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ABSTRACT 21 

Organisms that experience large changes in body size during the life span often exhibit 22 

differences in resource use among life stages. Ontogenetic shifts in habitat use reduce 23 

intraspecific competition and predation and are common in lotic organisms. Although 24 

information on the immature life stages of the Hellbender (Cryptobranchus alleganiensis) is 25 

limited, this aquatic salamander exhibits ontogenetic shifts in habitat use in some streams, with 26 

adults sheltering under large rocks and larvae utilizing interstitial spaces of gravel beds. Due to 27 

the geomorphology of Little River, Tennessee, however, limited interstitial spaces within the 28 

gravel are filled with sand. Therefore, we quantified microhabitat parameters for three life stages 29 

of Hellbenders (larvae, sub-adult, adult) to determine if an ontogenetic shift in microhabitat 30 

occurred in Little River. We found no significant differences in stream substrate at capture sites 31 

among the stages, but there was a positive correlation between rock shelters underlain with very 32 

coarse gravel and overall Hellbender occupancy. Although we found no difference in water 33 

quality parameters and streambed particle size among the stage classes at the sites of capture, 34 

there was a significant difference in the average shelter size among all stages, with larvae 35 

utilizing the smallest shelters. Based on these results, future Hellbender research and 36 

conservation efforts should consider differences in life stage habitat use as well as specific stream 37 

particle classes. 38 

 39 

 40 
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Body size is a key factor in many facets of ecology. At larger scales, the size of species 43 

helps determine the trophic structure and spatial distribution of ecological communities 44 

(Hutchinson and MacArthur, 1959; Schoener, 1974; Werner and Gilliam, 1984; Brown and 45 

Nicoletto, 1991; Woodward et al., 2005; Rojas and Ojeda, 2010), while at the individual scale 46 

body size influences energetics (Gillooly et al., 2001), prey (Wilson, 1975; Mittelbach, 1981; 47 

Cohen et al., 1993), habitat use (Hall and Werner, 1977; Foster et al., 1988; Flinders and 48 

Magoulick, 2007; Barriga and Battini, 2009; Foster et al., 2009), and predation risk (Werner and 49 

Hall, 1988; Giller and Malmqvist, 1998; Urban, 2008). Because size has such a strong influence 50 

on the ecology of organisms, species that experience large changes in body size during their 51 

lifespan can experience substantial differences in ecology across life stages. Werner and Gilliam 52 

(1984) defined these changes (i.e., ontogenetic shifts) as the “patterns in an organism’s resource 53 

use that develop as it increases in size from birth or hatching to its maximum.” While these 54 

changes are often a result of morphological constraints, change in resource use across the life 55 

span of a species can be an advantageous life history strategy. These shifts may reduce 56 

intraspecific competition and predation among stage classes (Werner and Gilliam, 1984). In 57 

cannibalistic species shifts in habitat use among size or stage classes can reduce mortality of 58 

young individuals by intraspecific predation (Foster et al., 1988; Keren-Rotem et al., 2006). 59 

Body size changes in species are especially relevant in lotic systems. Reynolds number, 60 

which is the ratio of inertial and viscous forces within a fluid, increases with body size (Giller 61 

and Malmqvist, 1998). Organisms with different Reynolds numbers experience varying impacts 62 

from stream flow with inertial forces becoming more important at higher Reynolds numbers and 63 

may also differ in gas exchange abilities (Giller and Malmqvist, 1998). Body size influences 64 

microhabitat use in streams, with larger individuals more likely to reside in the water column and 65 
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smaller animals governed by viscous forces typically inhabiting the stream substrate. Because of 66 

these differences, ontogenetic shifts in resource use are documented in aquatic organisms and 67 

occur in a wide range of lotic taxa across different trophic levels including invertebrates 68 

(Holomuzki and Short, 1990; Giller and Sangpradub, 1993; Flinders and Magoulick, 2007), fish 69 

(Merigoux and Ponton, 1998; Simonovic et al., 1999; Rosenberger and Angermeier, 2003; King, 70 

2005; Barriga and Battini, 2009) and salamanders (Petranka, 1984; Colley et al., 1989; Nickerson 71 

et al., 2003). These shifts in resource use among life stages may help mitigate challenging 72 

conditions in lotic environments such as flow, environmental variability, and limited dispersal 73 

potential by providing increased protection and food availability and decreased intraspecific 74 

competition (Werner and Hall, 1988; Colley et al., 1989; Giller and Malmqvist, 1998; Nickerson 75 

et al., 2003; Barriga and Battini, 2009) 76 

Ontogenetic shifts in resource use have been noted in the Hellbender (Cryptobranchus 77 

alleganiensis), a cannibalistic lotic salamander species that can increase in size over its lifetime 78 

by a factor of 20. Hatchlings measure 25 – 30 mm total length (TL), while the largest adult found 79 

measured 745 mm TL (Fitch, 1947). Larval Hellbender diet largely consists of aquatic insects 80 

(Smith, 1907; Pitt and Nickerson, 2006; Hecht et al., 2017) whereas adults mostly eat crayfish 81 

(Netting, 1929; Green, 1933; Green, 1935; Nickerson and Mays, 1973; Peterson et al., 1989). 82 

While there are very little data available on larval Hellbender ecology due to a lack of captures 83 

during surveys, researchers have noted that larval Hellbenders in some localities can utilize 84 

different microhabitat than adults, which generally shelter under large rocks (Bishop, 1941; Hillis 85 

and Bellis, 1971; Nickerson and Mays, 1973, Freake and DePerno, 2017). In the North Fork of 86 

the White River, Missouri, larvae have been associated with gravel beds (Nickerson et al., 2003), 87 
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whereas bank searches in the Allegheny River, New York, were more effective for smaller 88 

Hellbender size classes than in previous conventional rock lifting surveys (Foster et al., 2009).  89 

In Little River, Tennessee geology of the streambed led to sand and other small particles 90 

filling in the interstitial spaces within the gravel where larvae have been found in other streams 91 

(Nickerson et al., 2003; Pitt et al., 2016); thus, larvae have been found under rocks on the 92 

streambed surface like adults (Nickerson et al., 2003). Despite this difference, almost a third of 93 

sampled Hellbenders from Little River were larval sized (<125 mm) (Hecht-Kardasz et al., 2012). 94 

Due to the cannibalistic nature of Hellbenders (Humphries et al., 2005; Groves and Williams, 95 

2014) as well as the great change in size from hatching to maturation, we expected that 96 

Hellbenders would still exhibit ontogenetic shifts in microhabitat at this location. To test this 97 

hypothesis, we examined the following microhabitat factors at sites where we captured 98 

Hellbenders in Little River: water depth, shelter size, stream substrate, pH, conductivity, and 99 

water temperature. These factors are known to affect detectability, food sources, oxygen 100 

concentration, and health of aquatic organisms (Giller and Malmqvist, 1998).  101 

MATERIALS AND METHODS 102 

Site description.—Based on the results of a previous study (Nickerson et al., 2003), Hellbender 103 

surveys were conducted within an ~3 km protected and forested section of Little River known to 104 

contain the three stage classes (larvae, sub-adult, and adult). Little River, located in the eastern 105 

Tennessee portion of the Great Smoky Mountains National Park, originates on the north slope of 106 

Clingmans Dome, and flows 29 km within the park. It continues through the towns of Townsend, 107 

Maryville, Alcoa, and Rockford before eventually draining into the Tennessee River. The Little 108 

River watershed drains an area of approximately 980 km2.  109 
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Little River lies entirely within the southern portion of the Blue Ridge physiographic 110 

province. The bedrock of Little River is comprised primarily of late Precambrian Elkmont and 111 

Thunderhead metamorphosed sandstone (Mast and Turk, 1999). Over time flowing water has 112 

eroded away some exposed bedrock leaving large densities of rounded boulders, cobble, and 113 

gravel in the streambed. A Wolman pebble count (Wolman, 1954) in the study area found a D50 114 

value, which represents the median substrate size, in the very coarse gravel category (32--64 mm) 115 

(Hecht-Kardasz, 2011). Interstitial habitat is limited within the Little River streambed as sand 116 

often fills in many portions of the gravel beds. The elevation of the study area ranged from 327—117 

407 m. Vegetation within the stream was uncommon, and the riparian vegetation was classified 118 

as pine and river cove hardwood forest (Madden et al., 2004). The area has a temperate climate, 119 

with an average annual rainfall of 142 cm and temperature averages of 3.17 °C in winter and 21.7 120 

°C in summer (National Oceanic and Atmospheric Administration, 2016).  121 

Field methods.—Diurnal skin diving combined with rock lifting was used to survey for 122 

Hellbenders during the following sampling periods: June – July 2005, June – July 2006, June – 123 

Aug 2008, Aug – Oct 2009, July – Sept 2010. Some surveyors occasionally used log peaveys to 124 

lift larger rocks. Hellbenders were captured by hand. We measured total length (TL) and snout-125 

vent length (SVL) of most sub-adult and adult Hellbenders with the aid of modified PVC pipe. 126 

Hellbenders were individually marked before release using PIT tags. Larvae and sub-adults too 127 

small for PIT tags were marked using visible implant elastomer (see Hecht-Kardasz et al., 2012). 128 

We only included the initial habitat data from recaptured animals for analyses.  129 

Microhabitat parameters were measured directly at the point of capture. Because 130 

Hellbenders are largely nocturnal (Nickerson and Mays, 1973) and generally have small home 131 

ranges and exhibit site fidelity (Hillis and Bellis, 1971; Wiggs, 1977; Nickerson and Mays, 1973; 132 
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Blais, 1996; Ball, 2001), we assumed that the microhabitat at point of capture accurately 133 

represented microhabitat of Hellbenders during the survey period. Water temperature, pH, and 134 

conductivity were measured using the Combo pH/EC/TDS/Temperature Tester with Low Range 135 

EC and Watercheck pH reader (HANNA Instruments®, Woonsocket, RI, USA). Water depth and 136 

shelter size, defined as the longest length of the shelter rock, were also recorded.  137 

To test for differences in stream substrate associated with shelter rocks, we measured a 138 

handful of streambed particles under confirmed shelter rocks using the Federal Interagency 139 

Sedimentation Project (FISP) US SAH-97 sediment size analyzer, also known as a gravelometer. 140 

Samples ranged from 1 – 8 particles, with a mean of 4.23 (± 1.55) particles. To compare the 141 

stream substrate beneath shelters with the streambed particles in the general sampling area, we 142 

also measured a handful of substrate at fifty random localities within the study area chosen using 143 

a random number table. Samples were taken directly next to the right foot with eyes averted. We 144 

sampled below larger rocks when they were encountered.  145 

Analyses.—Individual Hellbenders were classified into stage classes using TL. We used TL in 146 

our analyses so we could directly compare our results to past Hellbender habitat studies (Hillis 147 

and Bellis, 1971; Humphries and Pauley, 2005). Individuals <125 mm in TL, both gilled and 148 

non-gilled, were classified as larvae. Larvae were also classified into first (<90 mm TL) and 149 

second year (>100 mm TL) age classes for shelter size analysis based on previous studies and the 150 

results of surveys in Little River (Smith, 1907; Bishop, 1941; Hecht-Kardasz et al., 2012). Three 151 

individuals between 90 – 100 mm TL could not be classified to an age class and were therefore 152 

not used in analysis comparing larval age classes. All individuals measuring 125 – 275 mm TL 153 

were considered sub-adults, while any individuals over 275 mm were classified as adults. Further 154 

justification for stage class classifications can be found in Hecht-Kardasz et al., 2012. 155 
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We analyzed data using base packages in R version 3.2.2 (R Core Team, 2015) unless 156 

otherwise specified. We calculated mean (+ SD) for all continuous normally-distributed habitat 157 

variables and median for non-normal continuous variables. Pearson’s correlation coefficients for 158 

all variables was below 0.5. To examine the relationships between habitat variables and 159 

Hellbender TL, we performed simple linear regressions. Habitat parameters were also compared 160 

among life stages. As water depth, larval shelter size, and conductivity data were not normally 161 

distributed, these parameters were tested using Kruskal-Wallis rank sum tests with pairwise 162 

comparisons performed using the pairw.kw function in the asbio package (Aho, 2014). The 163 

remaining normally distributed parameters were evaluated using ANOVA and t-tests. In order to 164 

control family wise error rate at 0.05, Bonferroni’s correction was used for all individual pairwise 165 

test of means.  166 

All streambed particle sizes were classified into categories according to the American 167 

Geophysical Union proposed grade scale (Lane, 1947). Due to the low presence of some 168 

categories, all particles <4 mm were combined into one category before the data were used for 169 

statistical analysis. The presence/absence of streambed particle size at the site of capture was 170 

compared among stage classes using an ordinal logistic regression with the lrm function in 171 

package rms (Harrell, 2015). We also performed a binary logistic regression model using the lrm 172 

function to compare the presence/absence of particle categories between occupied sites and 173 

random locations. Due to weak correlations between smaller streambed particle size categories, 174 

additional models were tested combining all particles <32 mm into one category. 175 

RESULTS 176 

Average pH at capture sites was 7.24 + 0.28 (range 6.74 – 8.10; n = 97). Mean 177 

conductivity was 12.98 + 2.41 μS/cm (range: 6.00 – 22.00 μS/cm; n = 79). Water depth (range: 178 
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210 – 1800 mm; n = 104) and water temperature (range: 14.60 – 22.80 °C; n = 103) averaged 179 

527.86 + 248.00 mm and 22.84 + 2.03 °C respectively. Although regression analysis suggested a 180 

linear relationship between Hellbender TL and water temperature (n = 102), water temperature 181 

was not a strong predictor of Hellbender TL (R2 = 0.042; p = 0.039). A similar relationship was 182 

found between conductivity and Hellbender TL (R2 = 0.080; p = 0.012; n = 78). Linear regression 183 

analysis revealed no relationship between Hellbender TL and water depth (n = 104) (R2 = 0.024; 184 

p = 0.12) or Hellbender TL and pH (n = 96) (R2 = -0.011; p = 0.94). No significant difference in 185 

average water depth (H(2) = 4.32; p = 0.12), pH (F(2,97) = 0.61; p = 0.55) or temperature (F(2, 186 

99) = 1.751; p = 0.179) was found among stage classes. Average conductivity was significantly 187 

different among stage classes (H(2) = 8.03; p = 0.018). Posthoc pairwise comparisons found a 188 

significant difference between larval mean conductivity (14.93 + 4.34 μS/cm; n = 14) and mean 189 

adult conductivity (12.53 + 1.59 μS/cm; n = 43; p = 0.018). There was no significant difference 190 

between larval and mean sub-adult conductivity (12.59 + 1.30 μS/cm; n = 22; p = 0.051) or 191 

between adult and sub-adult conductivity (p = 0.99) (Fig. 1).  192 

Shelter size ranged from 120 – 1470 mm with a mean of 673.81 + 285.75 mm (n = 217). 193 

Based on the results of linear regression, we found a weak correlation between Hellbender TL 194 

and shelter size (n = 217) (R2 = 0.266; p < 0.001) (Fig. 2). Although overall shelter size among 195 

the stage classes overlapped, average shelter size differed significantly among stage classes (F(2, 196 

214) = 32.82; p < 0.001; Fig. 3). Mean shelter size of larvae (464.36 + 244.65 mm; n = 61) was 197 

significantly different from both adults (794.44 + 254.27 mm; n = 100; t = 8.11, df = 159, p-value 198 

= <0.001) and sub-adults (686.55 + 252.46 mm, n = 56; t = -4.83, df = 115, p = <0.001). Sub-199 

adults (n = 56) and adults (n = 100) also differed significantly in mean shelter size (t = 2.55, df = 200 

154, p = 0.012). There was no statistical difference between mean shelter size between first (n = 201 
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49) and second year larvae (n = 9) in Little River (H(1) = 0.16, p = 0.69). However, first year 202 

larvae utilized some larger shelter sizes, including one of 1085 mm while the largest shelter size 203 

of second year larvae was 610 mm. One individual of 90 mm TL found beneath a 1286 mm 204 

boulder could not conclusively be categorized as a first or second year larva.  205 

Streambed particle classes under shelter rocks of larvae (n = 25), sub-adults (n = 26), and 206 

adults (n = 38) did not differ significantly (Table 1). There was no significant difference when 207 

particles <32 mm were combined. When comparing random samples to locations of capture, 208 

however, Hellbenders appeared to utilize shelters underlain at least partially by very coarse 209 

gravel more than would be expected by chance (Table 2). Our model also found a negative 210 

association between Hellbender use and rock shelters overlaying fine gravel. Very coarse gravel 211 

was the only significant term in the model combining particles <32mm (p < 0.001).  212 

DISCUSSION 213 

While all Hellbender stage classes utilized boulder habitat, the significant difference in 214 

average shelter size among stage classes suggests that an ontogenetic shift in Hellbender habitat 215 

use occurs in Little River during the summer months. However, the wide range of shelter sizes 216 

used by larvae includes a direct overlap in shelter size with sub-adults and adults, which may be 217 

partially due to some young individuals dispersing from their site of hatching later than others. 218 

Young Hellbenders may remain in nesting sites for prolonged periods, as larval Hellbenders have 219 

been observed sharing rock shelters with adult males in June and August (Groves et al., 2015). 220 

Second year larvae could be more selective in their choice of shelter due to experience with 221 

predators, however the sample size of second year larvae was relatively small so further research 222 

is warranted. The weak relationship of shelter size and Hellbender TL found during this study is 223 

notable because previous studies examining habitat use by Hellbenders have generally found no 224 
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association between shelter size and Hellbender size (Hillis and Bellis, 1971; Humphries and 225 

Pauley, 2005). However, these studies have focused primarily on adult-sized Hellbenders. A 226 

study in a 350 m section of the dam-impacted Hiawassee River (TN) found a similar pattern of 227 

shelter size use in a broader representation of Hellbender size classes (Freake and DePerno, 228 

2017).  229 

Flooding has been cited as a potential threat to Hellbender populations with several 230 

published reports of displaced, injured, and dead Hellbenders following high water events in 231 

other localities (Humphries, 2005; Miller and Miller, 2005; Bodinof et al., 2012a). Previous work 232 

in Little River suggested that flooding may be influential in the size structure of the Hellbender 233 

population with anecdotal evidence showing absent size classes correlating with major flooding 234 

events (Nickerson et al., 2007; Hecht-Kardasz et al., 2012). The shelters used by immature 235 

Hellbenders in Little River could provide a mechanistic explanation for this hypothesis. Many 236 

lotic organisms survive spates by seeking refugia (Giller and Malmqvist, 1998), including the 237 

interstitial spaces in the benthic layers, where larval C. alleganiensis have been located in other 238 

localities (Smith, 1907; Nickerson and Mays, 1973; Nickerson et al., 2003). As this habitat is not 239 

available to larval Hellbenders in Little River, larvae are utilizing the space under rocks at the 240 

surface of the streambed which may be less secure during flooding periods. While larvae utilized 241 

a wide variety of shelters in Little River, their habitat included much smaller shelter sizes than 242 

other stage classes including small and large cobble, and the average shelter size used by larvae 243 

was significantly smaller than sub-adults and adults. Smaller shelters may be easily moved by 244 

increased water current, increasing the risk of the Hellbender larvae underneath being crushed, 245 

swept downstream, or exposed to predators. Researchers recently found a crushed larvae in Little 246 

River following a high water event (Da Silva Neto et al., 2016). Related mortality or 247 
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displacement of immature Hellbenders during extreme flooding related to less secure habitats 248 

may partially be responsible for the size structure patterns previously found in Little River’s 249 

captured Hellbender population (Hecht-Kardasz 2012). As increases in flood intensity and 250 

frequency are predicted with climate change (Easterling et al., 2000), this could be of 251 

conservation concern for Hellbenders, particularly in rivers with similar geomorphology although 252 

additional study is required.  253 

Due to the lack of gravel bed habitat in Little River, the interstitial spaces among the 254 

gravel, cobble, and boulders beneath the larger shelter rocks may be particularly important to 255 

Hellbender larvae for additional protection and access to smaller food items. However, larvae 256 

were found directly under shelter rocks rather than underlying cobble or gravel (Hecht, pers. obs), 257 

and no difference in stream particle sizes below shelter rocks was noted among the stage classes. 258 

This suggests that other factors might be influencing habitat selection by Hellbenders in relation 259 

to substrate beneath shelter sites. For example, Bodinof et al (2012b) found that spacing of 260 

substrate was an important factor in Hellbender habitat selection for released captive raised 261 

Hellbenders, with individuals being more likely to select habitat resources where coarse substrate 262 

was touching. 263 

Comparing streambed particle sizes at sites utilized by Hellbenders of all stage classes to 264 

randomly sampled localities revealed a negative association of occupancy with fine gravel, and a 265 

positive association of occupancy with very coarse gravel. It is unclear if these associations are 266 

due to habitat preferences and/or prey availability, or are simply related to space availability 267 

beneath shelter rocks. Smaller streambed particles could fill in the spaces underneath rocks, 268 

embedding them and leaving no area available for Hellbenders to occupy. Stream embeddedness 269 

has been negatively associated with the presence of other species of salamanders (Tumlinson and 270 
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Cline, 2003). Conversely, boulders or large cobble may leave too much space available beneath 271 

shelter rocks, leaving Hellbenders with reduced protection from stream flow, predators, and con-272 

specifics. The association of shelters used by Hellbenders and medium-sized particles, like very 273 

coarse gravel, may represent a balance of space availability and protection as well as food 274 

availability. Other studies have examined the role of streambed particle sizes on the occupancy of 275 

Hellbenders (Keitzer et al., 2013; Maxwell, 2009; Burgmeier et al., 2011; Bodinof et al, 2012b) 276 

but have been unable to compare streambed particle association among stage classes. Most of 277 

these studies have focused on broader particle categories rather than the more fine scale 278 

categories used in this study, but have found a general association between gravel and/or cobble 279 

substrates and Hellbender occupancy. These types of streambed particles are known to harbor a 280 

number of salamander species including Hellbender larvae (Smith, 1907; Nickerson and Mays, 281 

1973; Tumlinson et al., 1990) and also serve as important macro-invertebrate habitat (Giller and 282 

Malmqvist, 1998; Hwa-Seong and Ward, 2007), which represent the most utilized food source 283 

for Hellbenders of all sizes. 284 

Conductivity at larval sites was significantly different from adult sites. As conductivity 285 

measurements were low, and because there was little difference between the mean of the larval 286 

and other stage groups, it seems unlikely that this difference is biologically meaningful. 287 

However, conductivity impacts Hellbender distribution in other localities (Keitzer et al., 2013; 288 

Pitt et al., 2017; Bodinof Jachowski and Hopkins, 2018). No other correlations between 289 

Hellbender TL or stage class and measured water quality parameters were noted. The majority of 290 

individuals in all three stage classes were found in runs, so mixing may have created largely 291 

homogenized water quality conditions. Parameters including pH and conductivity showed little 292 

temporal or spatial variation during the survey period, but as Little River is fed by surface water, 293 
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water depth and water temperate varied due to fluctuations in precipitation. Because microhabitat 294 

parameters were assumed to be relatively constant through time, this study cannot conclusively 295 

rule out the effects of water depth and water temperature on ontogenetic habitat use during the 296 

survey period.  297 

Our examination of Hellbender microhabitat associations assumed that individuals were 298 

associated with the microhabitat at diurnal capture sites for significant time periods, and 299 

Hellbenders had similar detection rates across stage classes. While most studies support an 300 

association of adult Hellbenders to seasonal or longer habitats (Smith, 1907; Green, 1933; Hillis 301 

and Bellis, 1971; Wiggs, 1977; Nickerson and Mays, 1973; Nickerson, 1980; Blais, 1996; Ball, 302 

2001), information regarding detectability, movement, activity, and site fidelity of immature 303 

Hellbenders is extremely limited. We are not aware of any studies available examining detection 304 

rates of immature Hellbenders. Since we did not find other available habitat types like gravel 305 

beds and leaf litter in the study sites and regularly located larval and sub-adult Hellbenders, we 306 

assumed that detectability rates were roughly the same among stage. Published information on 307 

larval movement is limited to a single observation of an individual moving along the stream 308 

margin an hour before sunset (Floyd et al., 2013). It is unclear whether C. alleganiensis larvae are 309 

nocturnal or diurnal in the wild, although Smith (1907) noted that hatchlings avoided light. 310 

Although it is also unknown whether wild Hellbender larvae leave shelter to forage, other 311 

salamander larvae have reduced activity levels in the presence of predators, including 312 

cannibalistic conspecifics (Colley et al., 1989). In addition macro-invertebrates found in larval 313 

Hellbender diets are plentiful beneath rocks in Little River (Hecht-Kardasz, 2011), thus low 314 

larval Hellbender activity might be expected. Larvae overwinter at male-guarded nest sites, and 315 

are believed to generally disperse sometime in spring or early summer (Bishop, 1941), prior to 316 
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the seasonal timeframe of this study. As we already discussed above, some larvae may leave nest 317 

shelters later in the summer, but those captured during this study were almost entirely solitary, 318 

making it likely that dispersion had already occurred. While it is not unreasonable to assume that 319 

young Hellbenders, like adults, are associated with specific locations for extended periods and 320 

that detection rates were similar among the stage classes, these assumptions cannot be confirmed, 321 

and therefore the results of the analyses presented here should be interpreted with caution.  322 

Evidence is increasing that Hellbenders may exhibit ontogenetic shifts in habitat use, but 323 

the number of localities where larval individuals are found regularly is relatively small, making it 324 

difficult to determine how common this pattern may be across the range. Other streams may have 325 

low larval detection rates making it more difficult to locate and quantify larval habitat. Future 326 

tracking of larvae may help elucidate whether larvae are rare or are avoiding detection due to 327 

differences in microhabitat use. In addition, only a limited number of microhabitat parameters 328 

have been examined. Therefore, studies looking at additional parameters such as DO, stream 329 

flow, distance to bank, and shelter density are suggested. For these and already measured 330 

variables, an examination of upper and lower tolerances for stage classes may be more useful 331 

from an ecological and conservation standpoint than examining in situ differences in means for 332 

the groups alone. Studies on larval Hellbender microhabitat during other seasons are also needed 333 

to determine if ontogenetic differences in microhabitat use occur throughout the year or are only 334 

limited to summer months.  335 

Potential habitat differences among stage classes should be considered in future 336 

conservation and habitat restoration efforts, especially as accounting for multiple stage classes 337 

can assist in amphibian conservation efforts (Swanack et al, 2009). Immature individuals may be 338 

an important component for increasing some Hellbender population sizes as demonstrated by 339 
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sensitivity analysis (Unger et al., 2013). Current Hellbender conservation efforts have focused 340 

heavily on head-starting and releasing individuals in order to boost adult populations. While these 341 

efforts are worthwhile and have proven successful (Bodinof et al., 2012a), consideration of 342 

immature Hellbender habitat at release and restoration sites is necessary to achieve the long-term 343 

goal of self-sustaining Hellbender populations. While related microhabitat needs may vary from 344 

site to site and should be studied in individual management areas, our study indicates that 345 

researchers and managers should consider heterogeneity in stream substrates, including fewer 346 

fine particles and more large gravel, in addition to a variety of boulders.  347 
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TABLES 549 

Table 1. Variable estimates and odds ratios from an ordinal logistic regression model based on 550 

streambed particle size classes at sites used by larval (n = 25), sub-adult (n=26), and adult (n=38) 551 

Hellbenders (Cryptobranchus alleganiensis) captured in Little River, Tennessee. 552 

Variable Estimate Standard 

error 

Wald statistic (Z) p-value Odds     

ratio 

<4 mm  1.09 1.36  0.80 0.43 2.96 

Fine gravel  0.66 1.13  0.58 0.56 1.93 

Medium gravel -0.39 0.54 -0.73 0.47 0.68 

Coarse gravel -0.23 0.48 -0.48 0.62 0.79 

Very coarse gravel  2.13 1.20  1.78 0.07 8.45 

Small cobble -0.54 0.46 -1.19 0.23 0.58 

Large cobble -0.52 0.49 -1.06 0.29 0.59 

 553 
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Table 2. Variable estimates and odds ratios from a binomial logistic regression model based on 555 

streambed particle size classes at sites used by Hellbenders (Cryptobranchus alleganiensis) (n = 556 

89) and random locations (n = 50) within Little River, Tennessee.  557 

Variable Estimate Standard 

error 

Wald statistic (Z) p-value Odds  

ratio 

Intercept -0.60 0.77 -0.78 0.43 0.55 

<4 mm -1.40 0.82 -1.71 0.09 0.25 

Fine gravel -1.89 0.71 -2.67 0.01 0.15 

Medium gravel -0.35 0.60 -0.58 0.56 0.71 

Coarse gravel  0.95 0.54  1.76 0.08 2.60 

Very coarse gravel  1.56 0.64  2.46 0.01 4.78 

Small cobble -0.25 0.51 -0.49 0.62 0.78 

Large cobble  1.00 0.67  1.49 0.14 2.71 
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 559 

 560 

 561 
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FIGURE LEGENDS 564 

Figure 1. Bar graph showing mean ± standard error of the mean (SEM) for conductivity (μS/cm) 565 

used by three stage classes of Cryptobranchus alleganiensis, larvae (n = 13), sub-adults (n = 22), 566 

and adults (n = 43), in Little River, Tennessee. Bars with different letters above are significantly 567 

different (p < 0.05). 568 

Figure 2. Scatter plot with linear regression line of shelter size (mm) vs. Cryptobranchus 569 

alleganiensis total length (mm) in Little River, Tennessee (n = 217) (R2 = 0.266; p<0.001). 570 

Figure 3. Bar graph showing mean ± standard error of the mean (SEM) for shelter size (mm) used 571 

by three stage classes of Cryptobranchus alleganiensis, larvae (n = 61), sub-adults (n = 56), and 572 

adults (n = 100), in Little River, Tennessee. Bars with different letters above are significantly 573 

different (p < 0.05).574 
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