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Figure 2. Responses to the conditions of the localizer tasks in each fROI. The language fROIs (top) are defined by 

the sentences > nonwords contrast; the MD fROIs (middle) are defined by the hard > easy spatial working memory 

contrast; and the DMN fROIs (bottom) are defined by the easy > hard spatial working memory contrast. The 

responses to the conditions used for defining the fROIs are estimated using across-runs cross-validation, to ensure 

independence. Left: left-hemispheric fROIs (L prefix). Right: right-hemispheric fROIs (R prefix). Significant effects 

(after an FDR-correction for multiple comparisons within each network) are marked with a black star. IFG: inferior 

Frontal Gyrus; IFGorb: IFG pars orbitalis; MFG: middle frontal gyrus; AntTemp: anterior temporal cortex; 

PostTemp: posterior temporal cortex; AngG: angular gyrus; IFGop: IFG pars opercularis; MFGorb: MFG, orbital 

part; PrecG: precentral gyrus; SMA: supplementary motor area; InfPar: inferior parietal cortex; SupPar: superior 

parietal cortex; AntCing: anterior cingulate cortex; FrontMedOrb: medial frontal cortex, orbital part; FrontMedSup: 

medial frontal cortex, superior part; PostCing: posterior cingulate cortex; TPJ: temporo-parietal junction. 
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Figure 3. Pearson correlations, across 60 participants, for effect sizes of localizer contrasts across pairs of fROIs. 

For each fROI, the effect size is for the contrast used to define that fROI (but estimated in independent data): for the 

12 language regions (labeled in red font), the sentences > nonwords contrast from the language localizer task was 

used; for the MD regions (blue font), the hard > easy spatial WM contrast was used; and or the DMN regions (green 

font), the easy > hard spatial WM contrast was used. 

Critically, in line with the distinct functional profiles reported above, we also observe a 

clear dissociation between the language network and the DMN. The average correlation between 
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the sentences > nonwords effect size in a language region and the easy > hard effect size in a 

DMN region is 0.09 (CI95%=[-0.08, 0.26]). This is significantly lower than the within-language 

correlations (p≈0) and the within-DMN correlations (0.66, CI95%=[0.58, 0.74]; p≈0). The DMN 

is also dissociated from the MD network, with between-network correlations in effect size (0.26, 

CI95%=[0.08, 0.43]) significantly lower than those within each network (both p≈0). 

A similar dissociation among the three networks obtains in the right hemisphere, as 

shown in Figures 3 and 4: the mean pairwise correlations within the language network (0.47, 

CI95%=[0.36, 0.58]) and within the MD network (0.65, CI95%=[0.54, 0.75]) are stronger than the 

mean language-MD pairwise correlation (-0.05, CI95%=[-0.18, 0.11]; both p≈0); the correlations 

within the language network and within the DMN (0.64, CI95%=[0.54, 0.74]) are stronger than 

language-DMN correlations (0.04, CI95%=[-0.10, 0.17]; both p≈0); and the correlations within the 

MD network and within the DMN are stronger than MD-DMN correlations (0.25, CI95%=[0.09, 

0.40]; p≈0 and p<10-13, respectively). 

Furthermore, the language network shows a robust lateralization effect in this novel 

measure, such that LH language fROIs are more correlated among themselves than they are with 

RH language fROIs (mean inter-hemispheric correlation: 0.22, CI95%=[0.03, 0.40]; p<10-12), and 

the same is true for correlations among RH language fROIs (p<10-6). These findings are in line 

with prior functional correlation studies (e.g., Blank et al., 2014; Gotts et al., 2013) and dynamic 

network modeling studies (e.g., Chai et al., 2016). In contrast, this laterality effect is not 

observed in either the MD network (mean inter-hemispheric pairwise correlation: 0.62, 

CI95%=[0.50, 0.73]; compared to LH correlations, p=0.40; compared to RH correlations, p=0.97) 

or the DMN (mean inter-hemispheric correlation: 0.68, CI95%=[0.58, 0.76]; compared to LH 

correlations, p=1; compared to RH correlations, p=0.72). A direct comparison of laterality 

effects across networks further confirms that they are stronger in the language network than in 

either the MD or the DMN, for both the LH (both p<10-5) and the RH (MD: p=0.001; DMN: 

p<10-5). A related, potentially interesting observation is that MD fROIs are more correlated with 

the LH language fROIs than they are with the RH homologues (LH MD fROIs: p=0.01; RH: 

p=0.003). In all other cases, across-network correlations in effect-size do not show such 

laterality. 
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Figure 4. Correlations in effect sizes across participants, computed either within networks (strong colors) or 

between networks (faint colors). Each point is a pairwise correlation between the effect sizes of two fROIs, one from 

the network/hemisphere denoted on the x-axis, and one from the network/hemisphere denoted by the subplot titles 

(top: language; middle: MD; bottom: DMN; left: left hemisphere; right: right hemisphere). Horizontal lines show 

averages across these pairwise correlations. 

These findings, revealed via hypothesis-driven tests in which sets of fROIs are compared 

to each other based on a pre-determined division into functional networks, are also supported by 

a hypothesis-neutral, data-driven analysis (Figure 5). Namely, hierarchically clustering all fROIs 

into a tree-structure based on their pairwise correlations in effect size – without a-priori 

information on their network assignments – recovered the dissociation among language, MD and 

DMN fROIs as well as the associated laterality patterns. Specifically, the tree obtained from this 

clustering contained four branches precisely corresponding to the LH language, RH language, 

bilateral MD, and bilateral DMN networks. This partition had the highest modularity value 
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compared to all other partitions, both finer and grosser, that were licensed by the tree – indicating 

that it was the overarching organizing principle in our data. (In contrast to the branching of 

language fROIs by hemisphere, the MD and DMN branches were overall organized by inter-

hemispheric homology such that many fROIs clustered with their respective contra-lateral 

homologues before forming larger clusters with one another.) 

 

Figure 5. Hierarchical clustering results. In the binary tree shown, branch length (i.e., horizontal lines) 

corresponds to the similarity between fROIs (or sets of fROIs). Above the tree, modularity is plotted for 

all fROI partitions licensed by the tree. Each point on the modularity plot corresponds to a partition 

generated by drawing an imaginary vertical line from that point through the tree and clustering together 

only those fROIs that are merged to the left of this line (fROIs that are merged to the right of the line 

remain in separate clusters). A sample vertical line is drawn for the maximal modularity.  
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The results reported above are all based on correlations between effect sizes from the 

language localizer task (in language fROIs) and effect sizes from the spatial working-memory 

task (in MD and DMN fROIs). Differences between these two tasks might therefore trivially 

account for the functional dissociation among the three networks. In order to reject this account, 

we re-computed our critical measure – i.e., inter-region correlations in effect size across 

participants – based on data from a single localizer contrast across all fROIs. Specifically, we 

measured the sentences > nonwords effect size in each language, MD and DMN fROI and, then, 

compared the average inter-regional correlation within the language network to the average 

language-MD correlation and the average language-DMN correlation. Similarly, we measured 

the hard > easy (or easy > hard) effect size in each fROI and, then, compared the average inter-

regional correlation within the MD (DMN) network to the corresponding inter-network 

correlations. The results of this analysis are presented in Table 1. Consistent with our main 

analysis, they indicate a clear tri-partite dissociation across the three networks.  

Table 1. Mean inter-regional correlations in contrast-

specific effect sizes across participantsa 

 

Localizer contrast 

r 

LH RH 

Reading: Sentences > Nonwords   

Within language 0.54 0.47 

Language vs. MD 0.10 0.16 

Language vs. DMN 0.30 0.09 

Spatial WM: Hard > Easy   

Within MD 0.66 0.65 

MD vs. language 0.10 0.13 

MD vs. DMN -0.26 -0.25 

Spatial WM: Easy > Hard   

Within DMN 0.66 0.64 

DMN vs. language 0.38 0.25 

DMN vs. MD -0.26 -0.25 

a All within-network correlations are stronger than their 

respective across-network correlations at p<10-7 

Discussion 

The current study examined the relationship among three large-scale functional networks that 

support high-level cognitive processes: the language network, the multiple demand (MD) 

network, and the default mode network (DMN). To do so, we (a) characterized the functional 
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response profiles of each network, and (b) employed a novel analytic approach that tested, across 

participants, the correlations in response magnitude among the fROIs within each network vs. 

between networks. Using both analyses, we replicate the dissociation between the language and 

MD networks (e.g., Blank et al., 2014; Fedorenko et al., 2011; Fedorenko et al., 2013; Paunov et 

al., submitted), as well as the well-established dissociation between the MD network and the 

DMN. Critically, we further demonstrate that the language network is also robustly dissociable 

from the DMN: the former, but not the latter responds strongly during language processing and, 

whereas regional effect sizes strongly co-vary across individuals within each network, there is 

little or no such correlation between the two networks. In other words, if an individual shows a 

strong response to language processing (the functional signature of the language system) in one 

language region, they will also show a strong response in other language regions. Similarly, if an 

individual shows strong deactivation to a demanding task (the functional signature of the DMN) 

in one DMN region, they will also show strong deactivation in other DMN regions. However, the 

strength of the response to language processing in a language region bears little information on 

how much a DMN region will deactivate (or how much a region of the MD network will 

respond) to a demanding task. 

These results have two implications. The first one is methodological: inter-individual 

differences in effect sizes do not simply reflect general variability in either brain structure (e.g., 

vascularization affecting the fMRI BOLD signal) or in behavioral/cognitive states (e.g., 

attention). If this were the case, we would expect effect sizes in different brain regions to 

strongly co-vary across individuals, regardless of their functional profiles. Instead, such inter-

individual differences appear to be sensitive to the functional architecture of the brain, respecting 

its division into distinct, large-scale neural networks. Thus, inter-region correlation in effect size 

across individuals is a powerful new measure for discovering functional dissociations among 

neural systems and, possibly, even at a finer grain within each system. 

The second implication is theoretical. The prior literature has left the relationship 

between the language network and the DMN ambiguous. In particular, methods that cluster 

voxels across the brain based on their respective activity time-courses sometimes recover a 

network that looks like a combination of the language network and the DMN (e.g., Yeo et al., 

2011); this result appears to depend, in part, on the pre-specified number of clusters that such 

analyses are constrained to produce. Further, although the language regions show no response to 
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non-linguistic demanding tasks (and are thus clearly dissociable from the domain-general MD 

network), they sometimes show deactivation to such tasks, much like the DMN (e.g., Fedorenko 

et al., 2011; see also Figure 2, top panel). Finally, both the language and the DMN regions have 

been linked to semantic / conceptual processing (e.g., Binder et al., 2009; Jackson et al., 2016; 

Wirth et al., 2011). However, we find a clear and robust functional dissociation between the 

language network and the DMN. This finding suggests that, in spite of some functional 

similarities between these two networks, and in spite of the fact that some of their regions lie in 

close proximity to one another, these two networks likely support distinct computations. Thus 

even if both networks get engaged in the service of the same goal (supporting some aspects of 

conceptual processing; e.g., Binder et al., 2009), they plausibly differ in their respective 

contributions and should be treated as cognitively separable when hypotheses about their 

functions are evaluated. 
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