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Abstract

While tumor genome sequencing has become widely available in clinica and research settings, the
interpretation of tumor somatic variants remains an important bottleneck. Most of the alterations observed in
tumors, including those in well-known cancer genes, are of uncertain significance. Moreover, the information
on tumor genomic alterations shaping the response to existing therapies is fragmented across the literature
and several gpecialized resources. Here we present the Cancer Genome Interpreter
(http://www.cancergenomeinterpreter.org), an open access tool that we have implemented to annotate
genomic alterations and interpret their possible role in tumorigenesis and in the response to anti-cancer

therapies.

New computational toolsto support the inter pretation of tumor genomes are needed


http://www.cancergenomeinterpreter.org/
https://doi.org/10.1101/140475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/140475; this version posted June 13, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cancer is predominantly a genetic disease, caused by the accumulation of so-called “driver” genomic
aterations that confer cells tumorigenic capabilitiest. Thousands of tumor genomes are sequenced every year
in research projects and clinical settings around the world. In some cases the whole-genome is sequenced
while other focus on the exome or a panel of selected genes. In all cases, the sequencing is followed by the
necessity to annotate which of the somatic mutations identified have a possible role in tumorigenesis and
treatment response. We call this process ‘the interpretation of cancer genomes and it is currently a tedious
procedure. One of its major bottlenecks is identifying the driver aterations. A widely employed approach to
solve this hurdle consists in focusing on the mutations affecting known cancer genes, i.e., tumor suppressors
and oncogenes. These were initially identified through experimentation, giving rise over the past 40 yearsto a
census of human cancer genes?. More recently, large re-sequencing projects have provided the opportunity to
systematically identify the genes involved in tumorigenesis by detecting signals of positive selection in their
alterations pattern across about two dozen malignancies®. Nevertheless, many somatic variants in tumors,
even those in cancer genes, still have uncertain significance and thus it is not clear whether or not they are
drivers. Another hurdle in the interpretation of cancer genomes concerns one of its crucial aims: the
identification of tumor alterations that may affect treatment options. Unstructured information on the
effectiveness of therapies targeting specific cancer driversis continuoudy generated by clinical trials and pre-
clinical experiments. In summary, novel computational tools are required to address the two aforementioned
critical challenges. This includes, on the one hand, methods to estimate the oncogenic effect of the variants
observed in a tumor (i.e., identifying validated driver variants and providing some estimation for variants of
unknown significance), and on the other, resources that systematically gather the information on biomarkers

of drug response and organize them according to distinct use requirements.

The Cancer Genome Interpreter

Here, we describe the Cancer Genome Interpreter (CGl), a platform that systematizes the interpretation of
cancer genomes and makes it automatic. The specific aim of the CGI is to determine which alterations
observed in a tumor are more likely to be drivers and identify those that may congtitute biomarkers of
response to therapies (Fig. 1; detailsin Supp. Note ). CGI relies on existing knowledge collected from several
resources and on computational methods that annotate the alterations in a tumor according to distinct levels of
evidence. The tool is afredly available web-resource under an open license, which is intended to facilitate its
use by cancer researchers and medical oncologists (http://cancergenomeinterpreter.org). In the following
sections we present a blueprint for the interpretation of cancer genomes and describe its implementation in
the CGlI.

A comprehensive catalog of cancer genes across tumor types
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One of the main aims of the interpretation of cancer genomes is to identify the alterations responsible for
oncogenic traits. We propose that this process begins with a focus on alterations that affect the genes capable
of driving the growth of a particular tumor type. Therefore, we compiled a catalog of genes involved in the
onset and progression of different types of cancer, obtained via different methods and from different sources
(Supp. Note II). First, we collected genes that have been experimentally or clinicaly verified to drive
tumorigenesis from manually annotated resources?™° and the literature. Second, we exploited the
bioinformatics results from the analysis of large tumor cohorts re-sequenced by international efforts such as
The Cancer Genome Atlas and the International Cancer Genome Consortium®*2, On detail, we identified
genes whose somatic alterations exhibit signals of positive selection across 6,729 tumors representing 28
types of cancer“. In addition, we retrieved the mode of action of each of these cancer genes (i.e., whether they
function as an oncogene or a tumor suppressor), curated following state-of-the art knowledge when available
and otherwise estimated in silico®®. The resulting Catalog of Cancer Genes currently comprises 837 genes
with some evidence of being driversin 193 different cancer types (Fig. 2a). We annotated each of these genes,
identifying (i) the malignancies it drives, organized according to available evidence; (ii) the types of
aterations involved (mutations, copy number alterations and/or gene translocations); (iii) the original
source(s) reporting it; (iv) the context (germline or somatic) in which these aterations are tumorigenic; and
(v) its mode of action as appropriate. The Catalog is available for download through the CGI website
(https://www.cancergenomei nterpreter.org/genes).

Most mutations affecting cancer genesare of uncertain significance

A key aspect of assessing the mutations observed in cancer genes is the tumorigenic potential of each
individual variant, as not al of them are necessarily capable of driving tumorigenesis. Therefore, the CGI
next focuses on protein affecting mutations (PAMSs) that occur in genes of the Catalog of Cancer Genes.
Validated tumorigenic mutations may confidently be labeled as drivers when detected in a tumor. We
compiled an inventory that currently contains 3,939 such validated driver or cancer predisposing variants
from dedicated resources™°* and the literature (Fig. 2B and Supp Note I11). This Catalog of Vaidated
Oncogenic Mutations is avalable for download through the cal website
(https.//www.cancergenomeinterpreter.org/mutations). In the pan-cancer cohort of 6,792 sequenced tumors*
only 4,142 (630 unique variants) of the 44,648 PAMs found in cancer genes appear in this Catalog. In other
words, 90.7% of all PAMSs that affect cancer genes in this cohort are currently of uncertain significance for
tumorigenesis, a proportion that varies widdly per gene and tumor type (Fig. 2c and Supp Note VII). This
highlights the need for a means to estimate the tumorigenic potential of these variants. We reasoned that
several features of each specific mutation as well as of the genes affected by them could help address this

guestion. Moreover, we propose that some of these features of interest can be extracted from the analyses of
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large sequenced cohorts of healthy and tumor tissue*®s. Examples of relevant attributes include the following:
i) the tumorigenic mode of action of the gene in that cancer (oncogene or tumor suppressor); ii) the
conseguence type of the mutation (e.g. synonymous, missense or truncating); iii) its position within the
transcript; iv) whether it falls in a mutational hotspot or cluster; v) its predicted functional impact; vi) its
frequency within the human population; and vii) whether it occurs in a domain of the protein that is depleted
of germline variants. The CGI assesses the tumorigenic potential of the variants of unknown significance via
OncodriveMUT, a rule-based approach that combines the values of these features (Fig. 1C; Supp. Note IVa).
To assess the performance of OncodriveMUT in the task of classifying driver and passenger mutations, we
used the Catalog of Validated Oncogenic Mutations (n=3,939) and a collected set of neutral PAMs affecting
cancer genes (n=1,247). We found that OncodriveMUT separates the variants of these two data sets with 91%
of accuracy (Matthews corréation coefficient, 0.78) (Supp Note IVb). Furthermore, the predictions of
OncodriveMUT exhibited a high concordance with the results of experiments assessing the tumorigenic effect
of other mutations that are uncommonly seen in cancer®° (Supp Note IVb). In summary, the CGI annotates
the mutations affecting cancer genes with features relevant to their potential role in cancer to facilitate the
user's review, identifying validated drivers and classifying the most likely drivers among the variants of

unknown significance.

A database of genomic determinants of anti-cancer drug response

The second major aim of the effort to interpret cancer genomes is to identify which of the tumor alterations
may shape the response to anti-cancer therapies. Findings about the influence of genomic alterations on drug
response are continuously generated and reported through publications, clinical trials and conference
communications. The chalenge resides in gathering relevant results into an easy-to-use resource, and
organizing them according to the needs of different users. The CGI employs two resources to explore the
associations between gene aterations and drug responses. The first is the Cancer Biomarkers database, an
extension of a previous collection of genomic biomarkers of anti-cancer drug response®, which currently
contains information on 1,574 genomic biomarkers of response (sensitivity, resistance or toxicity) to 221
drugs across 79 types of cancer. Negative results of clinical trials, e.g. the unsuccessful use of BRAF V600
inhibitors as a single therapeutic agent in colorectal cancers bearing that mutation, are also included in the
database. Importantly, these biomarkers are organized according to the level of clinical evidence supporting
each one, ranging from results of pre-clinical data, case reports, and clinical trias in early (1/11) and late
phases (111/1V) to standard-of-care guidelines. The database is under continuous update by a board of medical
oncologists and cancer genomics experts (Fig. 3A and Supp. Note V). The second resource is the Cancer
Bioactivities database, which currently contains information of 20,243 chemical compounds-protein product

interactions that may support novel research applications. We built this database by compiling a catalog of
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available results from bioactivity assays of small molecules interacting with cancer genes. This information
was obtained by querying several external databases (Supp. Note V1). The CGI matches biomarkers or target
genes in these databases to aterations observed in tumors. Of note, it reports co-occurring alterations that
affect the response to a given treatment. This includes the co-existence of biomarkers of resistance and
sensitivity to the same drug, and biomarkers of drug sensitivity that depend upon simultaneous genomic

events.

In summary, these two databases constitute comprehensive repositories of genome-guided therapeutic
actionability in cancer according to current supporting evidences. Both resources are available for download

through the cal website (https://www.cancergenomei nterpreter.org/biomarkers,

https://www.cancergenomeinterpreter.org/bioactivities). The integration of these two databases with

those developed in parallel by other institutions with similar purposes is currently being undertaken within
the framework of the Global Alliance for Genomics & Health?, described below.

Current applications and future prospects of the CGI

The CGlI (and the databases gathered for its implementation) are under open license, and the resource can be
accessed via the web resource and an Application Programming Interface (API; see Supp. Note Ic and Id).
The use of the CGI to automatically interpret cancer genomes has broad potential applications, ranging from
basic cancer genomics to the trandlational setting. One feature of the CGI that makes it particularly suitable to
different types of applications is its flexibility. The user can input tumor alterations by uploading files
following different standards and/or by typing them in a free-text box. The system is prepared to automatically
recognize and re-map as necessary different formats, such as genomic, transcript or protein-based coordinates
for mutations (Supp. Note Ib). The use of the CGI can help addressing questions raised in different oncology
research settings. A newly sequenced group of tumors may be readily interpreted, as exemplified with the
pan-cancer cohort presented in this article. The application of the CGI to the mutations profiled across the
whole exomes of these tumors delivered a catalog of putative driver aterations across its 28 cancer types
(made avail able through http://www.intogen.org) (Suppl Note VII). The potential of a comprehensive analysis
of individual alterationsisillustrated by the identification of uncommon events that may be exploited by drug
repurposing opportunities (Figure 3B and Supp Note VII). Overdl, the CGlI identified 5.2% and 3.5% of the
samples in the cohort with genomic aterations that are biomarkers of drug sensitivity used in the clinical
practice (FDA-approved or international guidelines) or reported in late (phases IlI-1V) clinica trials,
respectively. When considering biomarkers supported by lower levels of clinical relevance, a total of 62% of

the tumors exhibited at least one potentially actionable ateration, a number that largely varied across cancer
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types (Figure 3C and Supp Note VII). However, this cohort mostly includes samples sequenced at diagnosis
and thus they may not reflect the type of tumors that are evaluated by molecular oncology boards at present.
We aso applied the CGI to the sequencing data of 17,642 tumors recently released by the GENIE project,
which gathers more advanced cancers profiled by targeted panels?. The CGI identified 8% and 6% in that
cohort exhibiting biomarkers of drug sensitivity used in clinical practice or reported in late clinical trials, and
overall 72% of these tumors exhibited at least one actionable alteration supported by any level of evidence
(Figure 3D and Supp Note VII). In addition, the GENIE cohort exhibited more genomic biomarkers of drug
resistance, as expected from tumors with a higher proportion of recurrent/relapse patients (Supp Note VII).
These analyses provide a comprehensive state-of-the-art snapshot of the putative genomic drivers of cancer

and the landscape of genomic guided therapies as it stands today.

On the other hand, the application of the CGI to analyze the results of drug response observed in tumors with
different genomic architecture could contribute to the discovery of novel genomic biomarkers of drug
sengitivity or resistance. On detail, the distinction between driver and passenger events alows the
development of better predictive models. In the clinical setting, application of the CGI to analyze the list of
alterations detected in a patient’s tumor could support decision-making in multiple scenarios, especialy in
cases of variants of unknown significance that may have implications for response to therapy. Early clinical
adopters of the CGI used the resource to support the final decision of the most appropriate clinical tria to
enroll cancer patients or explore potential drug re-purposing opportunities for pediatric tumors (see Supp.
Note VIII).

Crucid to the performance of the CGI are the maintenance and further development of its two distinct types
of resources: the repositories of accumulated knowledge and the bioinformatics methods. As new tumor
cohorts are re-sequenced and analyzed, our medium-term plans include further development of the catalogs
of cancer genes and oncogenic mutations, including both new malignancies and new genomic elements. In
particular, the possibility to identify non-coding cancer drivers® from currently generated whole-genome

mutation data will open up the opportunity to explore the actionability of non-coding genomic alterations

(https://dcc.icgc.org/pcawg). With respect to the aggregation, curation and interpretation of databases of

cancer biomarkers and bioactivities, our team follows the standard operating procedures developed under the

umbrella of the H2020 MedBioinformatics (http://www.medbioinformatics.eu/) project, thus ensuring the
mid-term maintenance of these resources. The feedback from the community is also facilitated through the
CGI web interface. Access to this type of cancer data is crucia for the advance of precision medicine, but is
highly complex and difficulty for a single institution to comprehensively manage and update. Multiple efforts

with  similar  purposes ae currently underway, including My Cancer  Genome,
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https.//www.mycancergenome.orqg; PMKB, https.//pmkb.weill.cornell.edu/; PCT, https.//pct.mdanderson.org;

OncoK B, http://oncokb.org; CIViC, https://civic.genome.wustl.edu; and JAX-CKB https.//ckb.jax.org. Within

the Global Alliance for Genomics & Headth framework?, the Variant Interpretation for Cancer Consortium
(http://gadgh.org/#t/vicc) was recently launched with the am to unify the curation efforts of severa
institutions, including our own. We envision that individual databases will continue to be maintained to fulfill
specific needs?, but our long-term impact will largely rely, first, on the establishment of international
standards for the collection of data relevant to associations between cancer variant-clinical outcome and,

second, on our collective success in encouraging the community to share such knowledge.

In summary, the CGI is a versatile platform that automates the steps we propose for the interpretation of
cancer genomes, annotating the potential of the alterations detected in human tumors as cancer drivers and
their possible effect on treatment response, according to current levels of evidence. The characteristics of the
CGil, and the commitment to maintain it as part of a community effort to keep the resource up-to-date with
evolving knowledge, allow its establishment as a widdly disseminated, easy-to-use tool for both pre-clinical

and translational cancer research settings.
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FIGURE LEGENDS

Figure 1. Cancer Genome I nter preter

(a) Outline of the CGI workflow. With alist of genomic alterationsin atumor of a given cancer type asinput,
the CGI automatically recognizes the format, remaps the variants as needed and standardizes the annotation
for downstream compatibility. Next, it identifies known driver aterations and annotates and classifies the
remaining variants of unknown significance. Finally, aterations that are biomarkers of drug effect are

identified. (b) The CGI may be run via web at http://cancergenomeinterpreter.com (left panel), or through an

API. The web results can be stored in a private repository (right panel) for their management. The results of
the CGIl are provided via interactive reports: (C) Mutation analysis report (example). It contains the
annotations of all mutations, which empowers the user's review, and the labels for those known or predicted to
be drivers by OncodriveMUT. (d) Biomarkers-match report (example). It contains the putative biomarkers of
drug response found in the tumor organized according to distinct levels of clinical relevance. These web

reports are interactive and configurable by the user.

Figure 2. Annotating mutationsin cancer genes

(a) Catalog of Cancer Genes. Genes that drive tumorigenesis via mutations, copy number alterations and/or
trangl ocations are annotated with their mode of action (MoA). (b) Catalog of Validated Oncogenic Mutations.
Clinically or experimentally validated driver mutations were gathered from manually annotated resources and
the cancer literature. (c) Proportion of validated mutations observed across the cancer genes of 6,792 tumors.
Cancer types acronyms. acute lymphocytic leukemia (ALL); acute myeloid leukemia (AML); bladder
carcinoma (BLCA); breast carcinoma (BRCA); chronic lymphocytic leukemia (CLL); cutaneous melanoma
(CM); colorectal adenocarcinoma (COREAD); diffuse large B cell lymphoma (DLBC); esophagedl
carcinoma (ESCA); glioblastoma multiforme (GBM); hepatocarcinoma (HC); head and neck squamous cell
carcinoma (HNSC); lower grade glioma (LGG); lung adenocarcinoma (LUAD); lung squamous cell
carcinoma (LUSC); medulloblastoma (MB); multiple myeloma (MM); neuroblastoma (NB); non small cell
lung carcinoma (NSCLC); serous ovarian adenocarcinoma (OV); pilocytic astrocytoma (PA); pancreas
adenocarcinoma (PAAD); prostate adenocarcinoma (PRAD); renal clear cell carcinoma (RCC); small cell
lung carcinoma (SCLC); stomach adenocarcinoma (STAD); thyroid carcinoma (THCA) and uterine corpus
endometrioid carcinoma (UCEC). (d) OncodriveMUT schema to estimate the oncogenic potential of the
variants of unknown significance. A set of heuristic rules combines the annotations obtained for a given
mutation with the knowledge about the genes (or regions thereof) in which it is observed, as retrieved from

the computational analyses of sequenced cohorts.
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Figure 3: Cancer Biomarkers Database

(a) A board of clinical and research experts gather the genomic biomarkers of drug response to be included in
the Cancer Biomarkers database through periodic updates. Upper part of the panel displays the simplified
schema of the data model. The clinical/research community is encouraged to provide feedback to edit an
existing entry or add a novel one by using the comment feature available in the web service. Any suggestion is
subsequently evaluated by the scientific team and incorporated as appropriate. A semi-automatic pipeline
annotates any novel entry to ensure the consistency of the attributes, including the variant re-mapping from
protein to genomic coordinates when necessary. Lower part of the panel displays some of the 1,574
biomarkers that have been collected in the current version of the database, and the left pie charts summarize
the content.

(b) CGI anayses detect putative driver mutations in individual tumors that are rarely observed in the
corresponding cancer type. When these variants are known targets of anti-cancer therapies, they may
congtitute tumor type repurposing opportunities. The graph summarizes some of these potentia
opportunities detected by the CGI on 6,792 tumors with exome-sequencing data, which are currently
unexplored. The barplots display the overall number of tumor samples (separated by cancer type) in which
they were observed. The acronym of the cancer type in which the genomic event is demonstrated to confer
sensitivity to the drug is shown in parenthesis following the name of the drug, and the clinical evidence of
that association is represented through color circles (note that the clinical guidelines/recommendations |abel
refersto FDA-approved or international guidelines). Targeted drugs and chemotherapies are shown separately.
Cancer acronyms that are not included in the Figure 2 legend: RA: renal angiomyolipoma; BCC: basal cell
carcinoma; GCA: giant cell astrocytoma; G: glioma; MCL: mantle cell lymphoma; MRT: malignant rhabdoid
tumor; and R: renal; CH: chollangiocarcinoma.

(c) Therapeutic landscape of 6,792 tumors with exome-sequencing data. Fraction of tumors with genomic
dterations that are biomarkers of drug response in each cancer type. Colors in the bars denote the clinical
evidence supporting the effect of biomarkers in that disease (see evidence colorsin panel B). Note that the
event with evidence closest to the clinic is given priority when several biomarkers of drug response co-occur
in the same tumor sample. The lower part of the graph indicates the number of tumors with available data of
mutations, copy number alterations (CNA) and fusions, or at least one of these (labeled as total). Cancer
acronyms as in Figure 2 legend.

(d) Same as panel C for a cohort of 17,462 tumors sequenced by targeted panels and gathered by the GENIE
project. Tumors were grouped according to the most specific disease subtype available in the patient

information. Cancer acronyms that are not included in the Figure 2 legend are detailed in the Suppl. Material.
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