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Abstract

Summary: Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated ob-
servations, which need to be accounted for to avoid false association signals. This is commonly performed
by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is
a well-established tool that implements major LMM features using sparse matrix methods; however, it is
not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are
lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and
parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage
studies of related individuals, such functionalities are of high interest for association studies in situations
where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide
association study (GWAS) software.

To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of
lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and
its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of
relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our pack-
age using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project.

Availability and implementation: lme4qtl is available at https://github.com/variani/lme4qtl.

Contact: ziyatdinov@hsph.harvard.edu

1 Introduction

Many genetic study designs induce correlations among observations, including, for example, family or
cryptic relatedness, shared environments and repeated measurements. The standard statistical approach
used in quantitative trait locus (QTL) mapping is linear mixed models (LMMs), which is able to effec-
tively assess and estimate the contribution of an individual genetic locus in the presence of correlated
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observations [1, 2, 3, 4]. However, LMMs are known to be computationally expensive when applied in
large-scale data. Indeed, the LMM approach has the cubic computational complexity on the sample size
per test [3]. This is a major barrier in today’s genome-wide association studies (GWAS), which consist in
performing millions of tests in sample size of 10,000 or more individuals. Therefore, recent methodological
developments have been focused on reduction in computational cost [4].

There has been a notable improvement in computation of LMMs with a single genetic random effect.
Both population-based [3, 5, 6] and family-based methods [7] use an initial operation on eigendecompo-
sition of the genetic covariance matrix to rotate the data, thereby removing its correlation structure. The
computation time drops down to the quadratic complexity on the sample size per test. When LMMs
have multiple random effects, the eigendecomposition trick is not applicable and computational speed up
can be achieved by tuning the optimization algorithms, for instance, using sparse matrix methods [8] or
incorporating Monte Carlo simulations [9].

However, the decrease in computation time comes at the expense of flexibility. In particular, most effi-
cient LMM methods developed for GWAS assume a single random genetic effect in model specification and
support simple study designs, for example, prohibiting the analysis of longitudinal panels. We have devel-
oped a new lme4qtl R package that unlocks the well-established lme4 framework for QTL mapping analysis.
We demonstrate the computational efficiency and versatility of our package through the analysis of real
family-based data from the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project [10]. More
specifically, we first performed a standard GWAS, then showed an advanced model of gene-environment
interaction [11], and finally estimated the influence of data sparsity on the computation time.

2 Methods

2.1 Linear mixed models

Consider the following polygenic linear model that describes an outcome y:

y = Xβ + Zu + e

where n is the number of individuals, yn×1 is vector of size n, Xn×p and Zn×n are incidence matrices, p
is the number of fixed effects, βp×1 is a vector of fixed effects, un×1 is a vector of a random polygenic
effect, and en×1 is a vector of the residuals errors. The random vectors u and e are assumed to be mutually
uncorrelated and multivariate normally distributed, N (0, Gn×n) and N (0, Rn×n). The covariance matrices
are parametrized with a few scalar parameters such as Gn×n = σ2

g An×n and Rn×n = σ2
e In×n, where A is a

genetic additive relationship matrix and I is the identity matrix. In a general case, the model is extended
by adding more random effects, for instance, the dominance genetic or shared-environment components.

We have implemented three features in lme4qtl to adapt the mixed model framework of lme4 for QTL
mapping analysis. First, we introduce the positive-definite covariance matrix G into the random effect
structure, as described in [12, 13]. Provided that random effects in lme4 are specified solely by Z matrices,
we represent G by its Cholesky decomposition LLT and applied a substitution Z∗ = ZL, which takes the
G matrix off from the variance of the vector u

Var(u) = ZGZT = ZLLTZT = Z∗(Z∗)T

Second, we address situations when G is positive semi-definite, which happen if genetic studies include
twin pairs [1]. To define the Z∗ substitution in this case, we use the eigendecomposition of G. Although G
is not of full rank, we take advantage of lme4’ special representation of covariance matrix in linear mixed
model, which is robust to rank deficiency [14, p. 24-25].

Third, we extend the lme4 interface with an option to specify restrictions on model parameters. Such
functionality is necessary in advanced models, for example, for a trait measured in multiple environments
(Supplementary Note 1).
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2.2 Implementation of lme4qtl

As an extension of the lme4 R package, lme4qtl adopts its features related to model specification, data
representation and computation [14]. Briefly, models are specified by a single formula, where grouping
factors defining random effects can be nested, partially or fully crossed. Also, underlying computation
relies on sparse matrix methods and formulation of a penalized least squares problem, for which many
optimizers with box constraints are available. While lme4 fits linear and generalized linear mixed models
by means of lmer and glmer functions, lme4qtl extends them in relmatLmer and relmatGlmer functions.
The new interface has two main additional arguments: relmat for covariance matrices of random effects
and vcControl for restrictions on variance component model parameters. Since the developed relmatLmer
and relmatGlmer functions return output objects of the same class as lmer and glmer, these outputs can be
further used in complement analyses implemented in companion packages of lme4, for example, RLRsim
[15] and lmerTest [16] R packages for inference procedures.

2.3 Analysis of the GAIT2 data

The sample from the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project consisted of 935
individuals from 35 extended families, recruited through a proband with idiopathic thrombophilia [10].
We conducted a genome-wide screening of activated partial thromboplastin time (APTT), which is a clinical
test used to screen for coagulation-factor deficiencies [17]. The samples were genotyped with a combination
of two chips, that resulted in 395,556 single-nucleotide polymorphisms (SNPs) after merging the data. We
performed the same quality control pre-processing steps as in the original study: phenotypic values were
log-transformed; two fixed effects, age and gender, and two random effects, genetic additive and shared
house-hold, were included in the model; individuals with missing phenotype values were removed and all
genotypes with a minimum allele frequency below 1% were filtered out, leaving 263,764 genotyped SNPs
in 903 individuals available for GWAS. We compared the performances between our package and SOLAR
[2, 18], one of the standard tool in family-based QTL mapping analysis.

3 Results

We considered three models for the analysis of APTT in the GAIT2 data, namely polygenic, association
and gene-environment interaction.

Before conducting the analysis, we organized trait, age, gender, individual identifier id, house-hold
identifier hhid variables and SNPs as a table dat. The additive genetic relatedness matrix was estimated
using the pedigree information and stored in a matrix mat. A polygenic model m1 was fitted to the data by
the relmatLmer function as follows.

m1 <- relmatLmer(aptt ~ age + gender + (1|id) + (1|hhid), dat,
relmat = list(id = mat))

The proportion of variance explained by the genetic effect (heritability) was 0.56, and its 95% confi-
dence interval, estimated by profiling the deviance [14], was [0.45; 0.84].

We further tested whether the genetic effect was statistically significant by simulations of the restricted
likelihood ratio statistic, as implemented in the exactRLRT function of the RLRsim R package [15]. The
p-value of the test was below 2.2× 10−16.

For a single SNP named rs1, the update function created an association model m2 from m1 and the
anova function then performed the likelihood ratio test.

m2 <- update(m1, . ~ . + rs1)
anova(m1, m2)

To automate the GWAS analysis, we created an example assocLmer function with several options such
as different tests of association and parallel computation. By using the assocLmer function, we have
replicated some loci previously known for APTT [17] (Supplementary Figure 1) applying the likelihood
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ratio test and running the analysis in parallel on a desktop computer (2.8GHz quad-core Intel Core i5
processor, 8GB RAM).

The GWAS computation time of the association model with two random effects by lme4qtl was 7.6 hours.
We performed the same analyses, using SOLAR, and observed a computation time 3 fold larger (25.1 hours,
Supplementary Table 1). In additional experiments varying the number of fixed and random effects, the
lme4qtl package was also several times faster than SOLAR (Supplementary Table 1, Supplementary Figure
2), owing to the efficient lme4 implementation of sparse matrix methods. Note that when a model has a
single random effect, SOLAR had a option to apply the eigendecomposition trick and substantially speed
up the computation (3.8 hours), while this option has not been implemented in lme4qtl (6.6 hours).

We then considered an advanced model of gene-environment interaction, an extension of the polygenic
model m1, where the variance of genetic random effect is a function of environment (gender). Supplemen-
tary Notes 1 and 2 contain details on the model specification and numerical results obtained on the GAIT2
data.

We also evaluated how the lme4qtl computation time depends on the sparse structure of covariance
matrices (Supplementary Figure 3). When artificially reducing sparsity of the genetic relatedness matrix
in the GAIT2 data, we found that the time required to fit the polygenic model increases substantially: it
becomes an order of magnitude greater once the sparsity changes from the GAIT2 level 0.98 to 0.60.

4 Discussion and Conclusions

We have extended the lme4 R package, a well-established tool for linear mixed models, for application to
QTL mapping. The new lme4qlt R package has adopted the lme4’s powerful features and contributes with
two key building blocks in QTL mapping analysis, custom covariance matrices and restrictions on model
parameters.

Of the many existing lme4-based R packages, the closest to lme4qtl is the pedigreemm R package [13].
Although this package does support analysis of related individuals, the relationships are coded using
pedigree annotations rather than custom covariance matrices. Furthermore, the pedigreemm package uses
the Cholesky decomposition, which is not feasible for positive semi-definite covariance matrices. Hence,
to our knowledge, the lme4qlt R package is the most comprehensive extension of lme4 to date for QTL
mapping analysis.

Our package has also limitations. In particular, introducing covariance matrices in random effects
implies that some of the statistical procedures implemented in lme4 might not be applicable anymore.
For instance, bootstrapping in the update function from lme4 cannot be directly used for lme4qlt mod-
els. Furthermore, the residual errors in lme4 models are only allowed to be independent and identically
distributed, and ad hoc solutions need to be applied in more general cases, as we showed for the gene-
environment interaction model. However, this restriction on the form of residual errors may be relaxed in
the future lme4 releases, according to its development plan on the official website [19]. Also, lme4qlt cannot
compete with tools optimized for particular GWAS models with a single genetic random effect: lme4qlt
allows for association models with multiple random effects. Last, lme4qlt is mostly applicable to datasets
with sparse covariances, while its use in population-based studies may lead to a considerable overhead in
computation time.

In conclusion, the lme4qlt R package enables QTL mapping models with a versatile structure of random
effects and efficient computation for sparse covariances.
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