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ABSTRACT 21 

Organisms that experience large changes in body size during the life span often exhibit 22 

differences in resource use among life stages. Ontogenetic shifts in habitat use reduce 23 

intraspecific competition and predation and are common in lotic organisms. Although 24 

information on the immature life stages of the Hellbender (Cryptobranchus alleganiensis) is 25 

limited, this aquatic salamander exhibit’s ontogenetic shifts in habitat use in some streams, with 26 

adults sheltering under large rocks and larvae utilizing interstitial spaces of gravel beds. Due to 27 

the geomorphology of Little River, Tennessee, however, limited interstitial spaces within the 28 

gravel are filled with sand. Therefore we quantified microhabitat parameters for three life stages 29 

of Hellbenders (larvae, sub-adult, adult) to determine if an ontogenetic shift in microhabitat 30 

occurred in this location. We found no significant differences in stream substrate at capture sites 31 

among the stages, but there was a positive correlation between rock shelters underlain with very 32 

coarse gravel and overall Hellbender occupancy. Although we found no difference in water 33 

quality parameters and streambed particle size among the stage classes at the site of capture, there 34 

was a significant difference in the average shelter size among all stages, with larvae utilizing the 35 

smallest shelters. As the smaller rocks utilized by larvae in Little River could be less secure 36 

shelter than the larger rocks used by adults, mortality may be higher in young Hellbenders due to 37 

a potential increase in overall predation risk and susceptibility to flooding. Based on these results, 38 

future Hellbender research and conservation efforts should consider differences in life stage 39 

habitat use as well as specific stream particle classes. 40 

 41 

 42 
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Body size is a key factor in many facets of ecology. At larger scales, the size of species 43 

helps determine the trophic structure and spatial distribution of ecological communities 44 

(Hutchinson and MacArthur, 1959; Schoener, 1974; Werner and Gilliam, 1984; Brown et al., 45 

1991; Woodward et al., 2005; Rojas and Ojeda, 2010), while at the individual scale body size 46 

influences energetics (Gillooly et al., 2001), prey (Wilson, 1975; Mittelbach, 1981; Cohen et al., 47 

1993), habitat use (Hall and Werner, 1977; Foster et al., 1988; Flinders and Magoulick, 2006; 48 

Barriga and Battini, 2009; Foster et al., 2009), and predation risk (Werner and Hall, 1988; Giller 49 

and Malmqvist, 1998; Urban, 2008). Because size has such a strong influence on the ecology of 50 

organisms, species that experience large changes in body size during their lifespan can 51 

experience substantial differences in ecology across life stages. Werner and Gilliam (1984) 52 

defined these changes, called ontogenetic shifts, as the “patterns in an organism’s resource use 53 

that develop as it increases in size from birth or hatching to its maximum.” While these changes 54 

are often a result of morphological constraints, change in resource use across the life span of a 55 

species can be an advantageous life history strategy. These shifts reduce intraspecific competition 56 

and predation among stage classes (Werner and Gilliam, 1984). In cannibalistic species shifts in 57 

habitat use among size or stage classes can reduce mortality of young individuals by intraspecific 58 

predation (Foster et al., 1988; Keren-Rotem et al., 2006). 59 

Body size changes in species are especially relevant in lotic systems. Reynolds number, 60 

which is the ratio of inertia and viscous forces with a fluid, increases with body size (Giller and 61 

Malmqvist, 1998). Organisms with different Reynolds numbers experience varying impacts from 62 

stream flow with inertial forces becoming more important at higher Reynolds numbers, and may 63 

also differ in gas exchange abilities (Giller and Malmqvist, 1998). Ultimately body size 64 

influences microhabitat use in streams, with larger individuals more likely to reside in the water 65 
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column and smaller animals governed by viscous forces typically inhabiting the stream substrate. 66 

Because of these changes, ontogenetic shifts in resource use are documented in aquatic organisms 67 

and occur in a wide range of lotic taxa across different trophic levels including invertebrates 68 

(Holomuzi and Short, 1990; Giller and Sangpradub, 1993; Flinders and Magoulick, 2006), fish 69 

(Merigoux and Ponton, 1998; Simonovic et al., 1999; Rosenberger and Angermeier, 2003; King, 70 

2005; Barriga and Battini, 2009) and salamanders (Petranka, 1984; Colley et al., 1989; Nickerson 71 

et al., 2003). These shifts in resource use among life stages may help mitigate challenging 72 

conditions in lotic environments such as flow, environmental variability, and limited dispersal 73 

potential.  74 

Ontogenetic shifts in resource use have been noted in the Hellbender (Cryptobranchus 75 

alleganiensis), a cannibalistic lotic salamander species that can increase in size over its lifetime 76 

by a factor of 20. Hatchlings measure 25—30 mm total length (TL), while the largest adult found 77 

measured 745 mm TL (Fitch, 1947). Larval Hellbender diet largely consists of aquatic insects 78 

(Smith, 1907; Pitt and Nickerson, 2006; Hecht-Kardasz, 2011) while adults mostly eat crayfish 79 

(Netting, 1929; Green, 1933; Green, 1935; Nickerson and Mays, 1973; Peterson et al., 1989). 80 

Based on limited data, larval Hellbenders in some localities may utilize different microhabitat 81 

than adults, who generally shelter under large rocks (Bishop, 1941; Hillis and Bellis, 1971; 82 

Nickerson and Mays, 1973). In the North Fork of the White River, Missouri, larvae have been 83 

associated with gravel beds (Nickerson et al., 2003), while bank searches in the Allegheny River, 84 

New York, located more smaller Hellbender size classes than in previous conventional rock 85 

lifting surveys (Foster et al., 2009).  86 

In Little River, Tennessee the streambed’s geology led to sand and other small particles 87 

filling in the interstitial spaces within the gravel where larvae have been found in other streams 88 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2017. ; https://doi.org/10.1101/139766doi: bioRxiv preprint 

https://doi.org/10.1101/139766
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

(Nickerson et al., 2003; Pitt et al., 2016). Instead larvae have been found under rocks on the 89 

streambed surface like adults (Nickerson et al., 2003). Despite this difference, almost a third of 90 

sampled Hellbenders from Little River were larval sized (<125 mm) (Hecht-Kardasz et al., 2012). 91 

Due to the Hellbender’s known use of cannibalism (Humphries et al., 2005; Groves and 92 

Williams, 2014) as well as the great change in size from hatching to maturation, we expect that 93 

Hellbenders would still exhibit ontogenetic shifts in microhabitat at this location. To study this 94 

hypothesis, we examined the following microhabitat factors in Little River: water depth, shelter 95 

size, stream substrate, pH, conductivity, and water temperature. These factors are known to affect 96 

detectability, food sources, oxygen concentration, and health of aquatic organisms.  97 

MATERIALS AND METHODS 98 

Site description.—Based on the results of previous studies (Nickerson et al., 2003), Hellbender 99 

surveys were conducted within an ~3 km section of Little River known to contain the three stage 100 

classes (larvae, sub-adult, and adult). Little River, located in eastern Tennessee’s portion of the 101 

Great Smoky Mountains National Park, originates on the north slope of Clingmans Dome, and 102 

flows 29 km within the park. It continues through the towns of Townsend, Maryville, Alcoa, and 103 

Rockford before eventually draining into the Tennessee River. The Little River watershed drains 104 

an area of approximately 980 km2.  105 

Little River lies entirely within the southern portion of the Blue Ridge physiographic 106 

province. The bedrock of Little River is comprised primarily of late Precambrian Elkmont and 107 

Thunderhead metamorphosed sandstone (Mast and Turk, 1999). Over time flowing water has 108 

eroded away some exposed bedrock leaving large densities of dense rounded boulders, cobble, 109 

and gravel in the streambed. A Wolman pebble count (Wolman, 1954) in the study area found a 110 

D50 value, which represents the median substrate size, in the very coarse gravel category (32--64 111 
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mm) (Hecht-Kardasz, 2011). Interstitial habitat is limited within the Little River streambed as 112 

sand often fills in many portions of the gravel beds. The elevation of the study area ranged from 113 

327—407 m. Vegetation within the stream was uncommon, and the riparian vegetation was 114 

classified as pine and river cove hardwood forest (Madden et al., 2004). The area has a temperate 115 

climate, with an average annual rainfall of 142 cm and temperature averages of 3.17°C in winter 116 

and 21.7°C in summer (National Oceanic and Atmospheric Administration, 2016).  117 

Field methods 118 

Diurnal skin diving combined with rock lifting was used to survey for Hellbenders during 119 

the following sampling periods: June—July 2005, June—July 2006, June—August 2008, Aug—120 

Oct 2009, July—Sept 2010. Some surveyors occasionally used log peaveys to lift larger rocks. 121 

Hellbenders were captured by hand. We measured total length (TL) and snout-vent length (SVL) 122 

of most sub-adult and adult Hellbenders with the aid of modified PVC pipe. Small sub-adults and 123 

larvae were placed in a wet zip lock bag prior to measurement. Hellbenders were individually 124 

marked before release (see Hecht-Kardasz et al., 2012).  125 

Microhabitat parameters were measured directly at the point of capture. Because 126 

Hellbenders are largely nocturnal (Nickerson and Mays, 1973) and generally have small home 127 

ranges and exhibit site fidelity (Hillis and Bellis, 1971; Wiggs, 1977; Nickerson and Mays, 1973; 128 

Blais, 1996; Ball, 2001), we assumed that the microhabitat at point of capture accurately 129 

represented microhabitat of Hellbenders during the survey period. Water temperature, pH, and 130 

conductivity were measured using the Combo pH/EC/TDS/Temperature Tester with Low Range 131 

EC and Watercheck pH reader (HANNA Instruments®, Woonsocket, RI, USA). Water depth and 132 

shelter size, defined as the longest length of the shelter rock, was also recorded. We recorded 133 

stream flow with a Global Water Flow Probe (Global Water Instrumentation, Inc., College 134 
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Station, TX, USA) and DO with the Hi 9142 Dissolved Oxygen Meter (HANNA Instruments®, 135 

Woonsocket, RI, USA) but due to equipment failure, these data were not analyzed. 136 

To test for differences in stream substrate associated with shelter rocks, we measured a 137 

handful of streambed particles under confirmed shelter rocks using the Federal Interagency 138 

Sedimentation Project (FISP) US SAH-97 sediment size analyzer, also known as a gravelometer. 139 

Samples ranged from 1—8 particles, with a mean of 4.23 (±1.55) particles. To compare the 140 

stream substrate beneath shelters with the streambed particles in the general sampling area, we 141 

also measured a handful of substrate at fifty random localities within the study area chosen using 142 

a random number table.  143 

Analyses 144 

Individual Hellbenders were classified into stage classes using TL. Individuals <125 mm 145 

in TL, both gilled and non-gilled, were classified as larvae. Larvae were also classified into first 146 

(<90 mm TL) and second year (>100 mm TL) age classes for shelter size analysis based on 147 

previous studies and the results of surveys in Little River (Smith, 1907; Bishop, 1941; Hecht-148 

Kardasz et al., 2012). Three individuals between 90—100 mm TL could not be classified to an 149 

age class and were therefore not used in analysis comparing larval age classes. All individuals 150 

measuring 125—275 mm TL were considered sub-adults, while any individuals over 275 mm 151 

were classified as adults. Further justification for stage class classifications can be found in 152 

Hecht-Kardasz et al., 2012. 153 

We analyzed data using base packages in R version 3.2.2 (R Core Team, 2015) unless 154 

otherwise specified. We calculated mean (+ SD) for all continuous normally-distributed habitat 155 

variables and median for non-normal continuous variables. To examine the relationships between 156 
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habitat variables and Hellbender TL, we performed simple linear regressions. Habitat parameters 157 

were also compared among life stages. As water depth, larval shelter size, and conductivity data 158 

were not normally distributed, these parameters were tested using Kruskal-Wallis rank sum tests 159 

with pairwise comparisons performed using the pairw.kw function in the asbio package (Aho, 160 

2014). The remaining normally distributed parameters were evaluated using ANOVA and t-tests. 161 

In order to control family wise error rate at 0.05, Bonferroni’s correction was used for all 162 

individual pairwise test of means.  163 

All streambed particle sizes were classified into categories according to the American 164 

Geophysical Union proposed grade scale (Lane, 1947). Due to the low presence of some 165 

categories, all particles <4 mm were combined into one category before the data was used for 166 

statistical analysis. The presence/absence of streambed particle size at the site of capture was 167 

compared among stage classes using an ordinal logistic regression with the lrm function in 168 

package rms (Harrell, 2015). We also performed a binary logistic regression model using the lrm 169 

function to compare the presence/absence of particle categories between occupied sites and 170 

random locations. Due to weak correlations between smaller streambed particle size categories, 171 

additional models were tested combining all particles <32 mm into one category. 172 

RESULTS 173 

Runs contained the most individuals for all stage classes (83%, 82%, and 62% of larvae, 174 

sub-adults and adults respectively) followed by pools (11%, 14%, and 34%). Average pH at 175 

capture sites was 7.24 + 0.28 (Range 6.74—8.10; n=97). Mean conductivity was 12.98 + 2.41 176 

μS/cm (range: 6.00—22.00 μS/cm; n=79). Water depth (range: 210—1800 mm; n=104) and 177 

water temperature (range: 14.60—22.80 °C; n=103) averaged 527.86 + 248.00 mm and 22.84 + 178 

2.03 °C respectively. Although regression analysis suggested a linear relationship between 179 
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Hellbender TL and water temperature (n=102), water temperature was not a strong predictor of 180 

Hellbender TL (R2=0.042; p=0.039). A similar relationship was found between conductivity and 181 

Hellbender TL (R2=0.080; p=0.012; n=78). Linear regression analysis revealed no relationship 182 

between Hellbender TL and water depth (n=104) (R2=0.024; p=0.12) or Hellbender TL and pH 183 

(n=96) (R2=-0.011; p=0.94). No significant difference in average water depth (H(2)=4.32; 184 

p=0.12), pH (F(2,97)=0.61; p=0.55) or temperature (F(2, 99)=1.751; p=0.179) was found among 185 

stage classes. Average conductivity was significantly different among stage classes (H(2)=8.03; 186 

p=0.018). Posthoc pairwise comparisons found a significant difference between larval mean 187 

conductivity (14.93 + 4.34 μS/cm; n=14) and mean adult conductivity (12.53 + 1.59 μS/cm; 188 

n=43; p=0.018). There was no significant difference between larval and mean sub-adult 189 

conductivity (12.59 + 1.30 μS/cm; n=22; p=0.051) or between adult and sub-adult conductivity 190 

(p=0.99) (Fig. 2).  191 

Shelter size ranged from 120--1470 mm with a mean of 673.81 + 285.75 mm (n=217). 192 

Based on the results of linear regression, we found a weak correlation between Hellbender TL 193 

and shelter size (n=217) (R2=0.266; p<0.001) (Fig. 3). Although overall shelter size among the 194 

stage classes overlapped, average shelter size differed significantly among stage classes (F(2, 195 

214)=32.82; p<0.001; Fig. 4). Mean shelter size of larvae (464.36 + 244.65 mm; n=61) was 196 

significantly different from both adults (794.44 + 254.27 mm; n=100; t = 8.11, df = 159, p-value 197 

= <0.001) and sub-adults (686.55 + 252.46 mm, n=56; t=-4.83, df = 115, p-value = <0.001). Sub-198 

adults (n=56) and adults (n=100) also differed significantly in mean shelter size (t = 2.55, df = 199 

154, p-value = 0.012). There was no statistical difference between mean shelter size between first 200 

(n=49) and second year larvae (n=9) in Little River (H(1)=0.16, p=0.69). However, first year 201 

larvae utilized some larger shelter sizes, including one of 1085 mm while the largest shelter size 202 
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of second year larvae was 610 mm. One individual of 90 mm TL found beneath a 1286 mm 203 

boulder could not conclusively be categorized as a first or second year larva.  204 

Streambed particle classes under shelter rocks of larvae (n=25), sub-adults (n=26), and 205 

adults (n=38) did not differ significantly (Table 1). There was no difference in significant terms 206 

when particles <32 mm were combined. When comparing random samples to locations of 207 

capture, however, Hellbenders appeared to utilize shelters underlain at least partially by very 208 

coarse gravel more than would be expected by chance (Table 2). Our model also found a negative 209 

association between Hellbender use and rock shelters overlaying fine gravel. Very coarse gravel 210 

was the only significant term in the model combining particles <32mm (Table 3).  211 

DISCUSSION 212 

While all Hellbender stage classes utilized boulder habitat, the significant difference in 213 

average shelter size among stage classes suggests that an ontogenetic shift in Hellbender habitat 214 

use occurs in Little River during the summer months. However, the wide range of shelter sizes 215 

used by larvae includes a direct overlap in shelter size with sub-adults and adults, which may be 216 

partially due to some young individuals dispersing from their site of hatching later than others. 217 

Young Hellbenders may remain in nesting sites for prolonged periods, as larval Hellbenders have 218 

been observed sharing rock shelters with adult males in in June and August (Groves et al., 2013). 219 

Second year larvae could be more selective in their choice of shelter due to experience with 220 

predators, however the sample size of second year larvae was relatively small so further research 221 

is warranted. The weak relationship of shelter size and Hellbender TL found during this study is 222 

notable because previous studies examining habitat use by Hellbenders have found no association 223 

between shelter size and Hellbender size (Hillis and Bellis, 1971; Humphries and Pauley, 2005). 224 

However, these studies have focused primarily on adult sized Hellbenders.   225 
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Flooding has been cited as a potential threat to Hellbender populations with several 226 

published reports of displaced, injured, and dead Hellbenders following high water events in 227 

other localities (Humphries, 2005; Miller and Miller, 2005; Bodinoff et al., 2012a). Previous 228 

work in Little River suggested that flooding may be influential in the size structure of the 229 

Hellbender population with anecdotal evidence showing absent size classes correlating with 230 

major flooding events (Nickerson et al., 2007; Hecht-Kardasz et al., 2012). The shelters used by 231 

immature Hellbenders could provide a mechanistic explanation for this hypothesis. Many lotic 232 

organisms survive spates by seeking refugia (Giller and Malmqvist, 1998), including the 233 

interstitial spaces in the benthic layers, where larval C. alleganiensis have been located in other 234 

localities (Smith, 1907; Nickerson and Mays, 1973; Nickerson et al., 2003). As this habitat is not 235 

available to larval Hellbenders in Little River, larvae are utilizing the space under rocks at the 236 

surface of the streambed which may be less secure during flooding periods. While larvae utilized 237 

a wide variety of shelters in Little River, their habitat included much smaller shelter sizes than 238 

other stage classes including small and large cobble, and the average shelter size used by larvae 239 

was significantly smaller than sub-adults and adults. Smaller shelters may be easily moved by 240 

increased water current, increasing the risk of the Hellbender larvae underneath being crushed, 241 

swept downstream, or exposed to predators. Researchers recently found a crushed larvae in Little 242 

River following a high water event (Da Silva Neto et al., 2016). Related mortality or 243 

displacement of immature Hellbenders during extreme flooding related to less secure habitats 244 

may partially be responsible for the size structure patterns found in Little River’s captured 245 

Hellbender population.  246 

Due to the lack of gravel bed habitat in Little River, the interstitial spaces among the 247 

gravel, cobble, and boulders beneath the larger shelter rocks may be particularly important to 248 
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Hellbender larvae for additional protection and access to smaller food items. However, larvae 249 

were found directly under shelter rocks rather than underlying cobble or gravel (Hecht, pers. obs), 250 

and no difference in stream particle sizes below shelter rocks was noted among the stage classes. 251 

This suggests that other factors might be influencing habitat selection by Hellbenders in relation 252 

to substrate beneath shelter sites. For example Bodinoff et al (2012b) found that spacing of 253 

substrate was an important factor in Hellbender habitat selection for released captive raised 254 

Hellbenders, with individuals being more likely to select habitat resources where coarse substrate 255 

was touching. 256 

Comparing streambed particle sizes at sites utilized by Hellbenders of all stage classes to 257 

randomly sampled localities revealed a negative association of occupancy with fine gravel, and a 258 

positive association of occupancy with very coarse gravel. It is unclear if these associations are 259 

due to habitat preferences and/or prey availability, or are simply related to space availability 260 

beneath shelter rocks. Smaller streambed particles could fill in the spaces underneath rocks, 261 

embedding them and leaving no area available for Hellbenders to occupy. Stream embeddedness 262 

has been negatively associated with the presence of other species of salamanders (Tumlinson and 263 

Cline, 2003). Conversely, boulders or large cobble may leave too much space available beneath 264 

shelter rocks, leaving Hellbenders with reduced protection from stream flow, predators, and con-265 

specifics. The association of shelters used by Hellbenders and medium sized particles, like very 266 

coarse gravel, may represent a balance of space availability and protection as well as food 267 

availability. Other studies have examined the role of streambed particle sizes on the occupancy of 268 

Hellbender but have been unable to compare streambed particle association among stage classes. 269 

Most studies have focused on broader particle categories rather than the more fine scale 270 

categories used in this study, but found a general association between gravel and/or cobble 271 
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substrates and Hellbender occupancy (Keitzer, 2007; Maxwell, 2009; Burgmeier et al., 2011; 272 

Bodinoff et al, 2012b). These types of streambed particles are known to harbor a number of 273 

salamander species including Hellbender larvae (Smith, 1907; Nickerson and Mays, 1973; 274 

Tumlinson et al., 1990) and also serve as important macro-invertebrate habitat (Giller and 275 

Malmqvist, 1998; Hwa-Seong and Ward, 2007), which represent the most utilized food source 276 

for Hellbenders of all sizes. 277 

Conductivity at larval sites was significantly different from adult sites. As conductivity 278 

measurements were low, and because there was little difference between the mean of the larval 279 

and other stage groups, it seems unlikely that this difference is biologically meaningful. 280 

However, conductivity impacts Hellbender distribution in other localities (Pitt et al., 2017). No 281 

other correlations between Hellbender TL or stage class and measured water quality parameters 282 

were noted. The majority of individuals in all three stage classes were found in runs, so mixing 283 

may have created largely homogenized water quality conditions. Parameters including pH and 284 

conductivity showed little temporal or spatial variation during the survey period, but as Little 285 

River is fed by surface water, water depth and water temperate varied due to fluctuations in 286 

precipitation. Because microhabitat parameters were assumed to be relatively constant through 287 

time, this study cannot conclusively rule out the effects of water depth and water temperature on 288 

ontogenetic habitat use during the survey period.  289 

Our examination of Hellbender microhabitat associations assumed that individuals were 290 

associated with the microhabitat at diurnal capture sites for significant time periods. While a 291 

majority of studies support an association of adult Hellbenders to seasonal or longer habitats 292 

(Smith, 1907; Green, 1933; Hillis and Bellis, 1971; Wiggs, 1977; Nickerson and Mays, 1973; 293 

Nickerson, 1980; Blais, 1996; Ball, 2001), information regarding movement, activity, and site 294 
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fidelity of immature Hellbenders is extremely limited. Published information on larval movement 295 

is limited to a single observation of an individual moving along the stream margin an hour before 296 

to sunset (Floyd et al., 2013). It is unclear whether C. alleganiensis larvae are nocturnal or 297 

diurnal in the wild, although Smith (1907) noted that hatchlings avoided light. Although it is also 298 

unknown whether wild Hellbender larvae leave shelter to forage, other salamander larvae have 299 

reduced activity levels in the presence of predators, including cannibalistic conspecifics (Colley 300 

et al., 1989). In addition macro-invertebrates found in larval Hellbender diets are plentiful 301 

beneath rocks in Little River (Hecht-Kardasz, 2011), thus low larval Hellbender activity might be 302 

expected. Larvae overwinter at male-guarded nest sites, and are believed to generally disperse 303 

sometime in spring or early summer (Bishop, 1941), prior to the seasonal timeframe of this study. 304 

As we already discussed above, some larvae may leave nest shelters later in the summer, but 305 

those captured during this study were almost entirely solitary, making it likely that dispersion had 306 

already occurred. While it is not unreasonable to assume that young Hellbenders, like adults, are 307 

associated with specific locations for extended periods, it cannot be confirmed and therefore the 308 

results of the analyses presented here should be interpreted with caution. 309 

Evidence is increasing that Hellbenders may exhibit ontogenetic shifts in habitat use, but 310 

the number of localities where larval individuals are found regularly is relatively small, making it 311 

difficult to determine how common this pattern may be across the range. Future tracking of 312 

larvae may help elucidate whether larvae are rare or are avoiding detection due to differences in 313 

microhabitat use. In addition, only a limited number of microhabitat parameters have been 314 

examined. Therefore, studies looking at additional parameters such as DO, stream flow, distance 315 

to bank, and shelter density are suggested. For these and already measured variables, an 316 

examination of upper and lower tolerances for stage classes may be more useful from an 317 
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ecological and conservation standpoint than examining in situ differences in means for the groups 318 

alone. Studies on larval Hellbender microhabitat during other seasons are also needed to 319 

determine if ontogenetic differences in microhabitat use occur throughout the year or are only 320 

limited to summer months.  321 

Potential habitat differences among stage classes should be considered in future 322 

conservation and habitat restoration efforts. Immature individuals may be an important 323 

component for increasing some Hellbender population sizes as demonstrated by sensitivity 324 

analysis (Unger et al., 2013). Current Hellbender conservation efforts have focused heavily on 325 

head-starting and releasing individuals in order to boost adult populations. While these efforts are 326 

worthwhile and have proven successful (Bodinoff et al., 2012a), consideration of immature 327 

Hellbender habitat at release and restoration sites is necessary in order to achieve the long-term 328 

goal of self-sustaining Hellbender populations. While microhabitat needs may vary from site to 329 

site, our study indicates that sites should include heterogeneous substrate with very coarse gravel 330 

and cobble, in addition to a variety of boulders.  331 
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 524 

TABLES 525 

Table 1. Variable estimates and odds ratios from an ordinal logistic regression model based on 526 

streambed particle size classes at sites used by larval (n=25), sub-adult (n=26), and adult (n=38) 527 

Hellbenders (Cryptobranchus alleganiensis) captured in Little River, Tennesee. 528 

Variable Estimate Standard 

error 

Wald statistic (Z) p-value Odds     

ratio 

<4 mm  1.09 1.36  0.80 0.43 2.96 

Fine gravel  0.66 1.13  0.58 0.56 1.93 

Medium gravel -0.39 0.54 -0.73 0.47 0.68 

Coarse gravel -0.23 0.48 -0.48 0.62 0.79 

Very coarse gravel  2.13 1.20  1.78 0.07 8.45 

Small cobble -0.54 0.46 -1.19 0.23 0.58 

Large cobble -0.52 0.49 -1.06 0.29 0.59 

 529 

  530 
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Table 2. Variable estimates and odds ratios from a binomial logistic regression model based on 531 

streambed particle size classes at sites used by Hellbenders (Cryptobranchus alleganiensis) 532 

(n=89) and random locations (n=50) within Little River, TN.  533 

Variable Estimate Standard 

error 

Wald statistic (Z) p-value Odds  

ratio 

Intercept -0.60 0.77 -0.78 0.43 0.55 

<4 mm -1.40 0.82 -1.71 0.09 0.25 

Fine gravel -1.89 0.71 -2.67 0.01 0.15 

Medium gravel -0.35 0.60 -0.58 0.56 0.71 

Coarse gravel  0.95 0.54  1.76 0.08 2.60 

Very coarse gravel  1.56 0.64  2.46 0.01 4.78 

Small cobble -0.25 0.51 -0.49 0.62 0.78 

Large cobble  1.00 0.67  1.49 0.14 2.71 

 534 

 535 

 536 

 537 

 538 
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Table 3. Variable estimates and odds ratios from a binomial logistic regression model based on 539 

streambed particle size classes (with particles <32 mm combined into one category) at sites used 540 

by Hellbenders (Cryptobranchus alleganiensis) (n=89) and random locations (n=50) within Little 541 

River, Tennessee. 542 

Variable Estimate Standard 

error 

Wald statistic (Z) p-value Odds 

ratio 

Intercept -1.87 0.70 -2.67 0.008 0.15 

<32 mm  0.13 0.48  0.27 0.79 1.14 

Very coarse gravel  2.69 0.55  4.85 <0.001 14.69 

Small cobble  0.17 0.43  0.41 0.69 1.19 

Large cobble  0.91 0.61  1.50 0.13 2.50 
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FIGURE LEGENDS 551 

Figure 1. Bar graph showing mean ± standard error of the mean (SEM) for conductivity (μS/cm) 552 

used by three stage classes of Cryptobranchus alleganiensis, larvae (n=13), sub-adults (n=22), 553 

and adults (n=43), in Little River, Tennessee. Bars with different letters above are significantly 554 

different (p<0.05). 555 

Figure 2. Scatter plot with linear regression line of shelter size (mm) vs. Cryptobranchus 556 

alleganiensis total length (mm) in Little River, Tennessee (n=217). 557 

Figure 3. Bar graph showing mean ± standard error of the mean (SEM) for shelter size (mm) used 558 

by three stage classes of Cryptobranchus alleganiensis, larvae (n=61), sub-adults (n=56), and 559 

adults (n=100), in Little River, Tennessee. Bars with different letters above are significantly 560 

different (p<0.05). 561 
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