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Abstract 

Decision making obeys common neural mechanisms, but there is considerable 

variability in individuals’ decision making behavior particularly under uncertainty. How 

individual differences arise within common decision making brain systems is not known. 

Here, we explored this question in the medial frontal cortex (MFC) of rats performing a 

sensory-guided choice task. When rats trained on familiar stimuli were exposed to 

unfamiliar stimuli, choice responses varied significantly across individuals. We 

examined how variability in MFC neural processing could mediate this individual 

difference and constructed a network model to replicate this. Our model suggested 

that susceptibility of neural trajectories is a crucial determinant of the observed choice 

variability. The model predicted that trial-by-trial variability of trajectories are 

correlated with the susceptibility, and hence also correlated with the individual 

difference. This prediction was confirmed by experiment. Thus, our results suggest that 

variability in neural dynamics in MFC networks underlies individual differences in 

decision making.  

 

 

Introduction 

Animals need to respond to sensory input from the environment and make adaptive 
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decisions, even when the sensory information is ambiguous. When animals are familiar 

with given sensory stimulus, their behavioral responses are stereotyped. However, 

when sensory input is unfamiliar to animals, their responses are more variable and 

exhibit a highly probabilistic nature. Decision making in such ambiguous situations is 

expected to show a wide spectrum of individual differences depending on the 

behavioral traits of each subject.  

 

Many studies have explored the general tendencies and underlying neural 

mechanisms of probabilistic decision making [1–3]. In particular, many studies have 

suggested the crucial role of choice-specific neural activity sequences in decision 

making behavior [4–6]. However, surprisingly little is known about the characteristic 

features of neural activity that influence the behavioral variability of individual animals. 

In this study, we experimentally and computationally explore such features and the 

underlying mechanisms in choice-specific sequences in medial frontal cortex (MFC). 

Inactivation of the MFC is known to impair motor responses driven by sensory input [7], 

and recent studies have shown that the MFC is engaged in decision making and 

goal-directed behavior [8]. 

 

Choice-specific neural trajectories have been found in the MFC of rats 

performing an alternative choice task in response to auditory stimuli [9]. In this task, 

after rats had been trained with familiar tone stimuli, they were required to respond to 

unfamiliar tone stimuli that had not been used during training. MFC neurons in these 

animals formed choice-specific trajectories for familiar stimuli. Furthermore, the 

probabilistic choice responses of the rats showed substantial individual differences in 

psychometric curves, presumably reflecting different preferences and/or strategies in 

decision making. These findings motivated us to explore the cortical mechanisms 

underlying the reward-driven formation of choice specific sequences and their 

influences on the individual differences. Cortical mechanisms have been extensively 

studied to account for general tendencies in decision making behavior [10, 2, 3], but 

little has been explored about the neural correlates of individual differences. 

 

    In this study, we first address how neural trajectories emerge for familiar stimuli 
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and guide decision making for unfamiliar stimuli. We then ask whether and how the 

properties of these trajectories influence choice responses and the resultant 

psychometric curves. For this purpose, we construct a recurrent network model 

[11–14] based on experimental observations from the rat MFC, and train it with a 

reinforcement learning algorithm for an association task [15–17]. Our model generates 

a spectrum of decision behavior that is compatible to the observed variability in 

behavioral performance across different rats. We found that susceptibility of neural 

trajectories to perturbation predicted variability in behavior and that trial-by-trial 

variability reflected the susceptibility and, consequently, the behavioral variability. Our 

results suggest that the susceptibility of neural dynamics correlate the trial-by-trial 

variability in MFC with individual differences in choice responses to uncertain stimuli. 

 

 

Results 

Behavioral variability in decision making with unfamiliar sensory cues 

Our hypothesis is that individual differences in ambiguous choice responses partly 

emerge from neural dynamics formed in MFC through previous experiences. We 

examined this hypothesis in a sensory-guided alternative choice task. Rats were trained 

to make either Left or Right licking in response to high-frequency (13 kHz) or 

low-frequency (10 kHz) auditory cues (called familiar cues), respectively (Figure 1A). 

Each cue was presented for 200 ms, and correct choices after the cue presentation 

were rewarded. Among 36 trained rats, 21 rats reached a criterion correct rate (75 %), 

and multi-neuron recordings were performed from MFC of these rats. During the 

recordings, the rats were exposed to unfamiliar cue tones (10.5 to 12.5 kHz) in 20% of 

trials besides the familiar tones. Because these tones were unfamiliar to the rats, their 

choice responses were ambiguous and probabilistic. Finally, eight rats yielded 

sufficiently many neurons for the present analysis. Further experimental details are 

found in Methods.  

 

     This experiment revealed an interesting feature of decision-making in unfamiliar 

situations: The choice behavior of the rats showed large differences across the rats. 

The choice probability of Left licking generally increased with the tone frequency in all 
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rats, but psychometric curves for unfamiliar cues exhibited large individual differences 

(Figure 1B). Some rats varied choice probability sensitively to the frequency of 

unfamiliar cues (Figure 1C2), but other rats made biased or chance-level choices 

irrespective of the tone frequency (Figure 1C1). Throughout this study, we quantified 

the individual differences in psychometric curves by fitting these curves with a 

nonlinear function PL (Methods). Choice probabilities are inevitably deflected by 

sampled data. Therefore, we examined the stability of parameter fitting as follows. We 

resampled a different set of 30 trials out of the entire data set (comprising several tens 

of unfamiliar trials and several hundreds of familiar trials) for each tone and rat. This 

allows us to generate a psychometric curve per rat. Then, for each rat we repeated this 

procedure 30 times to generate 30 samples of psychometric curves and to collect the 

corresponding 30 values of sensitivity S. We plotted these values in an increasing order 

of the original sensitivity of the rats (Figure 1D). Though the variance was large in some 

rats, the average values of S monotonically increased while preserving the serial order 

of S, indicating that the sensitivity adequately characterizes the behavioral tendency of 

each rat irrespective of data sampling. We further confirmed the stability of our fitting 

scheme by choosing a different fitting function (Figure S1). 

 

Reinforcement learning for reservoir network model 

To clarify how the behavioral differences may emerge among rats, we constructed a 

stochastic recurrent network of spiking neurons based on the anatomical structure 

from MFC (Figure 2A). Our model extends the reservoir computing proposed for 

supervised motor learning [11–14] to reward-driven sequence learning [15–17]. The 

recurrent network (reservoir) consists of 5000 excitatory and 1000 inhibitory neurons, 

and a subset of these neurons receive random projections from 200 input terminal 

neurons having different preferred tone ‘frequencies’. Anatomically, the input terminal 

and recurrent network may correspond to the auditory cortex and MFC, respectively 

[18, 19]. Random projections were assumed because tone-selective MFC neurons 

showed no systematic frequency dependence [9]. Excitatory neurons in the reservoir 

project to two rate-coding neurons (readout neurons), L-neuron and R-neuron, which 

are mutually inhibiting. The readout neurons send feedback connections to the 

reservoir. We also assumed these readout neurons are representative of motor cortex 
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generating licking behavior [20]. The network model makes a decision when the 

difference in output between L and R neurons reaches a threshold θ. Due to the noise 

applied to the reservoir and trial-to-trial variability in the initial states, the decisions 

are stochastic even for an identical sensory input. 

 

     We trained the network model through a reward-driven learning rule such that it 

correctly generated “Left” or “Right” choice for familiar “high-frequency” (FH) or 

“low-frequency” (FL) input, respectively (Methods). To take advantage of sequence 

generation [21, 22], we made recurrent excitatory connections obey a lognormal 

weight distribution, which has been ubiquitously found in cerebral cortices [22, 23]. 

We also assumed a minimal model in which only readout connections were modifiable. 

Although recurrent connections were unchanged to keep the lognormal weight 

distribution stable against spiking dynamics, the reservoir dynamics is modulated 

through the feedback connection from the read-out neurons. We then introduced the 

following reinforcement learning by using eligibility trace [15–17]: 

�����,� ��⁄ � �������	�,���� 
 	�,����	���� 
 ����,��/�
,   (1) 


���,��� � 1� � 
���,���� � �∆
���,����,           (2) 

∆
���,���� � ����������,� 
� �����,� ��,             (3) 

 

where 
���,���� is the weights of readout connections from the i-th reservoir 

neuron to L- or R- neuron at learning step T, � is a learning rate, ����� is the average 

activity of presynaptic reservoir neuron (Equation 13 in Methods), and 

	�,���� and 	�,����	 are the firing rate of each readout neuron and its low-pass-filtered 

version, respectively.  Throughout the paper, α = 10. Eligibility trace ����,�  is 

assigned to each readout connection and measures the extent to which a particular 

connection contributes to decision making at a particular learning step. In Equation 1, 

the eligibility trace is calculated from correlations between �����  and 

high-pass-filtered readout activity �	�,���� 
 	�,����	����. In Equation 3, �����,� is the 

normalized eligibility trace of this connection, and � �����,� ��,� is the average over 

all such connections (Methods). Modification of the readout connections (Equation 2) 

occurs only after one learning step finishes. After a success trial (learning step) U is 

taken to be positive (i.e., potentiation of influential connections), or U is negative after 
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a failure trial  (depression of such connections). In each trial, the network was 

exposed to one of the familiar inputs from 0 to 200 ms and made a decision within 250 

to 900 ms after the stimulus onset. If the readout neurons did not reach the threshold 

within this interval, the trial was failed and a new trial was started. Though the learning 

rule is somewhat heuristic, the minimal model accounted for most of the essential 

results of experiment as shown below. 

 

Figure 2B shows a typical example of a rewarded trial during learning. We 

trained 30 networks with different realizations of recurrent connections obeying an 

identical weight distribution (Methods). For each network, either FH or FL is randomly 

applied during learning. After 300 training steps, more than the two-third of model 

networks (20 networks) achieved a criteria correct rate of 75 % (Figure 2C). Successful 

learners occupied similar fractions in both models and rats, indicating that the task 

difficulty was adequately modeled. Throughout this study, we analyzed the neural 

dynamics of these 20 successful learners and 8 rats, and compared them in their 

behavioral variabilities. 

 

Next, we analyzed the highly stochastic choice responses of our models to 

unfamiliar cues (U1 to U5 in Figure 2A). As in the rats, the psychometric curves of the 

successful learners displayed large individual differences (Figure 2D), where we used 

the same fitting function (Figure 2E) as used in the rats (Figure 1C). The sensitivity 

values thus obtained for the different models were robust against the resampling of 

psychometric curves (Figure 2F). As the width of tuning curves (see Figure 2A) 

influences the initial network states set by external stimuli, it also influences the 

behavioral characteristics of each network. In Figure 2G, we compared the 

distributions of sensitivity values of the models for different widths of tuning curve. 

The model networks tend to exhibit a broader sensitivity distribution for a narrower 

width (i.e., a higher input selectivity). When the width is 0.3 to 0.4, the ranges of 

sensitivity covered by the models are as broad as the range covered by the rats. Below, 

we use the width of 0.4 as it gives a smaller average fitting error than the other value. 

 

Neural trajectories formed in MFC and the reservoir 
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We have shown that the network models produce the divergent psychometric curves 

that are consistent with those observed in experiment. However, whether neural 

activities in the reservoir and in the MFC are also similar has yet to be clarified. To this 

end, we first studied the time evolution of neural activities. Figures 3A and 3B compare 

neural activities averaged over familiar trials between in MFC and in the reservoir 

under given cue and choice conditions. Both experimental and modeled neural 

activities exhibited distinct trajectories when neurons were sorted according to their 

times of peak firing rates in correct trials for given stimulus. However, neural activities 

sorted in the peak-time orders observed in different stimulus conditions showed no 

clear trajectories. These results demonstrate that the neural trajectories are 

choice-specific in both MFC and the reservoir. 

 

We analyzed the principal components (PC) of population neural responses 

in MFC and the reservoir in Figures 3C and 3D, respectively. In MFC, decision making 

with familiar cues formed neural trajectories selective to stimulus and choice. Note 

that the first principal component (PC1) represented a frequency-nonselective 

component of auditory responses (Figure S2) and hence is not shown here. In the 

reservoir, similar condition-selective trajectories are formed except that PC1 and PC2 in 

the former corresponded to PC2 and PC3 in the latter, respectively. 

Frequency-nonspecific stimulus-evoked responses (PC1 in the experiment) were almost 

missing in our models. 

 

We then investigated how these familiar trajectories lead to correct choice 

responses in MFC and the reservoir networks. As PCA does not identify task-relevant 

axes, we applied a linear regression method (Mante et al., 2013 and Methods) to 

trial-averaged neural activities for given combination of stimulus and choice, and 

identified two axes: the stimulus axis explains the maximal difference in trajectories 

between FH and FL while the choice axis reveals the maximal difference between Left 

and Right choices. In both rats (Figure 3E) and models (Figure 3F), familiar trajectories 

projected onto the stimulus axis or the choice axis started to separate into correct 

choices almost simultaneously with cue onset. These results suggest that the 

integration of sensory evidence occurs during the cue presentation in both MFC and 
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the reservoir. 

 

The familiar trajectories also revealed interesting differences between the 

computational models and rats. First, the trajectory separation along the stimulus axis 

was generally smaller in the rats compared to the models. Though the cause of this 

discrepancy is not entirely clear, it was partly due to that the number of tone-selective 

MFC neurons was small and difference in their responses to different tones were also 

weak (at most several spikes per second in average). Second, trajectory separation 

along the choice axis stopped in the rats after the termination of sensory cues, 

whereas the separation continued to grow in the models presumably due to positive 

feedback from readout neurons. It was previously shown in the rat MFC that 

trajectories reach an almost maximal separation just prior to cue termination (Handa 

et al., 2017). The gamma-band power of the local field potentials also abruptly 

increased in MFC, indicating that some internal event, for instance the formation and 

transmission of a preparatory signal for choice response, might occur at this timing. 

Such an internal process was not modeled here, which might cause the discrepancy 

between rats and models. Except for these differences, our computational model well 

reproduced neural dynamics in the rat MFC. 

 

Neural dynamics in MFC and reservoir predicts choice behaviors 

To confirm the importance of neural trajectories for choice behavior, we examined 

whether neural trajectories in MFC and our model have sufficient information about 

consequent choice responses. We predicted a probable choice from neural trajectories 

by using Fisher discriminant analysis (FDA) with a hyperplane that optimally divides the 

population activity patterns corresponding to Left and Right choices (Methods). The 

optimal hyperplane was determined from neural ensembles at the time of choice 

response for familiar trials, and we denote its normal vector as Wopt. In our model, if 

the readout neurons can discriminate optimally between Left- and Right-choice 

familiar trajectories, the normalized weight vector of readout connections should be 

close to Wopt. However, the two vectors cannot be exactly the same because the 

readout neurons are not passive linear filters but are active nonlinear filters performing 

temporal integration of inputs under mutual inhibition. 
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Averaged familiar trajectories projected onto Wopt are shown for the rats 

(Figure 4A) and models (Figure 4B) for different cue and choice conditions. The 

projected trajectories linking given sensory cue to different choices were distinctive in 

both rats and models. Importantly, Wopt obtained from familiar cues was also valid for 

discriminating between Left- and Right-choice trajectories evoked by unfamiliar cues. 

This means that unfamiliar trajectories converge at similar locations at which familiar 

trajectories also converge. We computed the distributions of projected activities in a 

rat (Figure 4C1) and a model (Figure 4C2) at the choice time points of Left-choice and 

Right-choice trials. In the rats, the activity distributions for different choices have small 

overlaps corresponding to incorrect choices. To infer trial-by-trial choice responses 

from the projected neural activity, we adopted a naive criterion boundary given as the 

mid-point of the means of Left- and Right-choice distributions. Then, Left-choice 

probability is predicted to be the area of the distribution lying on the left side of this 

boundary, and so on. On average about 75 % of neural trajectories in MFC were 

discriminable by this criterion, although the discriminability fluctuated across rats 

(Figure 4D). In the models, choice responses were correctly inferred in about 90 % of 

the trials, and fluctuations in the discriminability were small (Figure 4E). Thus, neural 

trajectories in MFC and the reservoir determine choice responses on a single-trail basis. 

This is expected in the model as it was trained as such, but the finding is non-trivial in 

the rat MFC. 

 

However, the linear discrimination analysis was insufficient for predicting 

individual differences in choice responses across different rats and different models. 

We did not find significant correlations between the sensitivity to stimuli and the 

discriminability of neural trajectories in both rats (Figure 4F, p=0.86) and models 

(Figure 4G, p=0.82) although this could be partly due to small data size in the case of 

rats. These results suggest that the significantly different behavioral characteristics are 

not mere reflections of neural states at the choice point. Therefore, we investigate how 

neural population dynamics preceding the choice point determines the behavioral 

characteristics. 
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Susceptibility of neural dynamics influences behavioral characteristics 

Decision making in our model depends on the interplay between its internal dynamics 

and sensory input. Therefore, we expected that different characteristics of internal 

dynamics result in different behavioral characteristics. To characterize internal 

dynamics, we applied a perturbative input to networks receiving no sensory stimuli. 

The perturbative input was applied 30 times to each network at the identical neural 

state (perturbed state) to which sensory stimuli were applied in the previous 

simulations, and the Euclidian distances (susceptibility χ) among the perturbed 

trajectories and a non-perturbed trajectory were measured at 300 ms after the 

perturbation. The time of measurement did not change the essential results. Note that 

χ is defined for every different state in the neural state space (Methods). Perturbed 

neural trajectories evolving from a state with high χ may diverge broadly, while those 

trajectories from a state with low χ may hardly diverge. 

 

We first show neural responses of a sensitive network and an insensitive 

network, respectively. For a particular state in the sensitive network, unfamiliar stimuli 

U1, U2 and U3 (close to FH) evoked trajectories evolving into Left choice, whereas 

those evoked by U4 and U5 (close to FL) evolved into Right choice, implying that the 

similarity of unfamiliar stimuli to familiar stimuli determined choice responses (Figure 

5A1). In contrast, all unfamiliar trajectories resulted in Left choice for another state in 

the insensitive network, implying that internal dynamics governed the choice 

responses (Figure 5A2). We then show how perturbed and non-perturbed trajectories 

evolve in these networks from the same initial states. In the sensitive network, 

perturbed trajectories diverged broadly, implying that a weak perturbation tends to 

give high χ values (0.014, Figure 5B1). In contrast, the insensitive network generally 

yielded more localized perturbed trajectories and hence low χ values (0.0045, Figure 

5B2). Thus, networks with high susceptibility responded differently to different 

unfamiliar stimuli, whereas those with low susceptibility responded similarly to 

different stimuli. 

 

We then examined a quantitative relationship between the susceptibility and 

responses to the seven stimuli (FL, U1, …, U5, FH). To this end, we define the 
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response bias as |#Left – 7/2| for each perturbed state, where #Left is the number of 

Left choices resulting from each perturbed state in response to the seven stimuli. The 

response bias is 0.5 if three or four of seven choices are Left (weak biases), while it is 

3.5 if all choices are only Left or Right (strong biases). Both in a sensitive (Figure 5C1) 

and an insensitive successful learner (Figure 5C2), the response bias is significantly and 

negatively correlated with the value of χ (p<10-5 for the sensitive and p<10-6 for the 

insensitive). We quantified the susceptibility of each model network by averaging the 

values of χ over randomly chosen 50 perturbed states. A network with a sensitive 

psychometric curve yielded a distribution biased towards higher values of χ (Figure 

5C1), whereas a network with an insensitive psychometric curve yielded a distribution 

biased towards lower values (Figure 5C2). We plotted the sensitivity values of 20 

successful learners against their average χ values to find a significant positive 

correlation (p<0.004) between the sensitivity (behavioral metric) and susceptibility 

(neural metric) (Figure 5D). These results are summarized as the following intuitive 

picture of the neural mechanism of individual differences: higher susceptibility implies 

a shallower landscape around the trajectory and produces a sensitive choice behavior, 

while lower susceptibility implies a deeper landscape and generates an insensitive 

choice behavior (Figure 5E). 

 

In contrast, we did not find significant correlations between the sensitivity 

and the average susceptibility in the presence of learned stimuli (Figure 5G). Perturbed 

and unperturbed trajectories did not show large quantitative and qualitative 

differences in the presence of FH both in a sensitive and an insensitive network (Figure 

5F). Similar results were obtained for FL (data not shown). Thus, our model suggests 

that internal network dynamics is an influential factor on the behavioral variability, but 

the influences are easily masked by external input (Figure 5E). This explains why we 

could not uncover a convincing relationship between neural population responses and 

behavioral variability in the rats. 

 

Trail-by-trial variance probes susceptibility 

Susceptibility cannot be computed from the experimental data in rats. To find an 

alternative quantity to characterize the individual differences, we investigated 
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trial-by-trial variances evoked by all stimuli in the models and rats, which was 

suggested to reflect the neural dynamics of decision-making [24, 25]. First, we 

calculated trial-by-trial variability before and after stimulus onset in the models 

(Methods). To reduce an artifact from neuron sampling, we normalized the 

post-stimulus-onset variability by the pre-stimulus-onset variability. Interestingly, the 

normalized variability is significantly correlated with the susceptibility in the models 

(Figure 6A), implying that trial-by-trial variance can be used as a proxy of the 

susceptibility. We also confirmed that the variability is correlated with the sensitivity in 

the models (Figure 6B1). 

 

Next, we calculated the normalized variability in the eight rats and examined 

its correlation with the sensitivity. (Figure 6B2). Due to the small number of the rats, 

we resampled experimental data 1000 times (Methods) and obtained 1000 resampled 

correlation coefficients between the normalized variability and sensitivity across the 

rats. All of the coefficients were positive (Figure 6C), indicating that neural population 

dynamics also reflects the behavioral differences of the individual rats and the 

normalized variability probes the characteristics (presumably the susceptibility) of 

neural dynamics.  

 

Reaction time is uncorrelated with behavioral characteristics 

RT is an important measure for the behavioral characteristics of individual animals. 

Next, we analyzed whether the sensitivity of psychometric curves is correlated with the 

RT of individual rats and models. The medians of RTs calculated for the eight rats were 

not significantly correlated with the selectivity (Figure 3S). These results show that the 

RT of rats does not strongly reflect the individual differences in choice behavior. We 

asked similar questions in our models and found that the RTs were also uncorrelated 

with the sensitivity of choice behavior in all the three cases, as in the rats. 

 

     However, we also noticed an interesting difference between the models and 

experiment. If we compare choice responses to familiar and unfamiliar cues in each 

model, RTs to unfamiliar cues were significantly longer than those to familiar cues 

(Figure S3D, p < 0.001). The result is consistent with our intuition. Somewhat 
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unexpectedly, however, this was the case only in four rats, and even in these rats, 

differences in the median RT were typically as short as 10 to 20 ms (Figure S3H, p=0.8). 

The above discrepancy suggests that additional mechanisms not modeled here work in 

MFC during decision making in unfamiliar sensory conditions. We will argue the 

possible mechanisms in the discussion. 

 

Network structure only weakly reflects behavioral characteristics 

Intuitively, network structure should be highly influential on neural dynamics and 

consequently on the individual behavioral differences. Therefore, we asked if network 

structure explains the behavioral characteristics and, if so, what aspect of the structure 

is relevant to them. Note that differences between the individual networks are 

considered to be small because they were obtained from similar initial networks 

(having the same weight distribution of recurrent connections) by training. In our 

statistical analysis of synaptic connections, crucial differences in network structure for 

producing significant differences in choice responses were not easily detectable. 

Actually, we tested various statistical indices to reveal a signature of such structural 

differences (Figure S4). Most of our attempts failed to find significant correlations 

between the statistical properties of network structure and the sensitivity. We, 

however, found an interesting exception when we analyzed a small portion of readout 

connections from such presynaptic reservoir neurons as exhibited the highest firing 

rates (Figure S4C). Thus, our results suggest that differences in network structure 

responsible for different behavioral characteristics do exist but they are subtle. Only a 

small fraction of connections that are actually used can be crucial for the observed 

behavioral differences. 

 

 

Discussion 

 

We have shown how neural population in MFC processes a sensory-guided alternative 

decision making when rats are exposed to unfamiliar sensory stimuli. The choice 

responses to unfamiliar stimuli fluctuated over different rats and the psychometric 

curves of probabilistic choices largely varied between highly sensitive and poorly 
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sensitive types across the individual rats. By using multi-electrode recordings, we have 

recorded spike trains of multiple medial frontal neurons during the task. We have built 

a recurrent network model and trained it through a reinforcement learning algorithm 

to successfully reproduce both temporal evolution of neural population activity and 

spectrum of observed choice behaviors. By studying neural dynamics in this model, we 

have found that the susceptibility of internal neural dynamics predicts individual 

differences across different networks. This modeling result predicts that highly 

sensitive rats should exhibit a large trial-by-trial variability in neural trajectories, which 

was also confirmed in the rats. 

 

Reward-guided neural trajectory learning 

Neural activity sequences have been ubiquitously found in the mammalian brain 

executing behavioral tasks including decision making [4, 5, 26, 27]. In the rat MFC, 

neural responses to different auditory stimuli subsequently converged to 

choice-specific trajectories [9]. This study has further demonstrated the relevance of 

the dynamical characteristics of choice-specific neural trajectories in MFC to the 

diverge spectrum of animals’ choice behaviors. 

 

To explore the neural mechanisms of ambiguous decision making for 

unfamiliar stimuli, we have modeled a reservoir network [11–14] that undergoes 

reinforcement learning. By employing a eligibility trace [15–17], we trained the 

network model to find the formation of familiar trajectories in the reservoir which 

eventually converge to one of the two local areas corresponding to choice responses in 

the state space. Neural trajectories driven by unfamiliar stimuli stochastically diverged 

into the vicinities of these decision areas organized for familiar stimuli with a 

stimulus-dependent probability, resulting in ambiguous choice responses. 

 

Separation of neural trajectories occurs similarly in the rats and models. 

However, the separation somewhat slows down in the rats about 100 ms after the cue 

onset during the cue presentation (Figure 3E), whereas the separation continues in our 

model without slow down (Figure 3F). Indeed, around this timing a sharp increase in 

the gamma power of the local field potentials occurred in the MFC [9]. As suggested 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/139493doi: bioRxiv preprint 

https://doi.org/10.1101/139493
http://creativecommons.org/licenses/by-nc/4.0/


 15

in the rodent [28, 29] and primate [30], the increased gamma oscillation may indicate 

the onset of cross-area communications in the MFC, presumably for the preparation of 

behavioral outputs. This communication across areas, which is not implemented in our 

model, might suppress the separation. 

 

Correlations between neural characteristics and behavioral variability 

The behavioral variability of individuals have been a focus of psychological and 

behavioral studies of humans [31]. Choice preferences of individuals under uncertain 

or risky conditions have been studied in the context of value evaluation by a large-scale 

brain network including cortical and subcortical structures [32, 33]. Furthermore, 

recent studies using fMRI have revealed correlations between task performance and 

intercortical functional connectivity, indicating that macroscopic brain activity 

influences the behavioral variability of individual animals [34–36]. However, relatively 

little has been known about the neural substrates for the individual differences [37]. 

Our results suggest that neural dynamics in a local cortical area (of MFC) is a 

determinant of individual differences in the rapid choice behavior that does not require 

strategic exploratory decisions. We have shown evidence for a relationship between 

sensitivity in psychometric curves and the dynamical properties of neural trajectories 

(such as susceptibility) formed during sensory experience (Figure5D). 

 

Recent studies have revealed that neural processing is not a simple passive 

filter, but an active dynamical process [26, 27, 38–40]. From the dynamical system 

viewpoint, the flow structure of neural state space, such as line attractors [26], 

separatrix [27] and “null space,” i.e., the subspace of neural state space of motor 

cortex on which neural trajectories are uncorrelated with movements, but influence 

the choice of subsequent movement [40], has a significant influence on linking 

externally or internally driven information to behavioral output. 

 

In addition to these structures, our model suggests crucial influences of 

covert properties of intrinsic neural dynamics, such as the susceptibility, on decision 

making in an unfamiliar sensory environment. We demonstrated that the susceptibility 

of neural dynamics to perturbation in the absence of sensory stimuli predicts the 
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sensitivity in individual psychometric curves (Figure 5D). If the susceptibility is high in a 

model, psychometric curve of the model tends to be sensitive to differences between 

unfamiliar stimuli. Recent studies have revealed neural mechanisms of sensory 

information coding [41], short-term memory [42], and motor planning [43] by applying 

perturbation to neural activity with opt-genetic techniques. Our results suggest that 

response to perturbation reflects a part of individual difference. Our model also gives a 

testable prediction that animals in which neural activities are strongly disturbed by 

optical stimuli to MFC have highly sensitive psychometric curves in response to 

unfamiliar stimuli.  

 

Correlations between the susceptibility in neural dynamics and the sensitivity 

in behavior were not obvious when neural dynamics was driven by familiar stimuli 

(Figures 5F and 5G). This implies that behaviorally relevant differences in intrinsic 

neural dynamics are not necessarily observed under the learned conditions. This might 

be natural when all subjects are trained to perform the same task. Previous 

computational models [44–46] and experimental studies [36] demonstrated the 

impacts of intrinsic neural dynamics on processing external stimuli or cognitive tasks. 

Our results suggest that intrinsic neural dynamics can influence the characteristics of 

individual behavioral responses.  

 

We found that the susceptibility predicts large trial-by-trial variations in 

neural activity in our model and that trial-by-trial variation is in turn correlated with 

the individual differences in both models and rats (Figure 6). In humans, larger 

trial-by-trial variability in movements predicted faster rates of motor learning, though 

whether high variability in movements implies high variability in neural activity remains 

unclear [47, 48]. In the present task, large variability in neural responses may increase 

the flexibility in controlling neural trajectory evolution, thus enabling the rats to flexibly 

adjust their probabilistic behavioral responses according to cue tones. This may explain 

the observed correlations between the trial-to-trial variability and psychometric curves. 

However, the correlations were weak in the rats (Figure 6), and this point requires 

further experimental clarifications. 
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Network structure weakly indicates the sensitivity in psychometric curves 

We have investigated the relationships between several metrics of network structure 

and the sensitivity in psychometric curves of the networks to find no significant 

correlations in most of the cases. We have only found that the Left-Right asymmetry in 

the weight sums of readout connections from the most active reservoir neurons 

indicate the sensitivity of different network models (Figure S4, p<0.03). However, 

neither readout connections from all reservoir neurons nor the sums of the strongest 

connections were significantly correlated with the individual differences. All together, 

these results suggest that network structure alone cannot unambiguously distinguish 

the sensitivity. 

 

Our learning procedure modifies only readout connections. Though this 

assumption is unrealistic, our model could form the neural trajectories that 

successfully associate sensory inputs to correct behavioral responses. Thus, our results 

suggest that learning a simple association like the present task can be completed 

through modifications of inter-cortical-area connections or cortico-subcortical 

connections. However, learning a complex task may require modifications of 

intra-cortical-area connections for organizing an adequate neural network. 

 

A log-normal distribution of synaptic connections, which is adopted in our 

model, has been found in local cortical circuits [22, 23]. Some studies [21, 23] have 

suggested that this class of connection is helpful to generate a rich variety of spike 

sequences in spontaneous activity. Therefore, the log-normal connection in the 

reservoir likely contributes to generating neural trajectories specific to stimulus and 

choice (Figures 3A and 3B) and, consequently improves learning performance. A role of 

the log-normal connection on learning is left for a future work. 

 

Different RT profiles between rats and models 

We may speculate that rats with highly sensitive psychometric curves carefully evaluate 

sensory information before making behavioral responses and hence tend to require a 

longer time for decision making. However, this naive speculation was not supported by 

our experimental results [9]. Actually, we have found in both rats and models that RTs 
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are uncorrelated with the sensitivity for both familiar and unfamiliar cues. The present 

results for RTs are largely consistent between the rats and models, but we have found a 

few exceptions. All of the rats made rapid decisions even for unfamiliar cues (Handa et 

al., 2017), yielding comparable RTs for familiar and unfamiliar cues (Figure S3C: the 

mean RTs differed by at most 20 to 30 ms between the two cue types), whereas in our 

model the mean RT for familiar stimuli was much shorter than that for unfamiliar ones 

although these differences were also uncorrelated with the sensitivity of the models 

(Figure S3G). 

 

How this discrepancy arises remains unclear, and we only speculate the 

possible underlying mechanisms. The discrepancy seems to indicate that the MFC 

recruits additional mechanisms of decision making, which was not incorporated into 

the present models, when the rats are exposed to unfamiliar cues. A likely explanation 

is that threshold for decision making is increased to improve the accuracy of behavioral 

responses to familiar cues through the learning of sensory environment. Yet another 

explanation is that unfamiliar bottom-up signals from primary sensory cortices to MFC 

is less effective in activating medial frontal neurons, as they have not learned the 

unfamiliar inputs. Indeed, modeling studies suggest various plasticity mechanisms to 

gate the learned synaptic inputs effectively and robustly [49, 50]. The causes of the 

discrepancy are open to future studies. 
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Figure 1: Individual differences in probabilistic choices across rats. Psychometric 

curves and task-related population neural activity were studied in eight rats. A, 

Schematic illustration of sensory-guided decision making task. B, Normalized 

psychometric curves (gray) significantly varied across rats (N = 8). In each rat, the 

probability of left licking was normalized such that P(10 kHz)=0 and P(13 kHz)=1. 

Orange and purple curves are typical examples with high and low sensitivity to auditory 

cues, respectively. Filled circles indicate the average Left choice probabilities over the 

eight rats. C, The typical psychometric curves of low and high sensitive rats were fitted 

with tangent functions. Error bars show standard deviations of resampled ensembles. 

D, Sensitivity S for all rats is plotted. 30 samples of psychometric curves were 

generated by resampling for each rat and the sensitivity values S of the resampled 

(gray) and original (purple for the insensitive rat and orange for the sensitive rat) 

curves were calculated. The rats are sorted in the abscissa in an increasing order of 

their original sensitivity values. 
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Figure 2: Responses of network models reproduce individual difference.  A, 

Schematic illustrations of the presumable anatomical circuits engaged in the present 

task (left) and the model network structure (right) are shown. B, Spike raster of the 

reservoir (dots) and the firing rates of L (rL, gold) and R (rR, green) neurons are shown 

for a single trial. The figure shows randomly sampled 500 excitatory neurons (ENs) 

receiving the input projections, 1000 ENs receiving no input projections, and 500 

inhibitory neurons. C, Learning performance of the model. The probability of correct 

choices was evaluated every 5 learning steps. Black and gray lines indicate the average 

performance over 30 different realizations of the network model and the performance 

of five examples among them, respectively. D, Psychometric curves of 20 successful 
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learners (gray) and two typical curves with high (orange) and low (purple) sensitivity 

are plotted. E, The typical curves are well fitted with tangent functions. F, Sensitivity S 

of the original (black) and resampled (gray) psychometric curves for 20 successful 

learners are plotted. Orange and purple circles indicate S for the original psychometric 

curves for sensitive and insensitive networks. Panels D-F are compared with Figures 

1B-D. G, Comparison of distributions of S in models and rats. Upper figure shows S for 

each fitting curve against width of preference curves. We plotted S for 18, 20, 16 and 

14 networks for the width = 0.3, 0.4, 0.5 and 0.6, respectively, as well as those for eight 

rats. Bottom, fitting errors averaged over networks and rats are shown. 
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Figure 3: Neural dynamics in MFC and in the reservoir.  A, Neural activities of 30 

most active neurons in a rat out of 44 were averaged and normalized over success 

trials with FL (left) and FH (right) tones. Neural activities were sorted in the temporal 

order of peak responses to FH (top panels) or FL (bottom panels). B, Neural activities in 

a model are shown in a similar fashion to A. 200 most active excitatory neurons out of 

5000 are used. C and D, Neural trajectories in the MFC (in C) and the reservoir (in D) 
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are projected onto a two-dimensional PC-space. We averaged neural activities over 30 

neurons showing the largest difference between firing rats before and after familiar 

stimuli in the MFC and 100 excitatory neurons showing the highest firing rate in the 

reservoir under each condition of stimuli and choices. The second and third PCs were 

used because PC1 merely represented the presence of cues without tone specificity. E, 

Time evolution of population neural activity in a rat was projected onto the choice 

(top) and stimulus axes (bottom) for FH (light green) and FL (red). Solid and dotted lines 

show neural trajectories for Left and Right choices, respectively. Squares and circles 

indicate stimulus onset and mean RT. F, Time evolution in a model is shown in a similar 

fashion to C. 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/139493doi: bioRxiv preprint 

https://doi.org/10.1101/139493
http://creativecommons.org/licenses/by-nc/4.0/


 29

 

Figure 4: Predictions of choice behavior by MFC and reservoir dynamics. A and B, 

Neural trajectories were optimally separated by FDA in rats and models with different 

sensitivity, respectively. In both rats and models, projected trajectories are shown in 

Left- (solid) and Right-choice (dotted) trails for both familiar (top, FL and FH) and 

unfamiliar stimuli (bottom, U2). C1 and C2, Distributions of projected population 

activity are shown at the times of Left choices for FH (dark gray) and Right choices for 

FL (light gray) in the sensitive rat and sensitive net model shown in C1 and C2, 

respectively. Dotted lines show the midpoints between the mean values of the 

Left-choice and Right-choice distributions, and shaded area indicates the failure trials 

inferred from FDA. D and E, The probabilities that Left and Right choices are correctly 

inferred from the projected trajectories are shown in the rats and models, respectively. 

Gray bars show the probabilities averaged over all rats and all models, while orange 

and purple circles indicate the probabilities for sensitive and insensitive rats (D) or such 

models (E). F and G, Relationships between the probability of correct inference and 

sensitivity are shown for eight rats and twenty model networks, respectively. 
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Figure 5: Characterization of neural dynamics for different choice behaviors. A1 and 

A2, Trajectories evoked by familiar and unfamiliar stimuli are shown in the 

two-dimensional PC spaces of sensitive or insensitive networks, respectively. B1 and B2, 

Ten perturbed trajectories (gray) and an unperturbed trajectory (black) in the absence 

of external stimuli are shown in the same networks and the same PC spaces as in A1 

and A2, respectively. Gray circles refer to perturbed points and black crosses to 
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decision points. All perturbed points are identical although they seemingly look 

different due to a temporal smoothing by a Gaussian function with the variance of 30 

ms. C, Susceptibility χ (Methods) is shown for the same networks for stimulus-evoked 

trajectories evolving from 100 initial points of perturbation (left) against the response 

bias |#Left-3.5| (see the main text). Histograms of susceptibility are shown (right). D, 

Susceptibility and sensitivity are plotted for all successful learners. Susceptibility of 

each network was averaged over 50 initial points. E, Schematic images of the landscape 

of neural dynamics with (right) and without (left) familiar stimulus FH. F, Ten 

trajectories evoked by FH are perturbed at certain points (circles). Non-perturbed 

trajectories evolving from the same points are shown for FH (cyan). The non-perturbed 

trajectory evoked by FL is plotted in red for reference. G, Average susceptibility and 

sensitivity are plotted for all successful learners as in D. Susceptibility was calculated 

from the perturbed trajectories shown in E for FH.  
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Figure 6: A, The susceptibility and the normalized trial-by-trial variability are 

significantly correlated in the all successful learners (p<0.04). B, Correlations between 

the normalized variability and the sensitivity across twenty successful learners and 

seven rats in B1 and B2, respectively. Data of one rat is excluded due to small number 

of available neurons (Methods). C, Correlation coefficients between the normalized 

variability and the sensitivity in rats. We resampled the experimental data and 

calculated 1000 the correlation coefficients for these data sets and plot them as a 

histogram. 
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Methods 

 

Experimental procedure 

All experiments were carried out according to the Animal Experiment Plan approved by 

the Animal Experiment Committee of RIKEN. The details of experimental procedure are 

given in [9]. Briefly, head-restrained adult Long-Evans rats (male 210-240 g: SLC) were 

trained to associate licking of spouts with reward delivery. We presented either of two 

pure tones (familiar cue tones: 13.0 and 10.0 kHz, for 0.2 s) in a pseudo-random order 

as a cue for licking a spout located at the left or right side of rat, respectively (Figure 

1A). The rats were required to lick a correct spout within 5.0 s from the cue onset to 

obtain a reward (0.1% saccharin water). If the licking response was incorrect, we did 

not deliver the reward and prolonged the duration of the immediately following 

post-response period (3.0 s) by 5.0 s as an aversive experience. We continued the 

training until the correct rate finally reached a criterion (75%) without error correction. 

Each rat underwent one or two days of subsequent recording sessions, in which we 

presented the two familiar cue tones (10.0 and 13.0 kHz) and five unfamiliar cue tones 

(10.5, 11.0, 11.5, 12.0 and 12.5 kHz) with the occurrence probability of 80% or 20% (4% 

for each unfamiliar tone), respectively. The correct familiar cue trials were always 

rewarded, whereas the reward probability was linearly varied for unfamiliar cue trials 

along its cue tone frequency: (Left/Right) = 10.5-kHz (0.17/0.83), 11.0-kHz (0.33/0.67), 

11.5-kHz (0.5/0.5), 12.0-kHz (0.67/0.33), 12.5-kHz (0.83/0.17). We trained 36 rats with 

familiar tones and only 21 reached the criteria for successful learning. After surgery, 15 

were available for multi-neuron recordings and eight of them finally yielded 

qualitatively and quantitatively satisfactory data for the succeeding analysis. 

 

We recorded multiunit activity mainly from the deep layers (depth from pia matter: 

1.0-2.0 mm) of the MFC (+2.7-+3.6 mm anterior, 0.6-2.0 mm lateral of Bregma)  

through a 32-channel silicon probe consisting of 4 shanks (Neuro Nexus Technologies, 

Inc., USA), each with 2 tetrode sites separated vertically by 0.5 mm. We only analyzed 

the behavioral and neuronal data obtained on the first day of the recording sessions 

when the rats were still not habituated to unfamiliar cues. Spikes were sorted with a 
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custom-made semi-automatic spike sorting program, EToS [51], and the sorted spike 

clusters were further analyzed manually using Klusters and NeuroScope [52, 53]. The 

number of isolated units (RS + FS) was n=37 in rat #941, n=68 in #897, n=22 in #902, 

n=12 in #807, n=44 in #880, n=40 in #879, n=50 in #940 and n=51 in #949. Neuronal 

activity and behavioral performance were analyzed using MATLAB (The MathWorks, 

Inc.). 

 

Neuron models 

We constructed a network model composing three parts, an input layer, a reservoir 

network and a readout layer (Figure 2A). The input layer has 200 neurons, each of 

which responds to stimulus k at the following firing rate ri:  

 

	� � ����
/��exp �
!�"/#��� 
 0.1�& � 1�'�/2�)����,   (4) 

 

where Rmax, Nin, and σ are the maximum firing rate, the number of input neurons, and 

the standard deviation, respectively. The values of these parameters were set as 

���
 � 110, #�� � 200 and ) � 0.15, and k (= 1, …, 7) specifies the preferred 

stimulus of the neuron, with k = 1 and 7 corresponding to familiar high (FH) and low 

(FL) stimuli, respectively, and k= 2, …, 6 to five unfamiliar inputs (U1-5), respectively. 

The parameter L is the width of frequency tuning curves, and most results were 

calculated for L = 0.4 except in Figure 3G. 

 

The reservoir network is essentially the same as the recurrent network model studied 

in Teramae et al. [21] except for the introduction of NMDA receptors and background 

noise as well as minor modifications of model parameters. The reservoir network has 

5000 excitatory and 1000 inhibitory leaky integrate-and-fire neurons obeying the 

membrane dynamics 

 

�,� ��⁄ � 
 �,� 
 -�
��� �⁄ � .�� � .�� � .��� � .��� � .��.    (5) 

 

where Vleak = −70 [mV], τ = 20 or 10 [ms] for excitatory and inhibitory neurons, 

respectively, and the refractory period is 1 [ms]. If u reaches threshold Vth = −45 [mV], 
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the neuron fires and u is reset at Vr = −60 [mV]. Excitatory and inhibitory recurrent 

synaptic inputs, .��  and .��, are described by the following equations: 

 

.�� � 
/�
�����,� 
 -�� 
 0.1/�

�����,� 
 -��,     (6) 

.�� � 
/�
�����,� 
 -��,       (7) 

�/�
� ��⁄ � 
 /�

� ��⁄ � ∑ 1��
� ∑ 2!� 
 ��� 
 ��'�� , X = AMPA, NMDA, GABA  (8) 

 

where Gij
Y and dj are the weight and delay of synaptic connection from neuron j to 

neuron i, respectively, and tj
k is the k-th spike time of neuron j. The reversal potentials 

of synaptic inputs are VE = 0 [mV] and VI = −80 [mV], synaptic time constants are τAMPA = 

8 [ms], τNMDA = 100 [ms] and τGABA = 8 [ms], and δ is the Kronecker’s delta function. All 

synaptic conductances g are normalized by the membrane capacitance to have the 

dimension of [1/ms]. At excitatory-to-excitatory (E-to-E) connections, synaptic delays 

are chosen randomly from 1 to 3 [ms] and at other connections they are from 0.5 to 

1.5 [ms]. Synaptic input from input neurons .���, feedback input .��� from readout 

neurons (see below), and background noise .��  are all excitatory and defined as 

 

.�� � 
/�
��,� 
 -��,      (9) 

�/�
� ��⁄ � 
 /�

� �����⁄ � ∑ 1��
� ∑ 2!� 
 ���,�'�� , Y = IN, FB, N (10) 

 

where 1��
�  is the synaptic weight from neuron j to neuron i and ���,� is the k-th spike 

time of presynaptic neuron j of input type Y. In the present study, GN = 0.1, and other 

weights obey lognormal distributions, as described later. In Equation 10, spikes in I
IN 

and IFB are generated by non-stationary Poisson processes with the instantaneous firing 

rates given by Equation 4 or those of the readout neurons, respectively. The feedback 

spikes are generated independently for individual postsynaptic reservoir neurons to 

avoid strongly correlated activation of these neurons. Background noise is given by a 

Poisson spike train of 20 [Hz].  

 

The readout layer has two rate-based neurons, L- and, R- neuron, which integrate spike 

inputs from the reservoir and undergo mutual inhibition. Their firing rates 	�,� obey 
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�	�,� ��⁄ � 
�	�,� 
 	�,��/� � ∑ 
���,� ∑ 2!� 
 ���',��     (11) 

 

where � = 50 [ms]. The value of 	�,� is set to zero if it takes a negative value due to 

the mutual inhibition. 

 

Network architecture 

Among 5000 excitatory neurons in the reservoir network, 2000 neurons receive 

excitatory external input from input neurons through sparse connections. The 

connection probability p=0.01 and their weights are set at 0.02. The wiring 

probabilities of excitatory-to-excitatory (E-to-E), excitatory-to-inhibitory (E-to-I), 

inhibitory-to-excitatory (I-to-E) and inhibitory-to-inhibitory (I-to-I) connections are p
EE 

=p
EI =0.1 and pIE =pII =0.5. The weights of E-to-E connections are generated according 

to the following log-normal distribution: 

 

3�4� � exp�
�log4 
 8��/�2)���/�√2: )4�,    (12) 

 

where σEE = 0.8 and μEE = log(0.01)+(σEE)2. The weights of E-to-I, I-to-E and E-to-I 

connections are fixed at 0.01, 0.002 and 0.0025, respectively.  

 

Each readout neuron is projected to by a subset of reservoir neurons not receiving 

sensory input through readout connections Wi->L,R and feed their outputs back to 

another subset of reservoir neurons. The former and latter subsets of neurons consist 

of randomly and independently chosen 30% and 50%, respectively, of such reservoir 

neurons as are connected to none of the input neurons. An overlap can exist between 

the L-neuron-projecting and R-neuron-projecting subsets. The weights of Wi->L,R are 

randomly chosen between 0 and 60. The weights of feedback connections GFB obey a 

lognormal distribution given in Equation 12, with the variance and mean given as σFB 

=1.2 and μFB=log(0.012)+(σFB)2. 

 

Learning protocol 

The present network model learns to correctly associate external stimuli with choice 

responses by modifying the readout connections Wi->L,R through reinforcement learning. 
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The learning procedure is as follows: first, the network undergoes a pre-stimulus run 

for 100 [ms], which induces a baseline activity in the initial network state; subsequently, 

one of the familiar stimuli (FH or FL) is applied for 200 [ms]; after the termination of 

stimulus followed by a delay period of 50 [ms], the network is allowed to make a 

decision if the activity of a readout neuron exceeds that of the other readout neuron 

by a criterion difference θ (Figure 3B). If the network does not reach a decision 

criterion by 900 [ms] from the end of delay period, the trial is reset and a novel trial is 

initiated. If the decision by the network is correct, the readout weights are modified 

with a positive reward, whereas the weights are punished with a negative reward if the 

decision is incorrect. If the network fails to give a decision in a trail, the network is also 

punished. If the network reaches a decision criterion before the end of delay period, 

we discard this trial and start a new trial. 

 

Readout connections are modified in terms of eligibility trace ei->L,R according 

to Equations 1-3 [15–17]. The eligibility trace is assigned to each readout connection 

and measures the extent to which a particular connection contributes to decision 

making. The variables ai(t) and 	�,����	 in Equation 1 are computed in terms of 

presynaptic and postsynaptic activities as 

 

����� � ∑ 5exp �
 ����
�

 �
�� ,       (13) 

�	�,����	 ��⁄ � �	�,���� 
 	�,����	�/�!��	,      (14) 

 

where �� �10 [ms] and ����	 � 50 [ms]. The term �	�,���� 
 	�,����	� detects a rapid 

change in 	�,���� faster than ����	, so the eligibility trace is increased by coincidence 

between high presynaptic firing rate and a rapid increase in the readout activity. In 

modifying readout connections in Equation 3, we use a normalized eligibility trace 

defined as 

 

�����,� � 5 � ����,� �� tanh�����,�/5 � ����,� ���,    (15) 

 

where � = ��  denotes averaging over presynaptic reservoir neurons. We modify 
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readout connections by reward expectancy U and the limited eligibility according to 

Equation 3. We manually bound the value of Wi->L,R (T) below 60. Reward expectancy 

and decision criterion are adaptively modified during learning as follows: 

��� � 1� � >���
 
 �������	   rewarded trial    
���
                 failure trial D,    (16) 

E�� � 1� � >�1 
 F"�E��� � F"E��
     rewarded trial
�1 
 F"�E��� � F"E���   failure trial D,   (17) 

����	�� � 1� � G�1 
 F#�����	��� � F#���
   rewarded trial
    �1 
 F#�����	���                failure trial D.   (18) 

 

At an arbitrary T, 
���
 H ���� H ���
and E��� H E H E��
. Parameter values 

are ���
 � 1, E���= 10[Hz], E��
= 30[Hz], F#= 0.05 and  F$= 0.005. The variable 

U
slow(T) is rapidly decreased while the criterion θ(T) is increased when the network has 

been rewarded in successive trials. Therefore, we may regard U
slow(T) as reward 

expectancy at the learning step. 

 

Fitting psychometric curves 

Psychometric curves were calculated from the probability of Left choices. In the 

training of our model, the criterion of decision θ was initially kept low and then 

gradually increased until it was finally fixed at 50 [Hz] after learning. This manipulation 

made the separation of neural trajectories easier and clearer at the decision timing 

without changing the qualitative behavior of the model with constant θ. The 

Left-choice probabilities for familiar and unfamiliar stimuli were calculated for each rat 

over a few hundred or a few tens of trials, respectively. The probabilities for all stimuli 

were calculated for each network model over 50 trials except in Figures 5C in which we 

simulated 100 trials. In a small fraction of trials (< 1%), the network model did not 

reach the decision criterion within the time limit for simulations (< 900 ms). For such 

trials, we assigned a “relative distance” to the decision criterion θ at the time limit to 

the Left-choice probability: I� � J�	� 
 	�� � EK/2E. 

 

Unless otherwise stated, we fitted psychometric curves (the probability of 

Left choices) by a nonlinear function in the least square method: PL = L�tan�M 
 �� �
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N�. The variable f presents a normalized tone frequency {-1, -2/3, -1/3, 0, 1/3, 2/3, 1}, 

which corresponds to {10, 10.5, 11, 11.5, 12, 12.5, 13} [kHz] in the rats, respectively, 

and {FL, U5, U4, U3, U2. U1, FH} in the models, respectively. After fitting a 

psychometric curve, we normalized the parameter c to define the sensitivity S such 

that S = 1 refers to a linearly increasing psychometric curve PL(f) =(f+1)/2 and S = 0 to a 

highly biased psychometric curve, PL(-1)=PL(-2/3)= … =PL(+2/3)=0 and PL(1)=1. The 

larger the value of S, the more sensitive a psychometric curve. A conventional sigmoid 

function was not suitable to characterize sensitivity in psychometric curves. 

 

We examined whether the evaluation of sensitivity remains stable for each 

rat and model if a different fitting scheme was used to characterize their psychometric 

curves. In this scheme, we used I��M� � N� tan��%M� � �1 
 N% tan��%�� as a new 

fitting function, and defined a parameter as s’ = a’×b’ (Figure S1B-E). This definition is 

reasonable as a’ and b’ scale the x-axis and y-axis, respectively, to modify the slope of 

the fitting function. Then, a new sensitivity S’ was defined from s’ by the normalization 

process mentioned previously. 

 

Linear discriminant analysis 

We examined the neural dynamics underlying decision making in the rats and models 

by Linear (Fisher) discriminant analysis (FDA). We grouped neural states of familiar 

trajectories at the time of decision making (in the rats, the time of licking responses) 

into two groups: a group of neural states in Left-choice trials and a group of neural 

states in Right-choice trials. FDA identifies such an (N-1)-dimensional hyperplane that 

maximizes the ratio of the mean distance between the two groups (inter-group 

distance) to the sum of standard deviation from this hyperplane in each group 

(intra-group distance). Here, N is the dimension of neural state, i.e., the number of 

neurons in the population. We defined a one-dimensional line, called Wopt, that is 

orthogonal to the identified (N-1)-dimensional hyperplane. 

 

Linear regression analysis 

In addition to FDA, we used a regression method to identify the two (choice and 

stimulus) axes explaining differences in trajectories between the Left and Right choice 
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conditions in the rats and between FH and FL stimuli in the models. Our method is the 

same as used in [26, 27]. Briefly, we obtained the average firing rates of 100 most 

active neurons across trials under given stimulus and choice condition in the model 

and the average rate of 30 neurons which showed the largest differences in firing rate 

between pre- and post-stimulus onset in the rats. We used neural activities recorded 

from 100 (100) ms before to 500 (300) ms after the stimulus onset in models (rats). 

After gaussian-filtering, we calculated the z-scores of these activities, where the 

standard deviation of the filter was 10 ms for the models and 30 ms for the rats. Then, 

we performed a linear regression analysis,   

 

	�,���� � O�,&��� P choice�&� � O�,���� P stimulus�&� � O�,'���, (19)  

 

where ri,k(t) is the z-scored responses of neurons (i = 1 - 100) at time t on trial k, and 

βi,1(t), βi,2(t), and βi,3(t) represents the choice coefficient, stimulus coefficient and 

residual component, respectively. Here, these coefficients are projected onto the 

subspace spanned by the ten largest PCs, and choice (k) and stimulus (k) are binary 

variables. 

 

Susceptibility 

Susceptibility χu characterizes the dynamical trends of a neural network by measuring 

how it evolves in response to a perturbative input given to neural state u. To measure 

χu, we set the membrane potentials in all reservoir neurons at the initial value of −60 

[mV] and simulated the time evolution of neural population up to time t0 (=100 [ms]), 

at which we applied a perturbative input to the trajectory: ui(t0) → ui(t0)+δui (i=1,…, 

N). Choosing a different direction of perturbation δu randomly in every trial, we 

obtained 30 different perturbed trajectories u
(k) (k = 1,…,30 ) all of which were 

perturbed at the same state {ui}. Each component of δu is chosen from a uniform 

probability distribution of [−0.1, 0.1] [mV]. To evaluate the effect of the perturbation 

on state evolution, we evaluated the average distance D between the perturbed 

trajectories and an unperturbed trajectory u
(0) at time t1 = 500 [ms] as follows.  Let 

T4�(�

)�*U be the i-th PC of neural state at time t1 along the k-th perturbed trajectory u(k) 
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(t1), where k = 0 refers to the unperturbed trajectory for convenience. If the network 

model reaches the decision criterion before time t1, 4�(�
� ��&�  is calculated at this 

time. We define χu for the perturbed state u as 

 

V+ � W 131Y ∑ ZW4�(�

)�* , � 4�(�

)�* ��Y',
�-,

Z��, �� , 
 

where Z��, N� � �∑ ���(� 
.
�-& N�(����&/� is the Euclidean distance between state a 

and state b on the five-dimensional PC subspace, � 4�(�

)�* �� is the average of the 

perturbed and unperturbed trajectories, and the distance from the average trajectory 

is averaged over the trajectories. D(L, R) provides a normalization factor, and is the 

distance between Left-choice and Right-choice points on the PC subspace, where the 

choice points refer to the averaged neural states at which the network model reaches 

Left or Right choice. 

 

We emphasize that the susceptibility is assigned to each neural state rather than each 

trajectory. Therefore, a neural trajectory could show a broad range of the susceptibility 

depending on the specific state at which a perturbative input was given. In Figures 

5A,B,and F, we plotted perturbed neural trajectories starting from various neural states 

with low to high χu values. In Figures 5D and G, we defined the susceptibility of a 

model network by summing up the χu values of 50 neural states. 

 

Trial-by-trial variability in rats and models 

We selected those neurons that exhibited average firing rates greater than 3Hz during 

the whole task period, and applied PCA to the activity of this neural ensemble during a 

pre-stimulus epoch (a 100 ms-long interval prior to stimulus onset) and a post-stimulus 

epoch (a 300 ms-long interval following stimulus onset). We computed the logarithm 

of cumulated product of PC variances, [�	01
,0��� � " ∑ [�	01
,0��� #⁄�
� , where N is 

the number of selected neurons and vari
pre,post is the variance of the i-th PC for pre- and 

post-stimulus ensemble. We performed the analysis in seven rats and 20 successful 

learners. One rat was excluded as it yielded only one neuron according to the 

aforementioned criterion. Note that, in applying PCA, we randomly picked up 30 trials 
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for each stimulus and each rat because the number of recording trails varies from rat to 

rat and from stimulus to stimulus. We normalized the post-stimulus variance by 

dividing the pre-stimulus variance to define the normalized variability. In Figure 6C, we 

calculated the sensitivity S for the resampled trials, and then calculated correlation 

coefficients between the resampled variabilities and resampled sensitivities in the 

seven rats. 
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