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ABSTRACT 

Whole-slide imaging of histologic sections captures tissue microenvironments and cytologic details in 
expansive high-resolution images. These images can be mined to extract quantitative features that describe 
histologic elements, yielding measurements for hundreds of millions of objects. A central challenge in utilizing 
this data is enabling investigators to train and evaluate classification rules for identifying objects related to 
processes like angiogenesis or immune response. Here we present HistomicsML, an interactive machine-
learning framework for large whole-slide imaging data. HistomicsML uses active learning direct user feedback, 
making classifier training efficient and scalable in datasets containing 108+ histologic objects. We demonstrate 
how HistomicsML can be used to phenotype microvascular structures in gliomas to predict survival, and to 
explore the molecular pathways associated with these phenotypes. Our approach enables researchers to 
unlock phenotypic information from digital pathology datasets to investigate prognostic image biomarkers and 
genotype-phenotype associations. 
 
INTRODUCTION 

Slide scanning microscopes can digitize entire histologic sections at 200X-400X magnification, 
generating expansive high-resolution images containing 109+ pixels. For cancer tissues, these images contain 
important biologic and prognostic information, capturing the diverse cytologic elements involved in 
angiogenesis, immune response, and tumor/stroma interactions. Image analysis algorithms can mine whole-
slide images to delineate objects like cell nuclei, and to extract 10s-100s of quantitative features that describe 
the shape, color, and texture of each object. These histology-omic or “histomic” features can be used to train 
machine-learning algorithms to classify important elements like tumor-infiltrating lymphocytes, vascular 
endothelial cells, or fibroblasts. Identifying these elements in tissues requires considerable expertise, and 
imparting this knowledge to algorithms enables precise characterization of large imaging datasets in ways not 
possible by subjective visual assessment. Quantitative measures of the abundance, morphologies and spatial 
patterns of these elements can help investigators understand relationships between histologic phenotypes and 
survival, treatment response, and underlying molecular mechanisms. Studies that generate whole slide images 
can yield histomic annotations of 108+ objects, and a central challenge in utilizing this data is in enabling 
domain experts to train classification rules and to evaluate their accuracy. With each image containing up to 
106+ discrete objects, facilitating interaction with domain experts requires fluid navigation of gigapixel images, 
visualization of derived image segmentation boundaries, mechanisms to intelligently acquire training data from 
experts, and to visualize classifications for millions of objects. 

Histopathology image analysis has received significant attention with algorithms having been 
developed to predict metastasis (1), survival (2-6), grade (7, 8), and histologic classification (9-11), and to link 
histologic patterns with genetic alterations or molecular disease subtypes (12-14). Many algorithms 
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demonstrate scientific or potential clinical utility, but few directly engage domain experts in analyzing histomic 
data (15, 16). Inputs are typically acquired offline by presenting a small collection of manually selected image 
sub regions to an expert for labeling or annotation. Enabling experts to directly interact with machine learning 
algorithms on large datasets creates a feedback loop that has been shown to improve prediction accuracy and 
user experience in general applications (17-21). In this feedback paradigm, the expert iteratively improves a 
classification rule by correcting or confirming predictions on unlabeled examples, cycling between labeling and 
training and prediction. Active learning extends this paradigm by identifying and labeling the examples that 
provide the most benefit to the classifier in each cycle. This approach seeks to increase the diversity of labeled 
examples used for classifier training, and avoids labeling redundant examples that are unlikely to improve 
performance. The challenge in utilizing active learning with histomic data is in building software with the 
scalable visualization and machine-learning capabilities described above. 
This paper describes the histomics machine-learning system (HistomicsML), a software framework for 
interactive classification and phenotyping of large whole-slide imaging datasets.  HistomicsML has several key 
features that enables users to rapidly train accurate histologic classification rules: (i) A web-based interface 
that fluidly displays gigapixel images containing 106+ image analysis objects (ii) A machine-learning server for 
fast, interactive training of classification rules (iii) Active-learning algorithms for improved training efficiency and 
accuracy (iv) Tools for creating, sharing and reviewing labeled data and ground-truth validation sets. 
HistomicsML is open-source (https://github.com/cooperlab/ActiveLearning) and available as a software 
container for easy deployment (https://hub.docker.com/r/histomicsml/active/). Using imaging, clinical and 
genomic data from The Cancer Genome Atlas (TCGA), we demonstrate how HistomicsML can be used to 
develop an accurate classifier of vascular endothelial cell nuclei with minimal effort. We use this classifier to 
describe the phenotypes of microvascular structures in gliomas, and show that these phenotypes predict 
survival independent of both grade and molecular subtype. Finally, we identify molecular pathways associated 
with disease progression through integrated pathway analysis of mRNA expression data. 

 
RESULTS 
 
Active learning classification software for histology imaging datasets 

An overview of the HistomicsML software is presented in Figure 1. Image segmentation algorithms are 
used to delineate histologic objects like cell nuclei in whole-slide images, and a histomic feature profile is 
extracted to describe the shape, texture, and staining characteristics of each delineated object (see 
Supplementary Figure 1). Images, features, and object boundaries are stored in a database and disk array to 
support visualization and machine-learning analysis. A web-browser interface enables users to rapidly train 
classification rules and review their predictions in large datasets containing 108+ objects. A multiresolution 
image viewer provides zooming and panning of gigapixel images and dynamically displays object boundaries.  
A caching and pre-fetching strategy is used to display boundaries for objects in the current field of view and to 
fluidly handle panning events (see Supplementary Figure 2). Boundaries are color-coded to indicate their 
predicted class (e.g. green - endothelial cell nuclei) or membership in the training set (e.g. yellow – labeled). 
Users can refine the classification rule by clicking objects in the viewport to label and add them to the set of 
training examples. Screen captures of the interface are provided in Supplementary Figure 3. 

The active-learning methods used in classification rule training are illustrated in Figure 2, using 
classification of tumor-infiltrating lymphocytes as an example. When making a prediction, many classification 
rules also produce a confidence measure that represents the expected accuracy of this prediction. In active 
learning, low confidence objects are labeled to fill gaps in the training set to improve accuracy. Given a 
classification rule, the set of unlabeled objects are first classified to generate prediction confidences. Labels 
are then solicited for low confidence objects, and these objects are added to the training set to re-train the 
classification rule. Figure 2A illustrates a classification rule as a partition of the histomic feature space into 
region corresponding to distinct cytologic classes. Feature values determine the positions of objects in this 
space, with classifications being less certain approaching the partition boundary. By iterating between labeling 
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low confidence objects and re-training the classification rule, a feedback loop is established with the user to 

build a comprehensive training set that increases expected prediction accuracy. This label-update-predict cycle 

is repeated until the desired performance is achieved (see Supplementary Figure 4 and online Methods for 

random forest implementation).

HistomicsML uses two active learning methods to solicit labels: 1. Instance-based and 2. Heatmap-

based. Instance-based learning presents the user with 8 of the least confident objects with and array of 

thumbnail images that can be labeled. Clicking an instance/thumbnail will direct the whole-slide viewer to the 

location of this object so that the surrounding tissue context can also be visualized. In heatmap-based learning, 

heatmaps representing prediction confidence are generated for each whole-slide image, enabling users to 

identify and zoom into “hotspot” regions that are enriched with low-confidence objects for rapid labeling. Slides 

with hotspots can be identified using an image gallery where slides are sorted based on aggregate confidence

statistics.

Rapid and accurate classification of vascular endothelial cells in gliomas
We used HistomicsTK (http://github.com/DigitalSlideArchive/HistomicsTK) to generate features for 360 

million cell nuclei using 781 images (464 tumors) from The Cancer Genome Atlas Lower Grade Glioma (LGG) 

project. We trained a classification rule to identify vascular endothelial cell nuclei (VECN) and validated its 

Figure 1. An interactive machine-learning framework for phenotyping histology images. Digitized whole-slide images of tissue 
sections can be analyzed to extract features describing the shape, texture and staining characteristics of histologic structures like cell 
nuclei. We created a software framework that enables experts to identify important histologic elements like tumor infiltrating 
lymphocytes or vascular endothelial cells in these images through interactive training of machine learning classifiers. A browser-

based interface provides point-and-click interaction with datasets containing 10
8
+ objects for training classification rules. A multi-CPU 

server manages the images and boundary and feature data and provides the computational power for visualization and analysis. 
Classifications generated with this framework can be used to describe the phenotypes associated with cancer-related processes like 
angiogenesis and lymphocytic infiltration, and to investigate phenotype-genotype associations and phenotypic prognostic biomarkers.
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performance using 67 slides not used in training (see Figure 3, Supplementary Figure 5). The VECN classifier 
was initialized by manually labeling 8 nuclei, and refined with both instance-based and heatmap-based 

Figure 2. Active learning for efficient classification rule training. (A) (Left) A classification rule aims to learn an unknown decision
boundary (black) that separates classes of objects in feature space. A margin (gray) surrounding this boundary contains objects with
low prediction confidence that are difficult for the rule to classify. (Center) Instance-based learning presents unlabeled low-confidence
objects to the user for labeling. (Right) Retraining the classification rule with these labels shrinks the margin towards the decision
boundary improving classification accuracy. (B) Heatmap-based learning directs users to image regions that are enriched with 
lowconfidence objects for labeling. (Top) Correcting prediction errors (yellow) in low-confidence regions (red) and retraining reduces the
number of low-confidence objects. (Bottom) Classification rule specificity is improved by re-training. Here the heatmaps indicate the
density of cells positively classified as lymphocytes before and after retraining. (C) Active learning is an iterative process: the user first
labels objects guided by active learning, then the classification rule is retrained and applied to the entire dataset, and lastly new
instances and heatmaps are generated.
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learning to label 135 nuclei in 27 iterations. The VECN classifier is highly sensitive and specific, achieving an 
area-under-curve (AUC) of 0.964 and improving over the initial rule with AUC=0.9234. 

To further validate our VECN classifier, we correlated mRNA expression of the endothelial marker 
PECAM1 with the fraction of cells classified as VECs in each specimen. PECAM1 expression was significantly
positively correlated with Percent-VECN (Spearman rho=0.24, p=1.27e-7). We note that the mRNA 
measurements originate from frozen materials where image analysis was performed on fixed and paraffin 
embedded tissues that originate from same primary tumor but with unknown proximity to the mRNA sample.

To evaluate system responsiveness, we measured the time required for the update-predict cycles. We 
evaluated various sized datasets ranging from 106-107 objects (see Supplementary Table 2). We observed a 
consistent linear increase of 1 second per 5.5 million objects on our 24-core server. This translates to a 10 
second learning cycle for a 50 million-object dataset.

Phenotyping microvascular structures in gliomas
After demonstrating accurate VECN classification, we developed and validated quantitative metrics to 

describe the phenotypes of microvascular structures (see Figure 4). Gliomas are among the most vascular 
solid tumors, with microvascular structures undergoing apparent transformations in response to signaling from 
neoplastic cells. Microvascular hypertrophy, or thickening of microvascular structures, represents an activated 
state where endothelial cells exhibit nuclear and cytoplasmic enlargement due to increased transcriptional 
activity. Microvascular hyperplasia represents the accumulation, clustering and layering of endothelial cells due 
to their local proliferation. While microvascular changes are understood to accompany disease progression, 
the prognostic value of quantitating their phenotypes in gliomas has not been established in the era of 
precision medicine, and may be beyond the capacity of human visual recognition.

Nuclear hypertrophy was scored using a nonlinear model to represent the continuum of VECN 
morphologies (see Methods). Nuclear scores were validated using 120 manually labeled VECN (45 
hypertrophic, 75 non-hypertrophic) to show that nuclei labeled as hypertrophic score significantly higher
(Wilcoxon p=8.63e-12). A hypertrophy index (HI) was then calculated to summarize hypertrophy at the patient 
level (see Methods). Hyperplasia was measured using a clustering index (CI) to capture the extent of 
proliferation and spatial clustering of VECN. CI was calculated at the patient level as the average number of 
VECN within a 50-micron radius centered at each VEC nucleus. CI was also compared to manual slide-level 
assessments of microvascular proliferation in 137 slides (18 presenting a multilayered phenotype) to show that 
images where multilayered structures are present associate with higher CI values (Wilcoxon p=3.61e-4).

Figure 3. Classifying vascular endothelial cells in gliomas. (A) We used active learning to train a classification rule to identify 
vascular endothelial cell nuclei in lower-grade gliomas (highlighted in green). (B) Prediction rule accuracy was evaluated using area-
under-curve (AUC) analysis. (C) AUC was evaluated at each active learning iteration to measure improvement in prediction 
accuracy. (D) For additional validation, we correlated the percentage of positively classified endothelial cells in each sample with 
mRNA expression levels of the endothelial marker PECAM1 using measurements from TCGA frozen specimens (image analysis 
measurements were performed in images of formalin-fixed paraffin embedded sections from the same specimens). 
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Microvascular phenotypes predict survival
Diffuse gliomas are the most common adult primary brain tumor and are uniformly fatal. Survival of 

patients diagnosed with infiltrating glioma depends on age, grade and molecular subtypes that are defined by 
IDH mutations and co-deletion of chromosomes 1p and 19q (22). The lower grade gliomas (grades II, III) 
exhibit remarkably variable survival ranging from 6 months to 10+ years. Aggressive IDH wild-type (IDHwt) 
gliomas having an expected survival of 18 months, where patients with gliomas having IDH mutations and 
1p/19q co-deletions (IDHmut-codel) can survive 10+ years. Gliomas with IDH mutations but lacking co-
deletions (IDHmut-non-codel) have intermediate outcomes with survival ranging from 3-8 years. The accuracy
of grade in predicting outcomes varies depending on subtype (23).

We first investigated associations between hyperplasia and hypertrophy, grade and molecular subtype 
in the TCGA cohort using CI and HI (see Figure 5A and Supplementary Table 1). We found that IDHwt gliomas 
exhibit a greater degree of microvascular hyperplasia than the less aggressive subtypes (Kruskal-Wallis 
p=8.43e-6), and that increased hyperplasia is also associated with higher grade within each molecular subtype 
(Wilcoxon IDHwt p=4.99e-4, IDHmut-non-codel p=1.96e-6, IDHmut-codel p=2.08e-4). While differences in 
microvascular hypertrophy across subtypes and grades were not statistically significant (Wilcoxon p=0.747), 
the median HI for grade III disease was higher within each subtype. We also explored subtypes by using 
median CI or HI values to stratify patients into high/low risk groups (see Supplementary Figure 6). Kaplan-

Figure 4. Quantitative phenotyping of microvasculature in gliomas. Microvascular structures undergo visually apparent changes in 
response to signaling within the tumor microenvironment. (A) We measured nuclear hypertrophy using a nonlinear curve to model the 
continuum of VECN morphologies. A hypertrophy index (HI) was calculated for each patient to measure the extremity of VECN nuclear
hypertrophy score values. (B) We validated nuclear scores using nuclei that were manually labeled nuclei as hypertrophic / non-
hypertrophic. (C) Examples of cell nuclei used in validation. (D) We implemented a clustering index (CI) to measure the spatial 
clustering of VECN as a readout of hyperplasia. CI measures the average number of VECN within a 50-micron radius of each VECN in 
a sample. (E) CI was compared to manual assessments of hyperplasia a multi-layered / not layered. (F) Example microvascular 
structures from two of the slides used in validating CI. 
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Meier analysis found these “digital grades” were marginally prognostic in IDHmut-codel gliomas (log-rank CI 
p=6.87e-2, HI p=5.09e-2) and IDHwt gliomas (CI p=4.68e-2), but remarkably neither CI nor HI could 
discriminate survival in the IDHmut-non-codel gliomas. Similar discrimination patterns were observed when 
stratifying by WHO grade.

After investigating associations with grade and subtype, we used a modeling approach to evaluate the 
prognostic value of microvascular phenotypes. Cox hazard models were created with various combinations of 
predictors including grade, subtype, CI and HI (see Figure 5B). Patients were randomly assigned to 100 non-
overlapping training / validation sets, and each was used to train and evaluate a model using Harrell’s 
concordance index (see Methods). Although HI-only models perform only slightly better than random (median 
c-index 0.58), HI+CI models perform significantly better than CI-only models (p=9.09e-17). HI+CI provide 
prognostic value independent of molecular subtype, improving the subtype c-index from 0.70 to 0.76. HI+CI
also performs as well as grade when combined with subtype (p=0.915), even though grade incorporates many 
more histologic criteria than microvascular appearance. Finally, HI+CI also have prognostic value independent 
of grade+subtype, increasing median c-index to 0.78 (Wilcoxon p=3.35e-11).
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Figure 5. Predicting survival of glioma patients with microvasculature phenotypes. (A) HI and CI were compared with important 
clinical metrics including WHO Grade and molecular subtype. (B) We trained cox hazard models using combinations of phenotypic 
and clinical predictors to assess their prognostic relevance and independence. Models were trained and evaluated using 100 
randomizations of samples to training/testing sets. The dashed line represents the c-index corresponding to molecular subtype in this 
cohort. (C) We compared the accuracy of models based on HI and CI generated using a classifier trained with active learning (red) 
with HI and CI generated using a standard classifier trained without active learning (purple).
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Active learning training improves prognostication 
 To evaluate the benefit of active learning training, we repeated our experiments using a classification 
rule trained with a standard approach where the expert constructs a training set without the aid of active 
learning feedback. Using the same image collections described above, 135 cell nuclei were labeled in the 
training images (roughly evenly split between VECN and non-VECN). A classification rule was trained using 
these labels and applied to the dataset to compare classification and prognostic modeling accuracies with the 
active learning classifier. 

The validation AUC of the standard classifier was 0.984 (AUC=0.964 for active learning classifier). 
While the AUC measured on the validation set was higher, the standard learning classifier is much less specific 
on the entire dataset, producing very high estimates of percent-VECN in the TCGA cohort ranging from 7.1-
57.2% (compared to 0.02–5.6% percent-VECN for active learning). Agreement between PECAM1 expression 
and percent-VECN was much lower for the standard classifier percent-VECN (Spearman rho=0.16 versus 
0.24). We calculated updated HI and CI metrics using the standard classifier results and found that prognostic 
models based on these metrics were no longer predictive of survival (see Figure 5C). The median c-index of 
models based on CI alone fell to <0.55 (Wilcoxon p=2.52e-34). Models incorporating HI+CI+subtype were also 
no longer equivalent to subtype+grade models (p=4.20e-34), and only slightly better than subtype. 
 
Integrating phenotypic measures with genomic information 

The molecular mechanisms of angiogenesis in gliomas have been studied extensively, and are 
targeted through anti-VEGF therapies like Bevacizumab (24). To investigate the molecular pathways 
associated with CI/HI, we performed gene-set enrichment analyses (25) to correlate CI and HI with mRNA 
expression. We analyzed IDHwt and IDHmut-codel gliomas separately since mechanisms may vary across 
subtype (IDHmut-non-codel gliomas were not analyzed). A partial list of pathways enriched at FDR q<0.25 
significance is summarized in Table 1 (extended results in Supplementary Table 3). 

Given the association between angiogenesis and hypoxia, we anticipated pathway analysis to identify 
strong relationships between microvascular phenotypes and classic hypoxia and metabolic glycolysis 
pathways. We found both HIF2A and VEGFR1/2 mediated signaling pathways were both upregulated with 
increasing CI and HI. Among the most strongly correlated genes were those involved in hypoxia and 
angiogenesis including VEGFA, VHL, ARNT, PGK1 (26), ADM (27), and EPO, as well as glycolytic response 
mediators HK1, PGK1, ALDOA, PFKFB3, PFKL and ENO1. Angiopoietin receptor (28) and Notch signaling 
(29) pathways were also significantly enriched in both glioma subtypes. 

Pathways with enrichment specific to IDHwt gliomas included Notch mediated regulation of HES/HEY 
(30), GLI-mediated hedgehog signaling (31), and SMAD signaling (32), all of which have been linked to 
angiogenesis or regulation of structure and fate in vascular endothelial cells. Pathways with enrichment 
specific to IDHmut-codel gliomas included WNT and beta-catenin signaling, and PDGFRA signaling (PDGFRA 
amplification is frequent in IDHmut-codel gliomas). 

We note that angiogenesis generally accompanies disease progression in gliomas, and that pathway 
enrichments may reflect molecular patterns associated more generally with disease progression in addition to 
angiogenesis-related microenvironmental signaling. 
 
DISCUSSION 

HistomicsML addresses the unique challenges presented by the scale and nature of whole-slide 
imaging datasets to enable investigators to extract phenotypic information. It is open-source and is available as 
a software container for easy deployment. 

The endothelial cell classifier trained with active learning was highly accurate, despite labeling only 135 
cell nuclei (AUC=0.9643). The visualization and learning capabilities of HistomicsML simplifies the training by 
enabling experts to rapidly label objects and to re-train and review classification rules in seconds. The web-
based interface provides remote access to terabyte datasets, and enables fluid and seamless display of image 
analysis boundaries and class predictions associated with 108+ histologic objects. Active learning directs  
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labeling efforts by guiding users to examples that provide the most benefit for classifier training, and improves 
efficiency by avoiding labeling of redundant examples. 

Phenotypic metrics obtained using our endothelial classifier were validated using human annotations, 
and able to accurately predict survival of lower-grade glioma patients. We identified significant associations 
between microvascular phenotypes, grade, and recently defined molecular subtypes of gliomas. These 
investigations are timely in the current era of precision medicine, in which prognostic biomarkers have not been 
established within newly emergent genomic classifications of cancers. While it has long been established that 
angiogenesis is related to disease progression in gliomas, we showed that HistomicsML can be used to 
precisely measure subtle changes in microvasculature that perform as well as grade in predicting survival. 
Active learning training was shown in these experiments to both improve prognostication and agreement 
between histologic and molecular markers of VECNs. Integrating phenotypic metrics with genomic data 
identified recognized molecular pathways associated with angiogenesis and disease progression. These 
analyses are a template for how HistomicsML can link histology, clinical and genomic data to explore the 
prognostic and molecular associations of histologic phenotypes in other diseases. Histology contains important 

Table 1. Molecular pathways enriched with phenotype-correlated transcripts. Gene set enrichment analysis of the correlations 
between HI / CI and gene expression identified multiple pathways associated with gliomas and vascularization. Many of the 
significantly enriched pathways are specific to one molecular glioma subtype. Extended results are presented in Supplementary 
Table 2. 

Pathway Group Pathway name Leading-edge genes Subtype / metric 
(directionality) 

Nominal p-value 
(FDR q-value) 

Classiscal 
angiogenesis 

pathways 

* HIF1-alpha 
transcription factor 

PFKL, PFKFB3, ALDOA, 
PGK1, HK1 

IDHmut-codel / HI (+) 
IDHmut-codel / CI (-) 

0.033 (0.179) 
< 0.001 (0.116) 

HIF2-alpha 
transcription factor VEGFA, VHL, ARNT IDHwt / CI (+) 

IDHmut-codel / CI (+) 
0.004 (0.017) 
0.024 (0.116) 

VEGFR1/2 mediated 
signaling BRAF, MAPK1/14 IDHwt / HI (+) 

IDHmut-codel / CI (+) 
0.012 (0.144) 
0.009 (0.12) 

* VEGFR1 specific 
signals MAPK1, NRP1/2 IDHwt / HI (+) 0.007 (0.19) 

Angiopoeitin receptor 
TIE-2 mediated 

signaling 
MAPK1/14, NFKB1, PIK3C 

IDHwt / HI (+) 
IDHwt / CI (+) 

IDHmut-codel / CI (+) 

0.014 (0.147) 
0.015 (0.063) 
0.009 (0.087) 

* PDGFRA signaling PIK3CA, FOS, PDGFRA IDHmut-codel / HI (+) 0.014 (0.08) 

Developmental 
signaling pathways 

Notch signaling 
network 

NOTCH1, MAML1/2, MYC IDHwt / CI (+) 
IDHmut-codel / CI (+) 

< 0.001 (< 0.001) 
0.02 (0.146) 

* Notch mediated 
HES/HEY network 

HEY1, NOTCH1, MAML1/2, 
HIF1A 

IDHwt / HI (+) 
IDHwt / CI (+) 

0.007 (0.143) 
< 0.001 (< 0.001) 

* WNT signaling WNT3A, GSK3B IDHmut-codel / CI (+) 0.021 (0.085) 

* Regulation of 
nuclear beta catenin 

signaling 
 IDHmut-codel / CI (+) 0.004 (0.054) 

* GLI-mediated 
Hedgehog signaling  IDHwt / CI (+) 0.015 (0.063) 

Other pathways 

* Regulation of 
SMAD2/SMAD3 

signaling 

SMAD3/4, MAPK1, 
MAP3K1 

IDHwt / HI (+) 
IDHwt / CI (+) 

0.002 (0.008) 
0.024 (0.139) 

* SMAD2/SMAD3 
nuclear signaling 

SMAD3/4, CDK2/4, 
CDKN1A, AKT1, MYC IDHwt / CI (+) < 0.001 (< 0.001) 

* FOXM1 
transcription factor 

network 

FOXM1, GSK3A, MYC, 
FOS IDHmut-codel / CI (+) < 0.001 (< 0.001) 
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information that can be difficult or impossible to ascertain through genomic assays. Recent developments in 
the deconvolution of gene expression data can accurately estimate the proportions of cell types in a sample, 
but these approaches cannot provide spatial or morphologic information that often contains considerable 
prognostic or scientific value. 

Future development of HistomicsML will focus on enabling the classification of image-regions and 
improved scalability for larger datasets. Classification of image regions characterized by texture analysis or 
autoencoders can address the classification of complex multicellular structures while avoiding the need for 
explicit segmentation and is a simple extension of HistomicsML. The memory footprint of feature data is 
currently a limitation that prevents HistomicsML from scaling to larger datasets. We plan to improve memory 
management, and to utilize commodity graphics processors to enable better scalability. 
 
METHODS 
 
Data. Whole slide images, clinical and genomic data were obtained from The Cancer Genome Atlas via the 
Genomic Data Commons (https://gdc.cancer.gov/). Images of formalin-fixed paraffin-embedded “diagnostic” 
sections from the Brain Lower Grade Glioma (LGG) cohort were reviewed to remove images of sections with 
tissue processing artifacts including bubbles, section folds, pen markings and poor stain quality. For this paper 
a total of 781 whole-slide images were analyzed. Genomic data (described below) was derived from frozen 
materials from the same specimens. The relationship of diagnostic sections and frozen materials is unknown, 
other than that they originate from tissues produced during the same surgical resection. 
 
Image analysis segmentation and feature extraction. The software pipeline used to segment cell nuclei and 
measure their histomic features is shown in Supplementary Figure 1. This pipeline utilizes algorithms provided 
by the HistomicsTK Python library for histologic image analysis 
(http://github.com/DigitalSlideArchive/HistomicsTK) to perform color normalization, nuclear masking and 
splitting, feature extraction, and database ingestion. Each whole slide image was normalized to a standard 
H&E with desirable color characteristics using Reinhard normalization. Tissue pixels were first masked from 
the background using linear discriminant analysis and then the mean and standard deviation of the tissue 
pixels in the L*A*B color space were calculated. These moments were mapped to match the moments of a 
color standard image prior to inversion back to RGB color space. This color normalization process 
considerably improves the quality of subsequent image analysis steps, improving the consistency of 
segmentation results and image features. Whole slide images were tiled into 4096 x 4096 pixel tiles and 
processed independently to highlight cell nuclei a color deconvolution algorithm was first applied to digitally 
separate the hematoxylin and eosin stains. The deconvolved hematoxylin intensity images were then masked 
to identify pixels corresponding to cell nuclei using a combination of adaptive thresholding and morphological 
reconstruction to remove background debris. Closely packed nuclei were then split using a watershed 
segmentation applied to the laplacian-of-gaussian response of the hematoxylin image. Each nucleus was 
described using a set of 48 features describing its shape, intensity and texture. These features include 
eccentricity, solidity and fourier shape descriptors (shape), statistics of hematoxylin signal including variance, 
median, mean, min/max, kurtosis, skew and entropy (intensity) and statistics of hematoxylin intensity gradients 
(texture). Color normalization, segmentation and feature extraction are carried out in a cluster-computing 
environment using Torque to distribute slides to different computing nodes. Boundaries generated by 
segmentation are stored in a text-delimited format and ingested into a SQL database to drive visualization in 
the web-based interface. Features are stored as matrices in a structured HDF5 format and stored on a RAID 
array along. Prior to machine learning analysis all features are z-scored using the aggregate mean and 
standard deviation calculated across the feature profiles of every cell in the dataset. 
 
Validation and training. We selected 67 digital slides from the LGG cohort to serve as a validation set for 
measuring the performance of a vascular endothelial classifier. In each slide, we selected a field containing a 
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mixture of nuclei from vascular endothelial cells and other cell types (tumor nuclei and inflammatory cells, for 
example). Each correctly segmented nucleus in the field was labeled as either vascular endothelial or other. 
Incorrectly segmented nuclei and nuclei that were too ambiguous to classify with a high degree of certainty 
were ignored. In total 2479 cell nuclei were labeled. Each annotation was reviewed by a board-certified 
neuropathologist using our review function. Classifiers used for reporting accuracy results were trained using a 
mixture of instance-based and heatmap-based review. 

Labels to validate hypertrophy index and clustering index were acquired by manual inspection of digital 
slide images by a board-certified pathologist who was blinded to the computer-generated HI and CI scores. A 
selection of 120 cell nuclei classified as VECN were labeled as either hypertrophic (45 nuclei) or non-
hypertrophic (75 nuclei) using our the HistomicsML Review tool. Nuclear hypertrophy scores were compared 
for these manually labeled nuclei using a non-parametric Wilcoxon sign rank test. For clustering index, 137 
slides were manually reviewed to determine if they present microvascular hyperplasia and proliferation (multi-
layered vessels). CI scores were compared for slides containing multi-layered vessels and slides not 
containing multilayered vessels using the Wilcoxon test. 
 
Software. All source code for the active learning system are published under a Apache 2.0 license at 
(https://github.com/cooperlab/ActiveLearning). In addition to source, we have published a software container at 
(https://hub.docker.com/r/histomicsml/active/) for easy deployment. This Docker container comes with sample 
data loaded from a single whole-slide image. 
 
Machine learning. The active learning paradigm is agnostic to the specific choice of classifier, and any 
classifier that provides a measure of prediction confidence can be utilized. In our implementation we chose 
random forests due to their resistance to overfitting, computational efficiency and simplicity in design (see 
Supplementary Figure 4). We used the implementation provided by the OpenCV (v2.4.10) machine learning 
library. The parameters for the random forest implementation are the number of trees (fixed at 100), each tree 
with a fixed maximum depth of 10, and a variable number of features selected for node splits (calculated as the 
floor of the square root of number of histomic features for each object). The prediction confidence for each 
object is calculated by voting on the predictions of the trees. Prediction confidence for a random forest 
classifier evaluated on object i is calculated as  
 
Eq.1.  !" = $%&

%'( , $% ∈ −1,1 , 
 
where tj is the prediction tree j of N total trees. Maximum prediction confidence is achieved if all trees are in 
consensus on the predicted class. Minimum confidence is achieved if the trees are evenly split. When applying 
prediction to tens or hundreds of millions of objects, multiple threads are spawned on the server to minimize 
user delay and to maintain system responsiveness. 
 
Endothelial clustering index. CI was calculated using a spatial statistic based on a modified version of 
Ripley’s K-function (36). Ripley’s K-function, originally developed for geographic and epidemiologic 
applications, captures the “degree of spread” of events in spatial domains. Since microvascular hyperplasia 
and proliferation are, by definition, associated with increases in VECN density, we excluded Ripley’s density 
normalization in our proliferation metric. We also ignored edge-effect corrections due to the extremely large 
number of objects and the relative rare scarcity of objects at the edge of tissue sections. CI was calculated as: 
 
 
Eq.2. -. / = (

0 Ω" , Ω" = 2",% ≤ / , 2",% = 4" − 4% 5
0
"'( , 
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where K is the number of objects/nuclei in the image, di,j is the Euclidean distance between objects i, j, τ  is a 
positive search radius. This effectively calculates the average number of objects within distance τ of each 
object in the slide. In our experiments, CI was calculated for objects positively classified as VECN with a 
search radius of τ = 50-microns. KD tree indexing was used to accelerate the computational search for 
neighboring VECN. 
 
Endothelial hypertrophy index. The first step in calculating HI is to score the morphology of individual nuclei 
classified as VECN. A principal curve was trained to model the continuum of VECN morphologies and then 
used to score the extent of hypertrophy of each VECN nucleus (37). The principal curve was used to model the 
histomic features of VECN with a one-dimensional nonlinear curve, modeling the morphologic continuum of 
from small, thin normal appearing vascular endothelial nuclei to enlarged hypertrophic nuclei that are reactive 
to the surrounding tumor microenvironment. The principal curve models the feature vector values fi of object i 
as 
 
Eq. 3. 6" = 7 8" + :"  
 
where g is a 1D nonlinear curve in feature space parameterized by the free variable l, and ei is a random 
component. After fitting the principal curve, each nucleus is scored by projecting its feature profile onto the 
curve, and calculating the path length from the projection to the curve origin 
 
Eq. 4. ;" = ∥ 7′(?) ∥ 2?AB

AC  
 
where l0 is the origin of the curve, li is the location of the least-squares projection of fi onto the curve, and g’ is 
the curve tangent function. Nuclei that are more hypertrophic in the morphologic continuum will have longer 
path length values and thus higher nuclear scores. Our analysis constructed the principal curve using histomic 
shape features for nucleus area, eccentricity and perimeter. The directionality for the beginning/end of the 
curve was established by initializing the curve fitting with a single normal appearing nucleus and a single 
hypertrophic nucleus. 
 
At the patient-level, HI was calculated to represent the population-level skew of VECN towards more 
hypertrophic morphologies. HI was measured as the negative skew of nuclear scores 
 

Eq. 5. D. = − (
0 ;" − ; E (

0F( ;" − ; 50
"'(

FE0
"'( , 

  
where K is the number of objects/nuclei in the image, si is the hypertrophy score of object i, and ; is the mean 
hypertrophy score. This statistic increases in value as the right tail of the score distribution grows. 
 
Clinical and genomic data. Genomic and clinical data were acquired using the TCGAIntegrator Python 
interface (https://github.com/cooperlab/TCGAIntegrator) for assembling integrated genomic and clinical views 
of TCGA data from the Broad Institute Genomic Data Analysis Center Firehose 
(https://gdac.broadinstitute.org/). The same genomic platforms were used across all experiments. Gene 
expression values were taken as RSEM values from the Illumina HiSeq 2000 RNA Sequencing V2 platform. 
Genomic classifications for IDH/1p19q status were obtained from the Supplementary Material of (38). 
 
Pathway analysis. Agreement between gene expression and HI / CI was measured using Spearman rank 
correlation between RNAseq values and CI or HI values. To account for the fact that each subtype and metric 
may have different molecular mechanisms, we performed four gene set enrichment analyses: IDHwt/HI, 
IDHwt/CI, IDHmut-codel/HI, and IDHmut-codel/CI. We did not analyze gliomas from the IDHmut-non-codel 
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subtype since microvascular phenotypes were not found to be prognostic within this group. Gene symbols 
were filtered to remove entries not present or aliased in the HUGO Gene Nomenclature Database 
(http://www.genenames.org/) (39). Spearman correlations were used to construct an .rnk file for each of the 
four analysis scenarios described above, and used to perform a Gene Set Enrichment Analysis using the 
GSEAPreranked (v4.2) module in GenePattern with 1000 permutations. We tested enrichment for pathways 
described in the NCI/Nature Pathway Interaction Database (PID) using a version of the MSigDB 
(http://software.broadinstitute.org/gsea/msigdb) C2 Curated Gene Sets that was filtered to remove non-PID 
pathways. We reported both the nominal p-values as well as FDR-corrected q-values produced by GSEA in 
Table 1 and Supplementary Table 2. 
 
Statistical testing and prediction performance measures. Variations in HI/CI across molecular subtypes 
and grade were evaluated using the Wilcoxon test where the independent variable is binary (i.e. grade) or the 
Kruskal-Wallis test for multi-category independent variables (i.e. molecular subtype). Survival differences in 
cohorts were evaluated using the log-rank test. Classifier performance was reported as area under receiver 
operating characteristic curve, calculated on the signed prediction confidence values pi generated by the 
random forest classifier. Classification accuracy was reported using a zero-threshold on prediction confidence 
values. The performance of prognostic models was reported using Harrell’s concordance index (40). 
 
Computing hardware. All studies were performed using a multi-socket multicore server equipped with two 
Intel Xeon e5-2680 v3 2.5GHz processors (total 24 cores / 48 threads), 128 GB memory, and 14 TB main disk 
storage in a RAID10 array. 
 
Data availability. This paper was produced using large volumes of publicly available image data. The authors 
have made every effort to make available links to these resources as well as making publicly available the 
software methods used to produce these analyses and summary information. All data not published in the 
tables and supplements of this article are available from the corresponding author on request. 
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