stored on a server on the local LAN.

Offline analysis of the recordings included filtering, event detection and averaging. First, a band-
pass filter (2nd order Butterworth filter, 100-3500 Hz) removed slowly changing field potentials as
well as high frequency noise. The remaining (background) noise was characterised by the median
absolute deviation (MAD), which is resilient to outliers in the data but represents a consistent
estimator of the standard deviation, sV = 1.4826 MAD(Vsig). Using a voltage threshold method
for event detection [34], negative peaks below a threshold of Vthr = 6 × sV (thus Vthr � 50µV )
were identified. To avoid multiple detection of the same spike, successive events within less than
0.5 ms were discarded. To extract sub-threshold events from axons and dendrites, signal averaging
was performed (see results).

5 Additional information

5.1 Conflict of Interest
UF is a co-founder of MaxWell Biosystems AG (Mattenstrasse 26, Basel 4058, Switzerland), com-
mercialising HDMEAs.

5.2 Author Contributions
TB planned experiments, performed cell culture, recordings, implemented and tested algorithms
in Matlab and Python, performed data analysis, prepared figures, discussed results and wrote
manuscript; MR performed cell culture, recordings, transfection, imaging and discussed results;
SH implemented and tested algorithms for data analysis in Python, discussed results; KD pre-
pared neocortical neurons, performed immunostaining, imaging, discussed results; AH provided
HDMEAs, discussed results; UF planned experiments, discussed results, implemented software for
recording and data analysis and wrote manuscript.

5.3 Supplementary Material
The Hana (high density microelectrode array recording analysis) analysis pipeline is open source.
All source code as well as example data to replicate the figures will be available at Github. The
example data consists of spike triggered-averages and events that were extracted from the raw
recordings.
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Supplemental figures legends

Supplemental figure 1. Summaries for the analysis of connectivity in spontaneous active neu-
ronal networks (n=7) cultured on HDMEA. Structural connectivity graph (a) for an threshold
ρ = 300 µm2 for the pairwise overlap of axonal and dendritic fields. Functional connectivity graph
(b) for an threshold ζ = 1 for the z-score obtained from inter-spike interval histograms. Synap-
tic delay graph (c) revealing a network (green) of neurons connected by presumptive chemical
synapses (τsynapse > 1 ms) and another for which which the spike occurs almost instantaneous
(τaxon = τspike). Correlation plots for strength of structural and functional connections (d) for all
(black), for delayed (green), and for simultaneous (red) connections. Scatterplot (e) for synaptic
delays (τsynapse) and z-scores (zmax) reveal a network (green) of neurons connected by presump-
tive chemical synapses (τsynapse > 1 ms) and other connection for which the spike occurs almost
instantaneous (τaxon = τspike). Size distribution for the spike patterns detected in the original
data (f) together is the same as for the surrogates. Thus the original spike patterns similarly arise
just by chance and not from the polychronous groups. Note: The networks (a, b, c) are plotted
with respect to the position of the axon initial segments of its neurons.

Supplemental figure 2. Axonal (blue) and dendritic (red) fields of all spontaneous active neurons
in a small neuronal network (culture 1) reconstructed from the HDMEA recording.
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