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Abstract 

Sound stimuli are characterized by their rich spectral and temporal dynamic properties. 

Individual neurons in auditory cortex (ACX) encode both spectral and temporal aspects of 

sounds e.g. sound onset and/or offset. While the different fields of the ACX show gradients 

of frequency selectivity the large-scale organization of sound dynamics is unknown. We 

used widefield imaging of GCaMP6s in awake mouse ACX combined with a novel 

unsupervised image segmentation technique to investigate the spatiotemporal 

representation of sound onset and offset. Using this technique, we identified known 

auditory fields but also detected novel ACX areas. Furthermore, we found that ACX areas 

differed in their responses to tone onset and offset. Multiple areas were preferentially 

activated by tone offset, and on-response areas were more spatially localized than off-

response areas. We also found tonotopy in off-responses. Together our results 

demonstrate a different spatial distribution of neurons across ACX for processing sound 

onsets versus offsets. 

 

 

 

Introduction 

Spectral information is represented in auditory cortex (ACX) and especially in the 

primary auditory cortices via tonotopic maps on a scale of hundreds of micrometers, which 

are inherited from thalamic inputs (Guo et al., 2012; Issa et al., 2014; Kanold et al., 2014; 

Merzenich et al., 1975; Stiebler et al., 1997; Tsukano et al., 2015). However, it has been 

shown that the auditory system is not organized only according to spectral information; 

indeed, the dynamic nature of sound requires the auditory system to also process 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/139659doi: bioRxiv preprint 

https://doi.org/10.1101/139659
http://creativecommons.org/licenses/by-nc-nd/4.0/


4  

temporal information. ACX neurons can be sensitive to amplitude modulation, frequency 

modulation or sound duration (He et al., 1997; Heil et al., 1992; Schreiner and Urbas, 

1986). A systematic organization with regard to frequency sweep rate has been identified 

in mouse ACX (Issa et al., 2017) while a map of periodicity has been proposed in cat ACX 

(Langner et al., 2009). At other levels of the auditory pathway such as the inferior 

colliculus, topographic organizations of amplitude modulation (Heil et al., 1995; Langner et 

al., 2002; Schreiner and Langner, 1988) and frequency modulation (Hage and Ehret, 

2003) exist. Thus, the auditory system might not only be organized according to the sound 

frequency but also to the dynamic properties of sound.  

Sound onset and offset also constitute dynamic aspects of sound, besides frequency 

and amplitude modulation. Indeed, neurons at multiple levels in the auditory pathway 

respond to sound onset and offset (He et al., 1997; Henry, 1985; Hillyard and Picton, 

1978; Kopp-Scheinpflug et al., 2011) including the ACX (Baba et al., 2016; Fishman and 

Steinschneider, 2009; He, 2001; Qin et al., 2007; Recanzone, 2000; Scholl et al., 2010). 

While off-responses have been suggested to be responsible for duration coding (He, 

2001), they more fundamentally reflect the auditory system’s ability to encode the sudden 

termination of auditory stimuli, a sharp contrast between the presence of sound and 

silence.  

On- and off-responses are suggested to be conveyed by non-overlapping synaptic 

circuits (Scholl et al., 2010), raising the question whether there would be difference in the 

spatial representation of on- and off-response. Widefield imaging of flavoprotein signal in 

ACX of anesthetized mice suggested the presence of an distinct area sensitive for sound 

offsets, and that off-response tonotopy was absent (Baba et al., 2016).  However, off-

responses are most prominent in awake animals (Fishman and Steinschneider, 2009; 

Joachimsthaler et al., 2014; Qin et al., 2007; Recanzone, 2000). Thus, we investigated the 
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spatiotemporal representation of tone offset in ACX in awake animals using widefield 

imaging of GCaMP6s.  

Recent optical studies provided detailed descriptions of the organization of ACX and 

primarily A1 on the macro- and meso-scale level in mice (Bandyopadhyay et al., 2010; 

Issa et al., 2014; Issa et al., 2017; Rothschild et al., 2010; Tsukano et al., 2015; Winkowski 

and Kanold, 2013). Conventionally the segmentation of ACX into regions of interest (ROIs) 

is based on snapshots of activity following stimulus presentations, thus capturing only the 

on-responses. We here used the entire image sequence acquired when tones were 

successively played (thus capturing both on- and off-response) and developed a novel, 

unbiased and unsupervised method to define ROIs using a constrained latent variable 

model (Whiteway and Butts, 2017). This model defines ROIs based solely on the co-

activation of pixels over time, which includes both periods of spontaneous and stimulus-

driven activities. Conceptually, this procedure produces a lower dimensional segmentation 

of the image sequence, and thus aids in the understanding of both the spatial and 

temporal activation pattern. Using this approach, we detected previously known areas 

(e.g. A1) but also revealed novel auditory fields. We found that both on- and off-responses 

show tonotopic organization. Additionally, we found that the relative amplitude of on/off-

response is not only a function on particular stimulus parameters (i.e., frequency and 

sound level) but also depends on particular auditory field with some field showing weak 

off-response while others were dominated by off-response when responding to the same 

tone. This suggest that different auditory fields might have different roles in temporal 

processing. We also found that off-response is more extensive in space than on-response, 

suggesting that the underlying circuits differ from those carrying on-responses and have a 

greater spatial extent. Our results demonstrate the existence of tonotopy in off-responses 

and the spatial diversity of on/off-response patterns in ACX, and illustrate that on large-
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scales ACX is organized not only with respect to sound frequency but also with respect to 

the temporal aspects of the stimulus.  

 

Results 

Neurons in ACX can respond to the onset and/or offset of sound (Baba et al., 2016; 

Fishman and Steinschneider, 2009; Qin et al., 2007; Recanzone, 2000; Scholl et al., 

2010). To identify areal differences in on- and off-responses, we presented 2-second duration 

pure tones to awake adult F1 (n=13) mice from CBA/CaJ and Thy1-GCaMP6s (C57/BL6 

background) crosses (Dana et al., 2014). Adult F1 CBA/CaJ x C57/BL6 mice have hearing 

comparable to adult CBA/CaJ mice (Frisina et al., 2011); thus our cross allows expression 

of GCaMP6s uniformly in A1 without the hearing loss present in adult C57/Bl6 mice. To 

identify auditory responsive regions, we performed widefield imaging over a cranial window of 

~3mm radius over the left ACX while the mice were passively listening to tones.  

Tone onset resulted in spatially restricted fluorescence increases at several locations 

in the imaging field (Figure 1A, see 0.4s following tone onset). Fluorescence increases 

were present in discrete locations corresponding to activation of putative A1, AAF and A2 

respectively. Following tone offset, we observed an additional increase of fluorescence (at 

2.4s, or 0.4s after tone offset), which corresponded to an off-response. On- and off-

responses were also present in response to ultrasonic frequencies such as 61.3 kHz 

(Figure 1B). In both examples, the spatial locations of the fluorescence increase 

qualitatively match prior studies (Baba et al., 2016; Issa et al., 2014; Tsukano et al., 2015). 

To demonstrate the frequency and sound level dependence of the widefield on/off-

response, we tiled snapshots of activities following tone onset or offset (Figure 1C, D). We 

noted that on-responses were generally evoked at lower sound levels than off-responses. 
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In addition, both the spatial locations of on-responding areas and off-responding areas 

seemed to show systematic changes with respect to sound frequency. Moreover, while on-

responses occurred in spatially restricted areas, off-responses appeared to occur in larger 

and more diffusive areas. To quantify these observations in detail, we performed image 

segmentation to define distinct ROIs and to obtain their temporal activation profiles. 

 

Unbiased and unsupervised detection of ROIs 

Prior studies have used widefield imaging to calculate stimulus sensitivity for 

individual pixels (Issa et al., 2014; Juavinett et al., 2017). However, these sensitivity maps 

usually reflect cortical organization with respect to single stimulus properties, e.g. 

frequency and retinal location. Here, we aim to determine stimulus sensitivity for both on- 

and off-response at the same time. Using prior approaches would generate two separate 

maps, which could be difficult interpret. Alternatively, ROIs can be defined such that on- 

and off-response of the same spatial area can be compared. To achieve this goal, we 

developed an unbiased and unsupervised image segmentation technique to define ROIs. 

The goal of our image segmentation is to use dimension reduction techniques to break 

down the image sequence into linear combinations of ROIs weighted by their respective 

activity (Figure 2A).  

To perform unsupervised image segmentation, we used an autoencoder neural 

network with non-negativity constraints (Whiteway and Butts, 2017). An autoencoder is a 

neural network where the input and output layers have the same number of nodes, with 

one or more hidden layers between them (Figure 2B). The goal of this constrained 

autoencoder was to adjust the weights between the input layer and the hidden layer and 

those between the hidden layer and the output layer such that the output matched the 

input as closely as possible, while constraining the weights between the hidden and output 
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layers to be non-negative. Because the number of nodes in the hidden layer was much 

smaller than the number of nodes in the input/output layers (corresponding to the number 

of image pixels), using this method results in a dimensionality reduction of the original 

image sequence. In this sense, the autoencoder is very similar to principal component 

analysis (PCA). However, the segmentation achieved by the autoencoder was much 

different than PCA (Figure S2A), because the weights between the input/output layers and 

the hidden layer were constrained to be non-negative, in order to ensure that any increase 

or decrease in fluorescence would be reflected in the temporal activity trace of the ROI 

without ambiguity. Thus, the temporal activation of ROIs was defined by the activity of the 

hidden layer, and the weights between the hidden layer and the output layer defined the 

coupling to each pixel of each ROI. Both the activities of the ROIs and the spatial weights 

were fit using the sequence of images over the entire experiment. 

Typically, an autoencoder with around 50 ROIs achieved a good fit of the image 

sequence (Figure S1A), and the resulting ROIs densely tiled the imaged area (limited by 

the cranial window), indicating that most pixels have been incorporated into ROIs (Figure 

S1B, D). Also, these ROIs had minimum spatial overlap with each other, as shown by the 

spatial correlation matrix that closely resembles an identity matrix (Figure S1C). Thus, the 

ROIs defined spatially unique regions. While most ROIs detected in this way contained a 

continuous region in space (e.g., Figure 2C, ROI 1-8), some of the ROIs had more than 

one distinct spatial areas (e.g., Figure 2C, ROI 36). A careful examination of such ROIs 

show that they captured multiple regions that were co-active to the same stimuli. To 

ensure that ROIs represented continuous areas we performed automated split of such 

ROIs (see Methods).  

Overlaying selected ROIs with the snapshots of activity from Figure 1C, D shows that 

the placement of ROIs agreed visually with the location of activation for both on- (Figure 2D, 
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E) and off-response (Figure 2F, G), and their shapes also reflected the contour of 

fluorescence increase. These results show that using an autoencoder for image 

segmentation can produce spatially localized ROIs that tile ACX to facilitate auditory field 

identification, and that the defined ROIs faithfully capture the spatial activation pattern. 

 

Automatically identified ROIs reliably identify core ACX fields across animals 

ACX of mice contains several auditory fields, including A1, AAF and Ultrasonic Field 

(UF), which are characterized by the presence of tonotopic gradients in the on-response 

(Stiebler et al., 1997). Tonotopy also exists in secondary area A2, albeit on a compressed 

scale (Issa et al., 2014). Having unbiasedly defined ROIs, we next sought to assign them 

to different auditory fields according to the frequency selectivity in on-responses and their 

relative spatial locations.  

First, we identified A1 and UF ROIs based on their two tonotopic axes, one from the 

caudal side to dorsomedial side (low to high) and the other one, sharing the same low 

frequency area, from caudal to ventrolateral side (Issa et al., 2014). The spatial locations 

of example A1 and UF ROIs (Figure 3A) as well as the temporal traces as a function of 

frequency and sound level (Figure 3B-F) show progression of frequency selectivity along 

the two tonotopic axes. The most caudal ROI showed the highest on-response amplitude 

to low frequency tones (Figure 3B), while as one moves dorsomedially, ROI’s frequency 

selectivity shifts towards mid frequency range (Figure 3C, D). UF ROIs were identified 

dorsally located to the mid-frequency A1 ROIs (Figure 3F-H), which showed selectivity to 

high frequency such as 61.3kHz. A similarly high-frequency selective ROI can be identified 

ventral to mid-frequency A1, and we assigned this ROI to high-frequency A1 (Figure 3E). 

We use ‘UF’ and ‘high A1’ to distinguish between the two spatially distinct areas that are 

high frequency selective, while they are both considered primary auditory cortices. So far, 
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we showed that the ROIs given by our unbiased image segmentation technique can 

robustly identify the two known tonotopy axes in A1, replicating the results of prior studies 

(Issa et al., 2014; Polley et al., 2007; Tsukano et al., 2015). Similarly, we identified AAF 

ROIs and recovered its tonotopy that ran from rostral side towards ventrolateral side 

(Figure S3B-D). We also identified A2 (Figure S3E, F), which were located most 

ventrolaterally and with very broad frequency tuning.  

We performed parcellation of ROIs in all animals studied, and the similar spatial 

layout of A1, UF, AAF and A2 can be robustly observed (Figure 4A, B). To quantify the 

frequency selectivity of these auditory fields, we calculated on-response amplitude and 

summed over sound level to obtain the onset frequency response profile (Figure 4C-G). 

Onset frequency response profiles for low/mid/high A1 and UF show peaks at respective 

frequency range (Figure 4C, D), and the same can be observed of low/mid/high AAF 

(Figure 4E). For A2, we separate the ROIs into two groups (low/mid and high) due to their 

broad tuning (Figure 4F). Here we show that known auditory fields can be identified using 

our novel image segmentation technique. Moreover, our results show that the spatial 

arrangement of known auditory fields is fairly stereotypical across animals. 

 

Automatically identified ROIs reveal novel auditory areas 

The above identified areas only account for a proportion of the total ROIs, with the 

rest of the ROIs still capturing meaningful sound driven responses in the image sequence. 

This suggests that these ROIs also identify auditory areas. First, we found a subset of 

ROIs located dorsally to A1 which we assigned to DP (Figure S3G, H). They showed 

relatively weak on-responses and no prominent peak in their onset frequency response 

profile (Figure 4G). However, they showed prominent off-responses. We also identified a 

Ventral-Posterior field (VP) ventral to A1 but with similar properties as DP (Figure 4G, 
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Figure S3I).  

Caudal to DP, we could identify an area with high frequency selectivity, which we call 

‘posterior-UF’ (Figure 4D, see also Figure S3J). This area is separated from UF by DP and 

yet its onset frequency response profile shows prominent peak at 61.3kHz. To our 

knowledge, it is the first time that such auditory field is identified. We also found ROIs 

flanking UF with similar frequency selectivity but smaller on-response (Figure 4D, Figure 

S3K). We assign these ROIs to ‘peri-UF’.  

Dorsal to AAF, an area was found that had onset frequency response profile peaking 

at mid frequency, which we call Dorsal Anterior Field (DAF) (Figure 4E, see also Figure 

S3L). The location and frequency selectivity of DAF did not comply with the tonotopic 

gradient of AAF and thus was assigned a separate auditory field. We also found ROIs 

flanking core AAF areas which showed weaker on-responses and were assigned to ‘peri-

AAF’ (Figure 4E, see also Figure S3M). 

Dorsal to low/mid A2, an area was found with on-responses mostly to mid-range 

frequencies (Figure 4F, see also Figure S3N). We assign this area to a separate field, i.e., 

‘peri-A2’, as the area’s frequency selectivity was in the opposite direction of A2 tonotopic 

gradient. Lastly, sandwiched between AAF and A1 we found an area that showed little on- 

or off-responses, and we named it Center (‘CTR’, Figure 4G, Figure S3O).  

So far, our unbiased image segmentation technique has allowed a comprehensive 

parcellation of ACX. We have shown the identification of already known auditory field, 

such as A1, UF, AAF and A2. We also identified novel auditory fields, such as DAF and 

posterior-UF, despite their small yet consistent on-responses. Thus, we have shown that 

our image segmentation technique is a very sensitive and robust method to identify and 

delineate sensory responsive areas.    
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Off-responses show tonotopic organization 

We have partially established the existence of a tonotopic map for on-response using 

our image segmentation (Figure 4C-F). To identify if such a tonotopic organization also 

existed for off-responses, we selected a subset of ROIs that exhibited robust on- or off-

responses at the respective threshold for different frequencies (Figure 1C, D, see white 

outline) and plotted the characteristic frequency determined at threshold (Figure 5). For on-

responses (Figure 5A, B), we used A1 (low, mid, high), UF, AAF (low, mid, high), DAF and 

A2 (low/mid, high) ROIs. For off-response (Figure 5C, D) we added DP, VP and peri-AAF 

ROIs as they showed significant off-responses. First, we confirmed robust tonotopy for 

on-response in A1, AAF and A2 (Figure 5A, B), with a pattern largely consistent with prior 

studies (Issa et al., 2014; Tsukano et al., 2015). A subtle difference is that our results show 

that the two on-tonotopic gradients constitute by A1 and UF share the low to mid 

frequency axis. In terms of off-response, we did observe tonotopy in A1, UF, as well as in 

AAF and A2 in all animals studied (Figure 5C, D). The off-tonotopic gradient from A1 to UF 

overlapped with the on-tonotopy gradient, but it also had an additional gradient extending 

through DP towards UF, due to DP’s recruitment in the off-response.  

We next asked if tonotopy for on- and off-response is robust across single sound 

levels. We plotted the frequency selectivity at each sound level for both on- and off-

response as a function of auditory fields (Figure S4B-F, see Figure S4A for comparison). 

Indeed, tonotopy was preserved across sound levels for on- and off-responses as 

manifest by the separation of frequency selectivity into respective low, mid and high 

frequency band. Together, our results demonstrated that robust tonotopy exists in off-

response both at and above threshold.  

 

Auditory fields have distinct relative on/off-response amplitude with respect to sound level   
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The tonotopy for on- and off-response indicates a frequency dependency in response 

amplitude. To investigate the sound-level dependence of on- and off-response amplitude, 

we summed the response amplitude over frequency for each auditory field (Figure 6). 

Tones of 20dB SPL did not evoke off-responses while on-response could be seen in certain 

fields, indicating that off-responses have a higher threshold than on-responses (Figure 6A-

D, H-P). However, off-response can have higher amplitude than on-response at highest 

sound levels (e.g. at 50 and 65dB SPL). We found this to be true in A1 (Figure 6A-C), UF, 

peri-UF, and posterior-UF (Figure 6D-F). Despite weak on-response, DP and VP also 

showed larger off-response at high sound levels (Figure 6O, P). The same behavior was 

not observed in either AAF (Figure 6G-I), A2 (Figure 6L, M), peri-A2 (Figure 6N) or CTR 

(Figure 6Q). DAF and peri-AAF showed higher off-response amplitude at 65dB SPL 

(Figure 6J, K), a behavior contrary to the adjacent AAF, validating the rationale to assign 

these ROIs to separate fields. To quantify the preference of off- versus on-responses 

across auditory fields we calculated the ratio of off-response versus on-response at 65dB 

SPL (Figure 6R). DP, UF and peri-UF showed the largest ratios among all auditory fields, 

thus these areas were preferentially activated by tone offset. Together these results show 

a differential on/off-response pattern with respect to sound level for different auditory fields. 

First, in A1, UF and flanking regions such DP and VP, stronger off-response can be 

observed at 50 and 65dB SPL. Although none of the AAF areas show stronger off-

response at higher sound levels, the surrounding peri-AAF and dorsally located DAF show 

significantly stronger off-response at 65dB SPL. Thus, as one move away from core 

auditory fields which are strongly activated by tone onset, off-response can be dominant, 

especially at higher sound levels.  

 

Off-responsive areas are more spatially extensive 
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Qualitatively the spatial pattern of off-responses appeared more diffusive and 

elongated in shape than that of on-responses (Figure 1), possibly indicative of underlying 

circuit differences. To quantify the differences in spatial shape, we first overlaid selected A1, 

AAF and A2 ROIs with on- and off-response patterns (Figure 7), which serve as 

landmarks. For on-responses the locations of activation fell into individual ROIs (Figure 

7A). However, the areas showing off-responses can span multiple ROIs, which were 

organized into stripes and were roughly parallel to the dorsal-ventral axis, thus 

perpendicular to the main rostro-caudal tonotopic axis (Figure 7B). We quantified the 

extension along the dorsal-ventral axis by computing the signal correlation (SC) among a 

slice of ROIs that were dorsal to low, mid/high A1 or UF ROIs, respectively. Elongation of 

off-responsive regions in the dorsal direction should result in a higher off-SCs than on-SCs 

over distance. Indeed, from low A1, mid/high A1 and UF (Figure 7C), off-SC was 

significantly higher than on-SC over distance, with mid/high A1 ROIs showing the most 

prominent extension of high SC values dorsally. Among all the ROIs within field of view, we 

found that off-SCs were larger than on-SCs at a distance from 0-2mm (Figure 7D), 

consistent with our finding that areas away from core auditory field such as DP, VP and 

peri-AAF had prominent off-response. Together these analyses show that off-responses 

span larger areas than on-responses, and that off-responsive regions in A1 extend dorsally 

and form elongated spatial patterns perpendicular to the rostrocaudal axis. 

 

Different auditory areas exhibit differential combination of dynamics of temporal activation 

So far, we have investigated the spatial pattern of on/off-response but we also noted 

that different auditory fields can exhibit rich temporal dynamics. To reveal the temporal 

response patterns, we first determined the distinct temporal activation pattern using k-

means clustering of the trial-averaged traces to each stimulus. The dominant subset of 
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seven clusters demonstrated the rich temporal dynamics of the ROIs (Figure 8A, see also 

Figure S5). The cluster (a)-(e) exhibited different combinations of on/off-response 

amplitudes. Cluster (e) shows prominent inhibitory effect following the small on-response 

which might indicate high temporal precision to sound onsets and could enable responses 

to fast temporally modulated stimuli. In contrast, cluster (f) and (g) showed minimum 

decay during tone presentation, indicating persistent firing. These results suggest that 

ACX encode tone duration via three schemes: through firing at onset and/or offset, and 

through continuous firing.  

To identify in which ACX fields these temporal dynamics occur, we quantified within 

each auditory field what percentage of the average traces in response to the different 

sound stimuli was assigned to each selected cluster (Figure 8B). The fraction of temporal 

response pattern drawn from each response class varied among fields. For example, 

while A2 ROIs predominantly show temporal patterns from cluster (a) and (b), A1 ROIs 

show prominent proportion of traces assigned to cluster (d). In contrast, among all 

auditory fields, UF and peri-UF had the most proportion assigned to cluster (e), which 

suggests that these fields might be uniquely sensitive to rapid transients. Low/mid A1, DAF, 

DP and VP show the most proportion of clusters (f) and (g) among other auditory fields 

and thus can encode tones with sustained firing. To sum up, different auditory fields have 

differential combination of temporal dynamics, and some temporal dynamics exist 

prominently in particular auditory field. This suggests a specialization of the different fields 

for temporal stimulus attributes.  

While largely field-specific, the temporal dynamics could depend on particular 

stimulus properties. For example, in low A1 most cluster (a) and (b) traces occurred at 

threshold or close to threshold around low frequency areas (Figure 8C, also see Figure 3B) 

but cluster (d) traces occurred mostly at high sound level and low frequency combinations. 
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In contrast, cluster (g) traces occurred at complementary (non-BF) regions in FRA, 

predominantly at edge of FRA, i.e., at mid/high frequency and high sound level 

combinations. In UF, cluster (a) traces also occurred at high frequency threshold, while 

cluster (d) and (e) traces occurred predominantly at higher sound level and for mid 

frequency tones (Figure 8D, see also Figure 3F-H). Cluster (g) traces were found both at 

high frequency threshold as well as at low/mid frequency and intermediate sound level 

combinations, and just like low A1, these corresponded to UF’s non-BF regions. Thus, the 

occurrence of specific type of temporal dynamics is not only a function of auditory field, 

but can also depend on the particular sound properties.   

 

Discussion  

Temporal information processing is an essential part of auditory system’s function. 

Here we show that in awake mice, ACX encodes tone offset in a spatially extensive yet 

tonotopically organized manner with different auditory areas showing distinct selectivity for 

tone onset or offset. Thus, ACX is spatially organized not only by spectral features, i.e., 

tonotopy, but also by dynamic features such as sound onset and offset. Moreover, using 

our machine learning approach we detect areas preferentially activated by tone offset and 

new auditory areas. Our results show that mouse ACX has a progression of auditory areas 

from A1 at the caudal pole towards both rostroventral direction (to high frequency A1) and 

rostrodorsal direction (towards UF), remotely similar to a suggested division of ACX in 

higher mammals (Rauschecker and Scott, 2009)..   

While studies in anesthetized mice did not detect tonotopy in off-responses (Baba et 

al., 2016)  we here found robust off-tonotopy across multiple ACX fields, likely due to off-

response being most prominent in awake animals (Fishman and Steinschneider, 2009; 
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Joachimsthaler et al., 2014; Qin et al., 2007; Recanzone, 2000). Moreover, we sampled 

from a broader range of frequencies (4-83.0kHz) and multiple sound levels (5-65dB SPL) 

which might have aided the detection of tonotopy. 

On- and off-responses are thought to be mediated by two non-overlapping set of 

synapses (Scholl et al., 2010) thus might reflect different inputs to ACX. ACX receives 

ascending inputs via the lemniscal and non-lemniscal pathways. The lemniscal pathway 

projects to ACX via the ventral division of the medial geniculate body (MGBv) which shows 

on-responses (Aitkin and Webster, 1972; Hackett et al., 2011; Imig and Morel, 1983; 

Redies and Brandner, 1991). Off-responses could potentially parallel this pathway from 

the superior paraolivary nucleus (SPN) which shows post-inhibition rebound and projects 

to the inferior colliculus (IC) (Kopp-Scheinpflug et al., 2011), which in turn provides input to 

MGBv. The non-lemniscal pathway which projects to ACX via the medial and dorsal 

division of the MGB (MGBm and MGBd) is also a likely source of off-responses. First, off-

responses are predominantly observed in a sheet partially surrounding MGBv (He, 2001), 

while core MGBv mainly shows on-responses. Second, we found that A2 and DP which 

receive input from MGBd (Lee and Sherman, 2008; Llano and Sherman, 2008) show off-

responses. Third, the spatial extensiveness of off-response is consistent with the broad 

projection from MGBm to ACX (Huang and Winer, 2000; Lee and Winer, 2008). Thus non-

lemincal pathways (MGBd and MGBm) likely also provide tone offset information to ACX. 

Our results show overlapping tonotopy of on- and off-responses albeit areal differences, 

suggesting that on- and off-response pathways are at least coarsely aligned. Moreover, 

our results suggest that distinct spatial region in ACX might be formed by differential 

contributions of the lemniscal and non-lemniscal pathways.  

We found that different auditory areas can exhibit distinct temporal dynamics such as 

a transient increase in firing rate following tone onset and offset, consistent with sparse 
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temporal ACX responses (Hromádka et al., 2008). However, other auditory fields can 

exhibit other temporal dynamics corresponding to sustained firing throughout tone 

presentation. Thus, even on a macroscale ACX encode temporal information through 

either signaling onset and/or offset, or through persistent firing.  

To identify ACX regions we employed a novel image segmentation technique to allow 

us to place ROIs at meaningful locations based on temporal response properties 

(Whiteway and Butts, 2017). ROIs can be extracted in an unbiased and unsupervised 

fashion based soly on temporal coativation of pixels, which requires no prior assumptions 

on the distribution of cortical fields and facilitates identification of known as well as novel 

areas. Our method captures meaningful variance in image sequence, even though some 

of the variance was small and yet consistent across trials, which could be easily neglected 

if analyzed on a pixel by pixel basis. Thus, we provide a general framework which treats 

cortical fields as individual entities and allows us to study the collective activation as a 

function of time within each field, providing global information on cortical processing.  

Together, our results show that ACX is organized on a macroscale not only based on 

spectral sound properties but also based on temporal information processing. 
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Methods 

All procedures were approved by the University of Maryland’s Animal Care and Use 

Committee. 

Animal 

We crossed the CBA/CaJ mice with Thy1-GCaMP6s (JAX stock #024275, GP4.3, 

(Dana et al., 2014) to obtain F1’s since C57/BL6 are homozygous for Cdh23 allele ahl, 

which causes them to suffer from aging related hearing loss, while CBA/CaJ mice are 

homozygous for Ahl+, which spare them from the phenotype (Kane et al., 2012). F1’s thus 

have no hearing loss and yet have uniform expression of GCaMP6s under Thy1 promotor 

in excitatory neurons. We used adult mice of both sexes whose ages range from 2 to 4 

months old (female n=7 mice, male n=6 mice).  

 

Chronic window implant 

2-3 hours before surgery, 0.1cc dexamethasone (2mg/ml, VetOne) was injected 

subcutaneously to reduce brain swelling during craniotomy. Anesthesia was induced with 

4% isoflurane (Fluriso, VetOne) with a calibrated vaporizer (Matrx VIP 3000). During 

surgery, isoflurane level was reduced to and maintained at a level of 1.5%-2%. Body 

temperature of the animal was maintained at 36.0 degrees Celsius during surgery. Hair on 

top of head of the animal was removed using Hair Remover Face Cream (Nair), after 

which Betadine (Purdue Products) and 70% ethanol was applied sequentially 3 times to 

the surface of the skin before the central part is removed. Soft tissues and muscles were 

scraped to expose the skull. Then a custom designed 3D printed stainless headplate was 

mounted over left auditory cortex and secured with C&B-bond (Parkell). A craniotomy with 

a diameter of about 3.5mm was then performed over left auditory cortex. A three layered 
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cover slip was used as cranial window, which is made by stacking 2 pieces of 3mm 

coverslips (64-0720 (CS-3R), Warner Instruments) at the center of a 5mm coverslip (64-

0700 (CS-5R), Warner Instruments), using optic glue (NOA71, Norland Products). Cranial 

window was quickly dabbed in kwik-sil (World Precision Instruments) before mounted onto 

the brain with 3mm coverslips facing down. After kwik-sil cured (2-5min), C&B-bond was 

applied to secure the cranial window. Synthetic black iron oxide (Alpha Chemicals) was 

then applied to the hardened surface. 0.05cc Cefazolin (1 gram/vial, West Ward 

Pharmaceuticals) was injected subcutaneously when entire procedure was finished. After 

the surgery, the animal was kept warm under heat light for 30 minutes for recovery before 

returning to home cage. Medicated water (Sulfamethoxazole and Trimethoprim Oral 

Suspension, USP 200mg/40mg per 5ml, Aurobindo Pharms USA; 6ml solution diluted in 

100ml water) substituted normal drinking water for 7 days before any imaging was 

performed.  

 

Widefield imaging 

Mice were affixed to a custom designed head-post and restrained within a plastic tube. 

The head of the animal was held upright. Imaging was performed using Ultima-IV two 

photon microscope (Bruker Technologies) with an orbital nosepiece such that the 

illuminance light is roughly perpendicular to cranial window (rotation angle was ~60 

degrees). As a result, the anterior-posterior axis was not parallel to the edge of the images. 

470nm LED light (M470L3, Thorlabs Inc.) was used to excite green fluorescence. Images 

were acquired with StreamPix 6.5 software (Norpix) at 10Hz and 100ms exposure time. In 

StreamPix software, we specified the image size to be 400 by 400 with a spatial binning of 

3.  
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Acoustic stimulus 

Pure tones were generated with custom MATLAB script. Each tone lasted 2 seconds with 

linear ramps of 5ms at the beginning and at the end of the tone. The amplitudes of the 

tones were calibrated to 75dB with a Brüel & Kjær 4944-A microphone. During sound 

presentation, sound waveform was loaded into RX6 multi-function processor (Tucker-

Davis Technologies (TDT)) and attenuated to desired sound levels by PA5 attenuator 

(TDT). Then the signal was fed into ED1 speaker driver (TDT), which drove an ES1 

electrostatic speaker (TDT). The speaker was placed on the right-hand side of the animal, 

10cm away from the head, at an angle of 45 degrees relative to the mid-line. The 

presentation of tones with various combination of frequencies and sound levels are 

randomized and controlled by a custom MATLAB program. The silent period in between 

the 2-second tones was randomly chosen from a uniform distribution between 3 and 3.5 

seconds. Frequencies of the tones vary from 4kHz to 83.0kHz with logarithmic spacing 

and with a density of 16/7 tones per octave. Sound levels vary from 5dB SPL to 65dB SPL 

with a step of 15dB SPL. Each stimulus was repeated 10 times. In total, the imaging 

session for each animal lasted ~45min. 

 

Image preprocessing 

We performed three preprocessing steps before using autoencoder for image segmentation. 

First, we downsampled the original image (400 by 400) using MATLAB (2015b) built-in function 

wavedec2 (level = 3, wavelet name ’sym2’, function included in the wavelet toolbox of the same 

MATLAB version). The resultant image was 52 by 52 in size. The purpose of this step is to both 

improve signal to noise ratio and to cut the number of image dimensions. Next, we applied a 

homomorphic filter to correct the non-uniformness in illumination, which was necessary because of 

the curvature of the brain and given the illumination was often not completely perpendicular to 
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cranial window surface. This preprocessing step removed low-frequency components of the 

fluorescence as follows. We transformed the downsampled images into Fourier domain, then we 

multiplied the Fourier transform with a low pass filter such constructed: we first generated a 2D 

symmetric Gaussian distribution with a standard deviation of 3, and calculated 1 minus the 

Gaussian distribution. We multiplied the such constructed matrix pointwise with the Fourier 

transform of the image. The filter would remove the low frequency component in the images and 

thus correct for illuminance difference across field of view, which is usually slowly varying in space. 

Finally, we performed an inverse Fourier transform to obtain the desired image. We applied filtering 

to each image in the image sequence. The third preprocessing step was whitening of the image 

sequence. We first re-shape each image into column vectors, then we stack them horizontally. Let 

�� denote the column vector corresponding to image at time t, M be the stacked matrix, and N be 

the total number of images: 

� � ���, �� , � , ��� 
We then subtracted the time average image ( � � 	�  ) from all images: 

�� � � �� � 	�
 �1, 1, … , 1��������
�

 

We then performed singular value decomposition on sample covariance matrix of ��: 

��, �, �� � ������ 
 �� �/�� 

Then we obtained the whitened images using the following equation: 

�� � � 
 ���� � �� 
 �� 
 �� 

where � is the regularization term, which we typically picked to be 10-5 and we found the behavior of 

autoencoder to be relatively stable over different choice of �. We then fed �� into autoencoder 

algorithm.  

 

Image Segmentation with constrained autoencoder 
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We used a dimensionality reduction technique to perform automatic image segmentation such 

that pixels with strong temporal correlations across the set of images were grouped together into 

single components (ROIs), following the formulation of Whiteway and Butts (2017). To perform this 

dimensionality reduction, we used an autoencoder neural network. For each time point t, the 

autoencoder takes the vector of pixel values ��    !� and projects it down onto a lower 

dimensional space !�  using an encoding matrix W�   !��� . A bias term #�    !�  is 

added to this projected vector, so that the resulting vector $�    !�  is given by 

 $� � W��� �  #�  

The autoencoder then reconstructs the original activity yt by applying a decoding matrix 

W�   !���  to zt and adding a bias term #�    !� , so that the reconstructed activity 

�%�    !� is given by  

 �%� � W�$� �  #�  

Since the dimensionality of zt is typically much smaller than that of yt, zt should capture 

variations in yt that are shared across many pixels. The entries of W2 then describe how 

each pixel is related to each dimension of zt (see Figure 2C).    

The weight matrices and bias terms, grouped as Θ ={W1,W2,b1,b2
 }, are 

simultaneously fit by minimizing the mean square error between the observed activity yt 

and the predicted activity �%�:  

 Θ� � argmin
	

1
2 . /�� �  �%�/

�
�

�

   

To further enable interpretability of the results, we constrained the weights W2 to be non-negative, 

as one could flip the signs of both spatial and temporal components arbitrarily. This also ensured 

that all pixels in a given ROI always increase or decrease in intensity together, depending on the 
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sign of zt. We also tied the weights such that W� � W�

. Thus, there was essentially only one spatial 

weight matrix.  

This version of the autoencoder is closely related to principal components analysis (PCA) 

(Bengio et al., 2013). However, PCA is an inadequate technique for automatic image segmentation 

since it did not in general result in spatially localized ROIs (Figure S2A), due to the orthogonality 

constraints imposed by the PCA model. A similar approach to our non-negatively constrained 

autoencoder is to use non-negative matrix factorization (NNMF) on the preprocessed image 

sequence. NNMF constrains both the spatial maps and the temporal activations to be non-negative, 

whereas the RLVM just constrains the spatial maps to be non-negative. The NNMF ROIs also 

failed to be spatially localized (Figure S2B). Finally, in order to solve the constrained minimization 

problem above we used the spectral projected gradient method, a constrained variant of gradient 

descent (Schmidt et al., 2009). 

To perform image segmentation with this method we must first specify the number of 

ROIs (the dimensionality of zt). We determined the appropriate number of ROIs using cross-

validation by first fitting the parameters of the autoencoder on 80% of the frames from the image 

sequence (training data), and then reconstructing the remaining 20% of the images (testing 

data) using the autoencoder. We then calculated the correlation between the true and 

reconstructed images on the testing data, as a measurement for goodness of fit. In Figure 

S1A, we show that with an increasing number of ROIs, the correlation from the testing data 

increases monotonically, and roughly plateaus after ~50 ROIs. We also performed fitting 

on the entire image sequence and plot the correlation (Figure S1A, blue curve). A similar 

monotonic increase is observed, and with 50 or more ROIs, the correlation value is above 

0.8, which is quite agreeable considering that the full image sequence consisted of more 

than 28,000 images. Another criterion we utilized to choose the number of ROIs was the 

total spatial area covered by the ROIs. An increasing portion of the total area is covered 
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with an increasing number of ROIs, (Figure S1B), and 50 ROIs cover close to 90% of the 

total area. Given these results, we typically used 50 ROIs in the autoencoder.  

To automatically separate isolated areas in single ROIs, e.g., Figure 2C ROI 36, each 

ROI was first converted to binary image at the threshold of 95 percentile value of the 

entire image, and then isolated areas were identified using MATLAB built-in function 

bwlabel. Areas with fewer than 10 pixels were excluded and we would raise this threshold 

if the final number of total ROIs was more than 1.5 the original number. Isolated areas 

were also excluded if their summed weights constituted no more than 5% of the total 

summed weights after thresholding the ROI at the 95 percentile.  

 

On- and off-response profile 

To determine on- and off-response amplitude, first the temporal trace from each trial 

was normalized to percentage change with respect to baseline fluorescence: 

normalized trace at time t � 7� � 7� 7�8  

where 7� is the average of fluorescence within 200ms window before the tone onset. For 

on-response amplitude, we averaged the normalized trace from 200-500ms after tone 

onset with the baseline from normalized trace subtracted. For off-response amplitude, we 

averaged the normalized trace from 200-500ms after tone offset and subtracted the 

average from the same trace 0-200ms right before tone offset. The 200-500ms window 

was sufficient to capture the rising phase as well as the peak of the increase in 

fluorescence in typical on- and off-response. In Figure 3 and Figure S3 all traces plotted 

were normalized traces obtained in the above-mentioned fashion from each ROI. 

Widefield FRAs such as shown in Figure 1C, D were also constructed in a same fashion 

while individual pixels were analyzed. 
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To obtain on-response frequency profile (Figure 4C-G), we first averaged on-response 

over repeats and then summed over all sound levels for each ROI. Thus, for each ROI, we 

obtained one curve for onset frequency response profile. Then we averaged these curves 

according to the auditory field each ROI was assigned. Similarly, we obtained sound level 

response profile by summing over frequency (Figure 6). For these two analyses, if the 

average response over repeats obtained was negative, we would exclude it from the 

average across ROIs because first, for these analyses we focused on excitatory 

responses, and second it was indistinguishable if the decrease in fluorescence was a 

result of inhibition or a natural decay from spontaneous activities.  

 

Field Parcellation 

We assigned ROIs to different auditory fields based upon known tonotopic structure 

revealed with optical approach (Issa et al., 2014; Tsukano et al., 2015). The general 

procedure was the same as described in main text. To find peri-AAF, we first identified all 

the ROIs that were in the vicinity of core AAF. Next, we obtained the summed on-response 

over all frequencies and sound levels for each ROI, which we refer to as the total on-

response. We then sorted the ROIs in descending order based upon the total on-

response. Then we summed the total on-response over ROIs and assigned the ROIs 

whose total on-response summation constitute 80% of the summed total on-response to 

AAF, while the rest were assigned to peri-AAF. The purpose of doing so was to separate 

ROIs based on relative strength of total on-response. We defined peri-UF in a similar way. 

We further separated A1 and AAF ROIs into low, mid and high frequency groups based on 

the location of the peak in the onset frequency response profile. Frequencies higher than 

or equal to 4.0kHz but lower than 9.9kHz were considered ‘low’ frequencies. Frequencies 

higher than or equal to 9.9kHz but lower than or equal to 33.4kHz were considered ‘mid’ 
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frequencies. Frequencies higher than 33.4kHz were considered ‘high’ frequency. We 

separated A2 ROIs only into low/mid and high frequency group as A2 has a highly-

compressed tonotopy gradient.  

 

On- and off-tonotopy 

To establish on- and off-tonotopy, threshold of on- and off-response were first visually 

determined (Figure 1C, D, white solid lines). For on-tonotopy, tuning curve at threshold 

was first obtained for each ROI using the on-response identified in the above-mentioned 

fashion, then we picked 3 frequencies that evoked the largest responses. Among the 3 

frequencies, we averaged the 2 frequencies that were closest in number to increase the 

robustness of our estimate. We then assigned the averaged frequency to the ROI in 

question as an estimate for the characteristic frequency. We produced the off-tonotopy 

map in the same fashion but using off-response tuning curve at off-response threshold.  

Figure S4 shows the weighted average frequency for different auditory fields. To 

calculate weighted average frequency, on/off tuning curve was obtained either at threshold 

or at each sound level, and frequencies were converted to log space before weighted by 

tuning turve and averaged.  

 

Signal correlation among ROIs 

We used corrected signal correlation (SC) for all our calculation due to the limited 

number of repeats and the strong tendency of close-by pixels to covary in time (Rothschild 

et al., 2010; Winkowski and Kanold, 2013). The basic idea is that the uncorrected SC 

equation contains products of responses from the two ROIs in question on the same trial, 

and these terms also appear in noise correlation equation. Thus, these products represent 

to some extent the covariation of ROIs regardless of stimulus presentation, and thus 
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should be excluded from SC calculation. The denominator in the equation was adjusted 

accordingly to take into account the reduction of number of summation in the nominator.  

In Figure 7C(a-c), we calculated SC among selected ROIs that were dorsally located 

with respect to low A1, mid/high A1 and UF, respectively. To identify these ROIs, we first 

selected one of the ROIs from, for example, low A1, and then identified all ROIs whose 

centers were within ~450um to the ROI in question in the rostrocaudal direction but 

dorsally located. Then we calculated pairwise SCs among all these ROIs and the low A1 

ROI, and plotted them as a function of distance.  

 

Clustering of trace dynamics 

Average traces over repeats were obtained from each combination of frequency and 

sound level. In our study, we used 11 different frequencies and 5 different levels, thus 

each ROI would contribute 55 different average temporal traces. Each trace had 60 

frames with the first 10 frames before sound onset. We pooled these traces across ROIs 

and across different animals and performed k-means clustering using cosine distance 

measure because we would like to capture the shape of temporal dynamics regardless of 

amplitude. To determine the number of proper clusters, we simply used ‘elbow method’ 

and explored from 5 to 80 clusters, in a step of 5 (Figure S5A). Distortion is the distance of 

each trace to respective cluster centroid summed over all traces. We picked the number of 

cluster based on the percentage change of distortion. With 30 clusters, the change in 

distortion was ~5%, close to our preset threshold. Figure S5B shows all 30 cluster 

centroids. We picked 7 clusters with the biggest amplitude for further analysis, and they 

represent typical responses. We quantified the proportion each selected cluster occupies 

in FRA in different auditory fields by counting the number of average trace assigned to the 

different types and averaged across ROIs. 
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Figures 

Figure 1 Widefield example image sequence and on/off-response FRA. (A) Sequence of 

widefield images showing response to 13.5kHz tone at 35dB SPL. The red bar indicates the 
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images collected during tone presentation (0-2sec). (B) Same as in (A) but shows image 

sequence in response to 61.3kHz tone at 35dB SPL. (C) On-response FRA. Baseline 

subtracted average images within 200-500ms after tone onset are plotted as a function of 

frequency and sound level. White solid lines show threshold at each frequency. (D) Off-

response FRA. Average images within 200-500ms after tone offset are plotted with images 0-

200ms before tone offset used as baseline. Typically, off-response had a higher threshold than 

on-response.  
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Figure 2 Autoencoder was used to perform widefield image segmentation. (A) Cartoon showing 

image segmentation. The example image sequence at any time point can be expressed as the 

weighted summation of ROI 1 and ROI 2 by respective activity level. Our goal of image 

segmentation is thus to retrieve activated areas as well as their temporal activation traces. (B) 
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Principle of fitting autoencoder ROIs. Temporal trace of ith ROI is constructed by linearly 

weighting all pixels at each time point. Weights from jth pixel to ith ROI is 9:;. Weights are 

adjusted such that ith ROI’s trace, when reciprocally weighted by 9:; and subtracted from jth 

pixel’s trace, results in minimal error summed over all pixels. 9:; forms ith ROI’s spatial profile. 

(C) Autoencoder ROIs fitted on same widefield images as in Figure 1. Note that some ROIs 

have more than one distinct spatial areas (labeled with letters). For example, ROI 36 captures 

the increase in fluorescence to high frequency tones (see Figure 1B for comparison) located at 

presumptive AAF and A1. Also note that ROI 39 captures the elongated shape of the increase in 

fluorescence. (D)-(G) On- and off-response spatial profiles overlaid with selected Autoencoder 

ROIs to visually validate ROI placement. D-G share the same colorbar.  
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Figure 3 FRAs of selected ROIs from Figure 2C. (A) Overlay of selected ROIs. The number and 

letter correspond to ROIs shown in Figure 2B. (B-H) FRAs of selected ROIs. Axes label and y-

axis scale are the same, and thus omitted from all but panel (B) for figure compactness. Paired 
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dotted lines indicate tone onset and offset respectively. (B) low-frequency A1 ROI. (C) low/mid-

frequency A1 ROI, note the smaller on-response to 4kHz tone at 35dB SPL compared to (A), 

and yet stronger on-response at 13.5kHz at 20dB SPL. (D) mid-frequency A1 ROI. (E) high-

frequency A1 ROI. (F-H) UF ROIs.   
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Figure 4 Field parcellation. (A) Same example as in Figure 1-3. ROIs are assigned to different 

auditory fields based on their FRAs. (B) Field parcellation results from 12 other mice in this 

study. (C-G) Onset frequency response profiles for different auditory fields were obtained by 

summing over sound level in on-response FRAs and averaging across ROIs. All errorbars show 

SEM. 
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Figure 5 On- and off-response tonotopy. (A) Same example as in Figure 1-4, showing on-

response tonotopy. Here, A1, AAF, UF, A2 and DAF ROIs are included as they show prominent 

on-responses. (B) On-response tonotopy of 12 other mice in this study. (C) Same example as in 

Figure 1-4, showing off-response tonotopy. In addition to the above-mentioned fields, DP, VP 
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and peri-AAF are also included as they show prominent off-responses. (D) Off-response 

tonotopy of 12 other mice in this study 
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Figure 6 Differential on- and off-response profile as a function of both sound level and auditory 

fields. (A-Q) On- and off-response profiles with respect to sound level for different auditory fields 

were obtained by summing over frequency in FRAs. ‘***’ indicates p<0.001; ‘****’ indicates p< 

0.0001. All shaded regions are SD. (R) Off- and on-response ratio at 65dB SPL. Errorbars show 

SEM.   
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Figure 7 Off-responses are more spatially more extensive and elongated in shape. (A, B) Same 

example dataset as in Figure 1-4. On- and off-response spatial profiles at respective threshold 

are plotted as a function of frequency, overlaid with selected A1, UF, AAF and A2 ROIs. Note in 

(A) local activations tend to fall into individual ROIs while in (B) off-response can span multiple 

ROIs. (C) On/off signal correlation calculated among ROIs dorsal to low A1 ROIs (a), mid/high 

A1 ROIs (b), and UF ROIs (c), respectively. (D) On/off signal correlation calculated among all 
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ROIs. In (C) and (D) gray region indicates the distance where signal correlation of off-response 

is higher than that of on-response. 
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Figure 8 Different temporal dynamics are observed across auditory fields. (A) Mean traces from 

7 selected clusters showing typical responses. (B) The proportion of FRA assigned to the 7 

clusters in (A) as a function of auditory fields. The same color coding is used in (A) and (B). (C, 
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D) Probability of observing types of temporal traces as a function of frequency and sound level 

in low A1 (C) and in UF (D). Letter labels correspond to the same cluster labels in (A). 
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