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Abstract 

Numerous studies have suggested associations between depression and cardiometabolic abnormalities or diseases, 

such as coronary artery disease and type 2 diabetes. However, little is known about the mechanism underlying this 

comorbidity, and whether the relationship differs by depression subtypes. Using the polygenic risk score (PRS) 

approach and linkage disequilibrium (LD) score regression, we investigated the genetic overlap of various 

depression-related phenotypes with a comprehensive panel of 20 cardiometabolic traits. GWAS results for major 

depressive disorder (MDD) were taken from the PGC and CONVERGE studies, with the latter focusing on severe 

melancholic depression. GWAS results on general depressive symptoms (DS) and neuroticism were also included. We 

also identified the shared genetic variants and inferred enriched pathways. In addition, we looked for drugs 

over-represented among the top shared genes, with an aim to finding repositioning opportunities for comorbidities.  

 

We found significant polygenic sharing between MDD, DS and neuroticism with various cardiometabolic traits. In 

general, positive polygenic associations with CV risks were observed for most depression phenotypes except 

MDD-CONVERGE. Counterintuitively, PRS representing severe melancholic depression was associated with reduced 

CV risks. Enrichment analyses of shared SNPs revealed many interesting pathways, such as those related to 

inflammation, that underlie the comorbidity of depressive and cardiometabolic traits. Using a gene-set analysis 

approach, we also revealed a number of repositioning candidates, some of which were supported by prior studies, such 

as bupropion and glutathione. Our study highlights shared genetic bases of depression with cardiometabolic traits, and 

suggests the associations vary by depression subtypes. To our knowledge, this is the also first study to make use of 

human genomic data to guide drug discovery or repositioning for comorbid disorders. 
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Introduction 

Major depression is a common psychiatric disorder worldwide. More than 300 million people globally suffer from 

major depressive disorder (MDD)1 and it is ranked as the leading cause of disability worldwide by the World Health 

Organization in a latest report1. Depression has been shown to be associated with numerous physical illnesses, 

including cardiovascular and metabolic diseases2, as well as other cardiovascular (CV) risk factors such as obesity3 

and dyslipidemia4. A book-length review on this subject was given in Baune and Tully5. In addition, studies have also 

suggested a link between neuroticism and poor cardiovascular outcomes6,7. However, the mechanism underlying the 

relationship between depression and cardiometabolic traits is not well understood. As common biological pathways may 

underlie both depression and cardiometabolic traits5, shared genetic factors may possibly contribute to the comorbidities. 

Studies have shown genetic overlap between depression and blood pressure, total cholesterol level, body mass index 

(BMI), as well as heart rate variability 8-11. However, only a limited spectrum of cardiometabolic abnormalities has been 

considered in previous studies. These studies were mainly twin- or family-based and the main aim was to investigate an 

overall shared genetic basis; as such, they did not identify which genetic variants are most likely shared or the pathways 

involved. A recent systematic review nicely summarizes the current evidence for susceptibility genes shared between 

depression and cardiometabolic traits from candidate gene and some genome-wide studies12. Nevertheless, the review 

mainly focused on a qualitative assessment of the evidence and the results of candidate gene studies, which comprised a 

substantial part of the review, may not as reliable as large-scale GWAS13.  

   

Depression is widely regarded as a heterogeneous condition14. Depression has a lifetime prevalence of up to 17% 

according to a US study15 and the diagnosis is entirely based on clinical symptoms with no reliable biomarkers. As such, 

it is likely that substantial genetic and phenotypic heterogeneity underlie this diagnosis. A meta-analysis on the 

association of depression with cardiovascular disease risks also remarked on the high level of heterogeneity among 

studies16, which may be partially attributed to the heterogeneity of depression itself. A recent twins study on the genetic 

overlap of depression with type 2 diabetes mellitus (DM) suggested that the genetic factors underlying the comorbidity 

might be different in males and females17. Despite the well-known heterogeneity of depression, few epidemiological 

studies have investigated the cardiovascular risks of different depression subtypes (or different phenotypes related to 

depression). Lamers et al.18 studied a Dutch sample of depression cases and controls, and found that patients with 

atypical depression had worse metabolic profiles than controls or those with melancholic depression. Lasserre et al.19,20 

reported that only the atypical MDD subtype was prospectively associated with a raised incidence of metabolic 

syndrome as well as greater increase of fasting glucose and waist circumference during follow-up. However, to our 

knowledge, no previous studies have compared the genetic overlap between different depression-related phenotypes or 

disease subtypes with CV risk factors; in addition, the individual genes and pathways contributing to the possible 

genetic overlap remain to be explored. Previous epidemiological studies are also often limited by modest sample sizes 

(for example, the number of melancholic cases was 111 in Lamers et al18. and 369 in Lasserre et al.20).  

  In this study we made use of four GWAS datasets of depression or depression-related phenotypes and investigated the 

genetic overlap with a comprehensive panel of 20 cardiometabolic traits. These four datasets include: (1) the 

MDD-CONVERGE study21, a relatively homogenous group of Chinese women with severe and mostly (~85%) 

melancholic depression; (2) the MDD-PGC study22 with no enrichment of particular disease subtypes; (3) a GWAS 

meta-analysis on depressive symptoms conducted by the Social Science Genetic Association Consortium 

(SSGAC-DS)23 which include (i) case-control (i.e. clinical depression vs no depression); and (ii) population-based 
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samples (measuring general depressive symptoms instead of clinical diagnosis); (4) a GWAS meta-analysis by SSGAC 

on neuroticism23, a personality trait with established associations with depression24,25. We wish to test whether different 

depression-related phenotypes would have similar or diverse patterns of associations with cardiometabolic traits.  

 

Our scheme of analyses is summarized below. Firstly, we studied whether polygenic risk score (PRS) of depression 

phenotypes are associated with a comprehensive panel of 20 cardiometabolic traits and vice versa; as another approach 

to assess genetic overlap, we also applied cross-trait LD score regression. Secondly, we identified the genetic variants 

most likely shared between the disorders, by a statistical approach based on local true discovery rates. Based on the 

shared genetic markers, we also inferred the enriched biological pathways and gene ontology terms, and drugs 

potentially linked to both kinds of disorders. To our knowledge, this is the also first study to make use of human 

genomic data to guide drug discovery or repositioning for comorbid disorders.  

 

 

METHODS  

Study samples  

We studied polygenic sharing of various depression phenotypes (MDD-CONVERGE, MDD-PGC, depressive 

symptoms, neuroticism) with a panel of cardiometabolic traits. The four depression phenotypes have been described 

above. Note that the GWAS summary results on depressive symptoms also contains MDD-PGC as part of the sample, 

but the rest (~90%) of the sample originated from other cohorts. Cardiometabolic traits under study included body mass 

index (BMI)26, waist-hip ratio (WHR) 27, fasting glucose (FG)28, fasting insulin (INS)28, insulin resistance (HOMA-IR)29, 

fat-percentage 30, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG), total cholesterol 

(TC) 31, adiponectin32, leptin30, systolic blood pressure (SBP)33, diastolic blood pressure (SBP)33, coronary artery disease 

(CAD) 34 and type 2 diabetes mellitus (DM)35.  

 

GWAS summary statistics were downloaded from the Psychiatric Genomics Consortium website 

(https://www.med.unc.edu/pgc) and LD hub (http://ldsc.broadinstitute.org/). Details of each study may be found in the 

references listed above. For SBP and DBP, we used data from a meta-analysis of exome-sequencing studies33 as we 

were unable to obtain publicly available GWAS data with effect size directions.  

 

 

Polygenic score analysis 

Polygenic risk score (PRS) is a weighted sum of allelic counts, with the weights given by log odds ratios of individual 

SNPs. The PRS for an individual i, or ri , can be computed by j ij
i

w x , where ijx is the centered allelic count for the 

jth SNP for the ith individual, jw  is the weight given to the jth SNP, given by the log odds ratio or regression 

coefficient in a linear regression. In this study we performed analyses using the summary statistics of each pair of 

traits, as raw genotype data are not available. Association testing was carried out by the method “gtx” described by 

Johnson36. This method was also described and elaborated in a number of papers e.g. ref.37-39. Briefly, we tested for the 

association of the PRS derived from the first trait with a second trait iy  (with values centered) by regression:  
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where ˆ
j  is the regression coefficient when the second trait iy  is regressed onto the jth SNP and js is 

corresponding standard error of ˆ
j . This method was implemented in the R program PRsice40. We performed 

LD-clumping with an R2 threshold of 0.05 prior to association analyses, following the suggestions given in the PRsice 

vignette. A series of ten p-value thresholds (0.001, 0.005, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) was considered. 

Multiple testing was corrected by the false discovery rate (FDR) approach, which controls the expected proportion of 

false positives among the results declared to be significant. FDR-adjusted p-value (q-value) was calculated by the R 

program p.adjust using the Benjamini-Hochberg procedure41. Results with q-value below 0.05 are regarded as 

significant, and those with q-value below 0.1 are regarded as suggestive associations. FDR correction was performed for 

each pair of metabolic trait and depression phenotype separately, and as proven by Efron42, separate false discovery rate 

control for different groups of hypotheses at a level q still enables the overall FDR to be maintained at the level q. 

 

Accounting for sample overlap  

Polygenic score analyses are usually based on independent training and testing samples. We employed two approaches 

to guard against false positive associations due to potential sample overlap. The first is by checking for overlapping 

cohort samples, and the second is by examining the regression intercepts of cross-trait LD score regression. 

It is worth noting in this context that a recent study by Burgess et al.43 addressed the issue of participant overlap in 

two-sample Mendelian randomization (MR), which employs a very similar statistical formulation to the above PRS 

analysis. However, in this study we focused on polygenic associations instead of strict causality, and relaxed some 

assumptions required by MR: pleiotropic effects were allowed and genetic variants need not be unequivocally 

associated with the risk factor. Burgess et al.43 showed that in a case-controls setting, if the risk factor (e.g. lipid level) 

is only measured in controls, then unbiased estimates can be obtained even in a one-sample setting (i.e. the risk factor 

measured in all control subjects). In addition, it was shown the bias is a linear function of the proportion of overlap; 

therefore, even if overlap is present but the extent is minor, the results are unlikely to be significantly affected.  

 

In the case of MDD-PGC22, we checked that none of the quantitative cardiometabolic traits was measured in 

depressive patients. Participant overlap in the control subjects (in our case it is far less than a complete overlap) is 

unlikely to result in biased estimates. For CAD and DM, these are case-control studies and we found possible overlap 
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with KORA and PopGen among the control samples. However, only subsets of these samples were included in the 

MDD-PGC and in CAD/DM GWAS, and whether there is genuine overlap (or the extent of overlap) is unknown. We 

evaluated the degree of overlap by considering the cross-trait LD score regression (LDSR) intercept44 (details of 

LDSR is given in the next section). For samples with no overlap, this intercept is usually close to zero44. We assessed 

whether the intercept is significantly different from zero by a Wald test (i.e. computing z-scores by the intercept 

estimate divided by its standard error).  

 

Similarly, for neuroticism GWAS, there is possible overlap with GWAS samples of cardiometabolic traits in several 

cohorts (e.g. BLSA, EGCUT, ORCADES); however only subsamples of these cohorts were included for neuroticism 

or cardiometabolic measures, so the actual degree of overlap is unknown. Again we assessed the degree of overlap by 

checking cross-trait LDSR intercepts.   

 

For MDD-CONVERGE, the sample was collected from China and there is no overlap with any other 

cardiometabolic traits, which were mainly measured in Caucasians. As for the GWAS meta-analyses of depressive 

symptoms by SSGAC, we did not find overlap of this sample with other metabolic traits; however since MDD-PGC is 

part of this sample, there may be a potential (minor) overlap of controls with CAD and DM, which is checked by 

LDSR. 

 

As we shall see in the results section, the extent of sample overlap for most traits was not significant as evaluated by 

LDSR and hence our conclusions are unlikely to be substantially affected by overlap issues.  

  

LD score regression  

LD score regression is another widely used approach to assess genetic correlation between complex diseases44. The 

approach is able to accommodate sample overlap and LD between variants. To assess genetic correlation of 

MDD-CONVERGE with other traits, we employed “popcorn”, a recently developed program which allows estimation 

of genetic correlation across different ethnicities45. LD scores across ancestries were computed from the EUR and 

EAS populations from the 1000 Genome Project46. Default settings were used for our analyses. We did not perform 

LD score regression for SBP and DBP studies as they were exome-sequencing studies and the LD pattern of genetic 

variants differs from GWAS results.  

 

Discovery of genetic variants associated to both MDD and cardiometabolic traits 

The SNPs shared by MDD and cardiometabolic traits were identified by an approach based on the concept of local false 

discovery rates47. For each SNP, the probability of being associated with both traits (denoted by tdr11) was calculated 

based on the observed z-statistics. The approach is closely related to the conditional false discovery rate48 but here we 

focused on the chance of shared associations instead of probability of association conditioned on the other trait. We 

followed the same statistical formulation proposed by Chung et al.49, although we worked with the z-statistics instead 

of p-values. Briefly, a four-group mixture model of z-statistics was assumed:  

00 00 10 10 01 01 11 11( , ) ( , ) ( , ) ( , ) ( , )A B A B A B A B A Bf z z p f z z p f z z p f z z p f z z     ----(1) 

where zA and zB refer to the z-statistics of trait A and trait B respectively. There are four possibilities for each SNP 
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when two traits are considered: 1) the SNP is associated with none of the traits; (2) the SNP is associated with the first 

trait only; (3) the SNP is associated with the second trait only; and (4) the SNP is associated with both traits. Each of 

these four possibilities are represented in the above mixture model. For instance, p11 denotes the proportion of markers 

that has association with both traits, and f11 denotes the probability density function of the z-statistics of this group of 

markers. From equation (1) we can derive the probability that a SNP is associated with both traits (denoted by tdr11), 

using an expectation-maximization (EM) algorithm. Further details of the method are given in Supplementary 

Information and in Chung et al.49. 

 

Pathway and Gene Ontology (GO) enrichment analysis by ConsensusPathDB 

Shared SNPs with tdr11 > 0.5 (i.e. greater than 50% probability that the SNP is associated with both traits) were selected 

and mapped to related genes using the Bioconductor package biomaRt50. However, some SNPs were mapped to 

multiple genes, which may lead to the enrichment of certain pathways that consist of numerous genes from the same 

(or few) SNP(s). We adopted the following method to correct for this potential bias. We first extracted variant 

consequences (using sequence ontology [SO] terms) of variants via BioMart, and each SNP was mapped to the gene 

corresponding to the highest impact rating (as listed in 

http://asia.ensembl.org/info/genome/variation/predicted_data.html#consequences). ConsensusPathDB was used to 

infer the biological pathways and gene ontology (GO) (level 5) terms enriched among the top shared genes. 

ConsesusPathDB is a comprehensive resource that integrates multiple databases for pathway analyses51. 

Over-representation of pathways or GO terms was assessed by hypergeometric tests with a p-value cutoff of 0.01 with 

at least two genes in each pathway, following the default settings. We performed GO and pathway analysis separately 

for SNPs with the same and opposite directions of effects for each pair of traits; we also performed an overall analysis 

on all SNPs regardless of effect directions.  

 

Drug repositioning by over-representation analyses in WebGestalt 

We then looked for drug-related gene-sets that are over-represented among the most significantly shared genes. We 

used WebGestalt52 for this analysis. WebGestalt employed a computational approach known as GLAD4U53 to query 

the scientific literature to retrieve and prioritize gene lists associated with drugs. The over-represented drugs were 

identified by hypergeometric tests. We require at least 2 genes in each gene-set and results with q-value < 0.1 were 

retrieved.  

 

We expected to discover drugs associated with the overlapping genes, and therefore identify existing drugs that 

have genetic associations to non-target disorders. This may provide us hints for new indications of known drugs; for 

example, drugs known to treat psychiatric disorder can be used as a therapy for cardiometabolic diseases, or vice versa. 

We may also find novel repositioning candidates with beneficial effects on both depressive and cardiometabolic 

disorders.  

 

Results   

Polygenic associations between depression-related phenotypes and cardiometabolic traits 

Polygenic associations of MDD-PGC with cardiometabolic traits are shown in Table 1. Firstly, PRS were constructed 

from the two MDD datasets, and metabolic traits are regarded as target (i.e. dependent) phenotypes. Higher polygenic 
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score of MDD-PGC was significantly associated with lower levels of adiponectin and higher levels of TG and WHR 

(with or without adjustment for BMI). It was also associated with increased risks of CAD and DM at an FDR 

threshold of 0.05. When cardiometabolic traits were used to construct PRS and MDD-PGC was regarded as the 

outcome, we found associations with most of traits mentioned above, but also observed a positive relationship with 

HDL and inverse relationship with FG and BMI-adjusted leptin.  

 

As for the other GWAS study on severe melancholic depression (MDD-CONVERGE) (Table 2), surprisingly, we 

observed that higher PRS derived from MDD-CONVERGE was associated with lower BMI, TG, WHR (with or 

without adjustment for BMI), fat percentage, as well as risks of CAD and DM (with q-value just above 0.05 for DM); 

it was also associated with higher HDL. When PRS was constructed from cardiometabolic traits, we observed inverse 

associations with BMI, FG, TG and WHR, and positive association with HDL.  

 

Table 3 shows the polygenic associations of depressive symptoms (from SSGAC) with cardiometabolic traits. 

When PRS of depressive symptoms is used as the predictor, we observed positive associations with BMI, CAD, DM, 

fat percentage, HOMA-IR, INS, leptin, TC, TG, WHR, SBP and DBP (Table 2). Similar associations were observed 

when PRS of CV risk factors were used as predictors.  

 

Finally, for neuroticism (Table 4), higher PRS of neuroticism was significantly associated with higher fat 

percentage, FG, HOMA-IR, INS, TC, TG, WHR, DBP and CAD risks. Similar associations were observed when PRS 

of cardiometabolic traits were used as predictors. 

 

LD score regression results 

LD score regression in general produced a smaller number of significant results than the polygenic score approach 

(full results given in Supplementary Table 1). However, most significant results in LDSR were corroborated by 

significant results from PRS analyses and most significant associations agreed in their directions of effects. For 

MDD-PGC, nominally significant (p < 0.05) associations were observed for TG and WHR (with or without 

adjustment for BMI) with positive genetic correlations (Table 1). For MDD-CONVERGE, there was nominally 

significant negative genetic correlations with BMI, DM, fat percentage, FG, leptin and WHR. These results are 

broadly consistent with analyses of polygenic scores, although a few significant results from PRS analyses (e.g. CAD) 

was not observed in LDSR (Table 2). For depressive symptoms, positive genetic correlations were observed with BMI, 

CAD, fat percentage, BMI-adjusted leptin, TG and WHR (including BMI-adjusted WHR) and negative genetic 

correlations with HDL (Table 3). As for neuroticism, nominally significant genetic correlations were observed for 

CAD and WHR (including BMI-adjusted WHR) (Table 4).  

  

  Of note, the intercept from LDSR for MDD-PGC, depressive symptoms and neuroticism were all non-significant (p 

> 0.05), except for one pair of traits (TG with MDD-PGC; p = 0.049), which is within expectations (we expect 

54*0.05 = 2.7 significant associations by chance) (Supplementary Table 1). The results suggest no or only minor 

overlap between the samples. LD score regression was not performed for MDD-CONVERGE as the sample is 

completely separate from other studies.  
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Identification of shared genetic variants and Pathway/GO term over-representation analyses 

The top genes shared by MDD and cardiometabolic traits are shown in Tables 5. To facilitate interpretation, we have 

performed LD-clumping (with an R-squared threshold of 0.1 and a window-size of 250 kb) on the shared SNPs using 

PLINK54 and mapped the SNPs to genes using BioMart. As discussed above, for SNPs mapping to more than one gene, 

we only show the gene associated with the worst variant consequence. For easy visualization of results, we also 

prepared a crude summary table which includes the number of times each gene appears on our top list (defined as tdr11> 

0.5) across the 20 cardiometabolic traits and the corresponding average rank. Similar summary tables were also 

created for pathway and GO terms analyses. Supplementary Tables 2-5 show all LD-clumped SNPs with tdr11> 0.5 

that map to at least one gene.  

 

To explore whether the genes shared by depression and cardiometabolic traits share specific pathways and 

functional features, we performed pathway and GO enrichment analysis using ConsensusPathDB. Tables 6 and 7 

summarize the pathway enrichment results for the four depression traits under study. Here we mainly focused on the 

pathways derived from SNPs that increase (or decrease) the risks of depression and CV abnormalities at the same time 

(note that for HDL and adiponectin, lower levels are associated with higher CV risks). For MDD-CONVERGE, since 

we observed unexpected inverse polygenic associations with many CV risk factors, we presented the top enriched 

pathways derived from SNPs having opposite effects on depression and CV risks. The full results of pathway and GO 

term enrichment, together with summary tables of the most frequently enriched pathways across different traits, are 

available in Supplementary Tables 6-13.  

 

For MDD-PGC, we observed that immune- or inflammation-related pathways were frequently enriched across 

numerous cardiometabolic traits; genes within the HLA region contributed to many of these pathways. Some other 

interesting pathways enriched included biological oxidation (enriched in CAD, SBP and DBP), chaperonin-mediated 

protein folding (BMI, LDL, TC) and purine metabolism (SBP, DBP) (Table 6 and Supplementary Table 7).  

 

For MDD-CONVERGE, when we considered pathways derived from SNPs that were associated with increases in 

both depression and CV risks, several pathways were often enriched such as metabolism of vitamins and cofactors, 

GABAergic synapse and activation of gene expression by SREBF (Supplementary Table 9). On the other hand, when 

the focus was on SNPs conferring opposite risks for depression and CV diseases, the Angiopoietin Like Protein 8 

(ANGPTL8) regulatory pathway, oxytocin signaling pathway and the Brain-Derived Neurotrophic Factor (BDNF) 

pathway were listed among the top (Table 6 and Supplementary Table 9). 

 

Concerning depressive symptoms, some of the prioritized pathways included complement activation pathways 

(LDL, TC, TG, WHR; contributed by the genes C2, C7 and CFB), the statin pathway (LDL, TC, TG, HDL), 

phosphatidylinositol signaling (DM, FG), brain-derived neurotrophic factor (BDNF) signaling (BMI, FG, fat 

percentage) and the VEGF pathways (BMI, FG), among others (Table 7 and Supplementary Table 11).  

 

For neuroticism, some of the most often enriched pathways included ‘RXR and RAR heterodimerization with other 

nuclear receptor’ (DM, TG, WHR, HDL), the statin pathway and other lipid metabolism or adipogenesis pathways 

(LDL, TC, TG, HDL, CAD, DM), ECM proteoglycans (CAD, TG, WHR), DAG and IP3 signaling (BMI, FG), 
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phospholipase D signaling (DM, FG, WHR) and EGFR signaling (BMI, FG) (Table 7 and Supplementary Table 13).   

 

Drug enrichment analysis  

Here our focus is on finding drugs with repositioning potential for comorbid depression and CV diseases; hence the 

drug enrichment analysis was performed with genetic variants that exert the same directions of effects on depression 

and CV risks simultaneously. The drug enrichment results are shown in Table 8 and Supplementary Tables 14-17. 

Some of the interesting hits included the anti-oxidant glutathione, the xanthine oxidase inhibitor allopurinol and statins 

such as rosuvastatin and simvastatin. For MDD-CONVERGE, we still focused on analysis of SNPs that raise 

depression and CV risks at the same time. Some of the interesting top-listed candidates included several statins, 

glycine, bupropion and verapamil. For SSGAC-DS, some commonly enriched drugs included lipase, several statins, 

bupropion, fenofibrate, glutathione, among others. For neuroticism, some top hits included insulin, glutathione, 

bupropion, statins, fluphenazine and gemfibrozil. 

 

Discussion 

In this study, we discovered significant polygenic sharing between depression-related phenotypes with multiple 

cardiometabolic traits, and inferred pathways that were enriched among the shared genes. We also explored drugs with 

the potential of being repositioned for the comorbid disorders. The results of each part of the analyses are discussed 

below.  

 

Polygenic associations of various depression-related phenotypes with cardiometabolic traits  

Overall we have discovered significant polygenic associations of 3 depression or depression-related phenotypes 

(MDD-PGC, depressive symptoms, neuroticism) with increased cardiometabolic risks spanning multiple traits; 

however, for MDD-CONVERGE, we observed an opposite trend of reduced cardiometabolic risks. To our knowledge, 

this is the first comprehensive survey of polygenic overlap and shared genetic variants between depression traits and a 

whole spectrum of cardiometabolic abnormalities, including lipid- and glucose-related traits, blood pressure, 

anthropometric and adiposity measures, CAD, DM, as well as adipokine abnormalities.  

 

Neuroticism and cardiometabolic abnormalities 

As introduced earlier, numerous studies have reported raised CV risks in patients with depression or higher depressive 

symptoms, as reviewed elsewhere5,55. Nevertheless, far less studies have investigated possible shared genetic bases of 

these disorders. A recent study by Gale et al.56 investigated genetic sharing between neuroticism and several physical 

and mental health traits. Polygenic score analysis was performed on 108038 UK biobank (UKB) participants while 

LDSR was conducted separately on both UKB and the Genetics of Personality Consortium (GPC). The SSGAC 

summary statistics we used in this study were derived from meta-analysis of both datasets. Therefore, there was a 

partial overlap of samples with the analysis by Gale et al.56, but the current work encompassed a larger variety of CV 

traits (20 vs 5). Similar to Gale et al.56, we found a significant polygenic association with CAD and but no association 

with DM. An inverse relationship of neuroticism was found with BMI in the previous study with the UKB sample 

alone56, but we did not observe any associations using combined results from UKB and GPC. It is possible that the 

differences in survey instruments and heterogeneity of study samples may contribute to this difference.  
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  Several epidemiological studies have studied the relationship between neuroticism and cardiovascular diseases, but 

the results have been variable (e.g. ref.57-63). The current study revealed positive polygenic associations with lipid traits 

as well as higher fat percentage and WHR, although there was no significant association with BMI. Interestingly, we 

observed positive polygenic relationships with insulin resistance and hyperglycemia, but no significant connection 

with DM. It remains to be investigated whether this is the case in practice, and whether individuals having more 

extreme scores on neuroticism will harbor higher diabetic risks. Nonetheless, the genetic bases of glucose levels and 

DM might not completely overlap. For example, Merino et al. reported that the polygenic score of 12 variants having 

strong associations with FG did not significantly predict the risk of type 2 DM64 and some SNPs may have differential 

effects on quantitative glycemic traits and the risk of frank diabetes65,66; a more detailed review was given by Marullo 

et al.67. On the other hand, a highly significant association was observed with CAD, providing strong support for a 

positive association and shared genetics of the two traits. Neuroticism is a well-established risk factor for major 

depression and anxiety disorders68; it remains to be studied whether the raised CV risks conferred by neuroticism is 

mediated by these associated conditions or neuroticism is itself an independent risk factor. Interestingly, a recent study 

demonstrated a synergistic interaction between neuroticism and MDD on the risks of CV diseases7.  

 

MDD-PGC and SSGAC depressive symptoms study: relationship with cardiometabolic abnormalities 

It is worth noting both the MDD-PGC and SSAGC-DS samples did not stratify depression patients according to 

subtypes or other clinical features. The SSGAC study sample also contained a substantial proportion of UKB 

participants whose depressive symptoms were measured by self-reported questionnaires23. Previous epidemiological 

studies in this area have also been based on both clinical diagnosis as well as symptom questionnaires55. Although 

higher69, lower16 or similar70 effect sizes have all been reported with questionnaire-based studies, the overall trend was 

similar, in that depression increases CV risks. Here we observed largely consistent polygenic associations with 

cardiometabolic traits for both MDD-PGC and the SSGAC-DS. With the exception of lowered adiponectin in 

MDD-PGC, all significant associations in MDD-PGC were also observed in SSGAC-DS. A wider range of 

cardiometabolic traits were significantly associated with SSGAC-DS, which may be explained by its larger sample 

size (~ 10 times of MDD-PGC). Notably, we observed polygenic associations across almost the entire range of CV 

risk factors for SSGAC-DS, and all associations were in the direction of increased CV risks. This observation provides 

strong support for a shared genetic basis and pathophysiology between depression and CV risk factors and diseases.  

   

  There were a few unexpected polygenic associations observed for MDD-PGC. Lower BMI-adjusted leptin was 

observed to be associated with depression, however higher leptin levels, indicating leptin resistance, are associated 

with CV risks. Unadjusted leptin however did not show any associations. We suspected that this may be due to 

‘collider bias’71, in which the adjustment of a covariate positively associated with both the predictor and the outcome 

can sometimes lead to unexpected inverse associations even when such relationships are absent (e.g.72). Nevertheless, 

in this study we did not observe any other similar examples indicating this collider bias. In most cases the 

BMI-adjusted estimates were concordant with the unadjusted estimates in PRS analyses. Although this is a potential 

source of bias, we still included BMI-adjusted CV traits in our analyses as this information is pottentially important in 

showing whether the trait is a significant risk factor independent of BMI, and that there are no current no good 

methods to circumvent this problem71. Another slightly unexpected finding is that PRS of FG was inversely associated 

with depression. Previous studies have reported more severe depression symptoms among type 2 DM patients with 
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self-reported hypoglycemia73, however the underlying mechanism is unclear. It should be noted that there is 

incomplete overlap of the genetic bases of glucose levels and frank DM67.  

 

MDD-CONVERGE (severe melancholic depression) and cardiometabolic abnormalities 

Surprisingly, we observed inverse polygenic associations of a number of cardiometabolic abnormalities, including DM 

and CAD, with MDD-CONVERGE. The MDD-CONVERGE sample was mainly composed of severe depression 

patients with recurrent disease episodes. Notably, 85% of the cases met the DSM-IV criteria for melancholia. The 

sample was recruited from China and contained only women, with cases predominantly selected from hospitalized 

patients74. Furthermore, as remarked by the study authors, there is probably a reluctance or lower awareness to report 

depression or to seek medical attention for MDD in China21; this is reflected by a ~5 fold lower prevalence of MDD in 

China75 than that in the US76. Those who were actually diagnosed of MDD and hospitalized may therefore represent a 

particularly severe group of patients.  

 

  The proportion of MDD patients with melancholic features is ~ 23.5% according a large study by McGrath et al.77. 

Given the sample selection method and possible reluctance to report MDD in China, the overall proportion of MDD 

patients with comparable severity and clinical features to the CONVERGE sample is probably much less than 23.5% 

(say below one-fifth or even lower). As this subgroup of patients represent a minority, this may partially explain why 

meta-analyses of epidemiological studies have consistently found an increased risk of CV disorders in MDD patients. 

Even if a subset of patients have reduced CV risks, they may be overwhelmed by the rest of the sample harboring 

heightened risks. 

While the inverse polygenic associations are intriguing, the current study does not immediately signify that severe 

melancholic depression patients must have lower CV risks in practice. This is because the focus of the current study is 

on shared genetic factors of depression and CV diseases, but we did not directly address other behavioral factors that 

can lead to the comorbidities. For example, depressed patients are less likely to adhere to drug treatments and 

risk-factor modification interventions78 and may be more likely to be physically inactive79. In addition, severe 

depression patients may have high chances of receiving augmentation therapy, for example by atypical 

antipsychotics80 or lithium81, which may also contribute to weight gain and cardiometabolic abnormalities82,83. 

However, given similar risk factor profiles, this study suggests that patients with non-melancholic depression might be 

at higher CV risks than their melancholic counterparts; greater awareness and more intense monitoring of CV 

comorbidities in non-melancholic patients might be warranted. Another implication is that if shared pathophysiology 

is unimportant for CV risks in melancholic patients, then behavioral interventions (e.g. program to foster treatment 

compliance) may be sufficient to ameliorate CV risks in these patients, as opposed to non-melancholic depression. 

This hypothesis requires verification in future studies.  

 

To our knowledge, this is the first study showing inverse polygenic associations of melancholic depression with 

cardiometabolic risks. Relatively few epidemiological studies have addressed CV comorbidities with consideration of 

depression subtypes. For example, Seppala et al.84 found that the prevalence of metabolic syndrome (MetS) is about 

2-fold higher within atypical MDD patients as compared to controls; there was no significant association with 

melancholic MDD. Another study also reported association of atypical depression with increased prevalence of 

overweight, DM and MetS, while melancholic depression was associated with significantly lower prevalence of 
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overweight85. Lamers et al.18 revealed that levels of inflammatory markers, BMI, TG, waist circumference were higher 

in atypical MDD patients than melancholic patients or controls. In fact SBP and BMI were significantly lower in 

melancholic patients compared to controls in the study. Yet a more recent study20 reported that only the atypical 

subtype of MDD was prospectively associated with an elevated incidence of MetS and a steeper increase in FG level. 

Notably, these associations were found to be independent of eating behaviors, psychiatric comorbidities, lifestyle 

factors, or baseline adipokine concentrations and inflammatory marker levels20. Taken together observations from 

previous epidemiological studies were broadly consistent with our findings that CV risks differ by depression subtypes, 

and non-melancholic patients were generally at higher risks.  

 

  In summary, our findings support a genetic basis for the heterogeneity of depression comorbidities, and that 

subtyping depression patients might help to better delineate patients’ CV risks, which may have implications in 

targeted prevention of CV events for patients.  

 

Shared genetic variants and pathways  

We discovered numerous shared genetic variants across the 20 cardiometabolic traits. Some interesting genes listed 

included FTO, which is a well-known gene in controlling weight and energy balance86; NOTCH4, a member of the 

NOTCH signaling pathway which is involved in various developmental and homeostatic processes87, with mutations 

being associated with schizophrenia88; TCF7L2, a transcription factor of key role of Wnt signaling pathway that is 

strongly associated with diabetes89; PPARG, a target for anti-diabetic agents (notably the PPAR-gamma agonist 

pioglitazone has been shown to be efficacious in depression90); VEGFA, a member of the vascular endothelial growth 

factor family which acts on endothelial cells with myriad functions91 but is also implicated neuropsychiatric 

disorders92.  

 

Due to the wide range of traits studied and the large number of shared variants, we shall not discuss each gene in 

detail. Here we briefly highlight several interesting pathways that are shared between depression and cardiometabolic 

traits inferred from shared SNPs. Notably, numerous immune- or inflammation-related pathways were listed among 

the top for MDD-PGC and SSGAC-DS. Increased inflammation has long been postulated as one of the mechanisms 

linking the two kinds of disorders93. For example, inflammatory markers such as tumor necrosis factor, interleukin-6 

(IL-6) and C-reactive protein (CRP) were elevated in MDD as shown in meta-analyses94,95. Elevation of some of these 

markers have also found in comorbid depression and metabolic syndrome96 as well as CAD97. It has also been 

suggested that adiposity may mediate the increased inflammatory response seen in depression98. There is some 

evidence that antidepressants reduce inflammatory responses99. However, increased inflammation may not be 

observed in every depressive patient55, and further studies are required to elucidate the subgroup of patients most 

vulnerable to the effects of increased inflammatory response.   

 

 Interestingly, the statin pathway was highly ranked for depressive symptoms and neuroticism. Consistent with our 

results, statins have been found to exert many pleiotropic beneficial effects on cardiovascular diseases, including 

anti-inflammatory actions, beyond their LDL cholesterol-lowering effects 100. Recently, some researchers started to 

study its therapeutic potential on depression. A Swedish national cohort study reported that statin possibly reduced risk 

of depression in individuals over the age of 40 103. It was suggested that concomitant treatment with selective 
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serotonin reuptake inhibitor (SSRI) and statin might have superior antidepressant effect than SSRI treatment alone 104. 

A Korean group also successfully showed an antidepressant action of statin in patients with acute coronary syndrome 

(ACS) 105. Nevertheless, studies have also reported increased depressive symptoms and risk of suicide among statin 

users as reviewed by You et al.106. Further studies are required to clarify which kinds of factors (e.g. type of statins 

used, duration of treatment, concomitant medications, patient characteristics) will influence the action of statins on 

depressive symptoms. 

 

Some other noteworthy pathways include the VEGF signaling pathways; VEGF is an angiogenic cytokine that have 

shown to have neuroprotective properties107, and is implicated in metabolic syndrome108 and cardiovascular diseases109. 

The phosphatidylinositol pathway might be implicated in bipolar disorder and MDD, and both mood stabilizers and 

antidepressants have been demonstrated to act on this pathway110.  

 

Another noteworthy pathway was BDNF signaling, for which numerous studies have shown its role in the 

pathophysiology of depression. Increased BDNF activity is also believed to be an important mechanism underlying 

antidepressant actions111. Interestingly, this pathway was listed among the top for both SSGAC-DS and 

MDD-CONVERGE (in the former, pathways were derived from SNPs having the same directions of risks for MDD 

and CV diseases while the latter involves SNPs with opposite directions of risks). However, most (except one) of the 

associated pathway genes were different. It is possible that the pattern of BDNF signaling differs by depression 

subtypes. For example, a recent study showed that BDNF levels were positively associated with the inflammatory 

cytokine IL-6 only in melancholic patients but not in non-melancholic subjects, with elevation of BDNF in the former 

group112. Another study on non-remitted MDD patients reported that reductions of hypersomnia, a characteristic 

symptom of atypical but not melancholic depression, were associated with reductions of BDNF113. As postulated by 

the authors113, atypical depression may be related to reduced function in the hypothalamic–pituitary–adrenal (HPA) 

axis, as opposed to overactivity of the HPA axis in melancholic depression114,115. Overactivity in the HPA system may 

lead to decreased BDNF expression116. This may explain why amelioration of symptoms in atypical depression is 

associated with a decrease in BDNF level. BDNF signaling may also play a role in energy balance and 

cardiometabolic disorders117,118.  

 

  A few pathways were listed among the top for MDD-CONVERGE, which were associated with reversed directions 

of effects for depression and CV risks. The Angiopoietin-like protein 8 regulatory pathway has been implicated in 

lipid metabolism and cardiometabolic disorders119,120. Increased serum levels of ANGPTL8 has been reported in MetS, 

DM and non-alcoholic liver disease121-123. However, this pathway has not been investigated for its role in depression. 

Another pathway, the oxytocin signaling pathway, plays an important role in regulating social behavior that involve 

the formation of attachments124. It has been postulated the hormone may be involved in the pathogenesis of many 

psychiatric disorders, including depression125. While studies have suggested that oxytocin may be used as a treatment 

for depression and anxiety 125,126, recent evidence showed that it may also have anxiogenic and fear-enhancing effects, 

enhancing the recollection of unpleasant memories127,128.On the other hand, oxytocin can ameliorate weight gain in 

diet-induced obese rats 129,130 and has been shown to reduce food intake in a double-blind clinical study on obese 

men131.  
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In summary, the shared genetic variant and pathway analyses provide insight into the molecular mechanisms 

underlying the comorbidities of MDD with cardiometabolic abnormalities. Given that few studies have investigated 

MDD comorbidities with respect to specific subtypes, the results presented here will provide a useful reference for 

researchers for more in-depth preclinical and clinical studies.   

 

Drug enrichment analyses  

Drug repositioning is gaining increasingly attention in recent years as a cost-effective approach to identify novel 

therapies132. The development of every new drug requires a major investment on drug design, testing and manufacturing 

standards133. In contrast, the repositioned drugs have passed through multiple stages of clinical development, and thus 

have well-known safety and pharmacokinetic profiles 134. An example of drug repositioning in this field is pioglitazone, 

an insulin sensitizer which was shown in a meta-analyses of 4 RCTs to be a safe and effective adjunctive medication in 

non-diabetic patients with MDD90. To our knowledge, the current study is the first to propose and apply a human 

genomics approach to drug repositioning for disease comorbidities. The use of human genomic data for drug discovery 

may be particularly advantageous for psychiatric disorders, as animal models may not be able to fully mimic the human 

condition135. To model psychiatric and CV comorbidity in animals will be even more difficult.   

   

As already discussed above, statins were ranked highly in our drug enrichment tests and some previous studies 

supported its therapeutic effects for both cardiovascular and depressive disorders. We will discuss several other 

repositioning candidates backed up by prior clinical or pre-clinical studies. Bupropion is frequently listed among the 

top across various depression-related phenotypes, especially when depression was considered with BMI. Interestingly, 

bupropion has been shown in a meta-analysis to be the only antidepressant that produces weight loss both at the acute 

phase and over a longer period of treatment136. Bupropion provides an important example supporting the validity of 

our approach in identifying repositioning opportunities for comorbid disorders.  

 

Glutathione is another top repositioning hit across various depression phenotypes. It is an antioxidant and decreased 

level of glutathione has been reported in the prefrontal cortex of patients with psychiatric disorders, including those 

having MDD137. N-acetylcysteine (NAC) is a drug which increases glutathione synthesis, and it has been clinically 

tested and showed possible beneficial effects in a variety of neuropsychiatric disorders138,139. A recent meta-analysis of 

double-blind RCTs showed that NAC significantly improves depressive symptoms and functionality and is generally 

well-tolerated140. The benefit of glutathione or NAC in cardiometabolic diseases is less clear, but an RCT showed that 

NAC inhibits platelet-monocyte conjunction in type 2 DM patients, suggesting its benefit in reducing 

athero-thrombotic risks in these patients141. NAC also appeared to be efficacious in improving metabolic abnormalities 

in women with polycystic ovarian syndrome, with effects comparable to metformin142.  

 

  Several other hits are also worthy of mentioning. Allopurinol is a well-known urate-lowering agent for the treatment 

of gout. Interestingly, this drug has been shown to have antidepressant-like effects in mouse models143,144. On the other 

hand, studies suggested that allopurinol might also improve CV outcomes in hyperuricemic patients145 and in older 

adults with hypertension146. Fenofibrate is a well-known lipid-lowering agent. However, an animal study also revealed 

antidepressant-like effects of fenofibrate by PPARα stimulation in the mesolimbic dopamine system147. Gemfibrozil is 

another repositioning hit of the fibrate class. Verapamil is a calcium channel blocker mainly used for hypertension, 
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angina and arrhythmias. Studies have also suggested this drug might also have broader beneficial effects on 

cardiometabolic abnormalities. For example, verapamil has been shown to correct autophagic defects related to 

obesity148. The administration of this drug to obese mice reduced the accumulation of hepatic lipid droplets, and 

ameliorated pathologies of fatty liver such as inflammation and insulin resistance148. Regarding the effects on mood 

disorders, calcium channel blocker has been proposed as a novel therapeutic option for bipolar disorder and depression, 

although the evidence was mixed149. Verapamil has been reported to demonstrate antidepressant-like effects in animal 

models150-152. Interestingly, we found verapamil among the top repositioning hits for MDD-CONVERGE with fat 

percentage, broadly consistent with literature findings. 

 

There are a few limitations to our study. Here we have studied GWAS datasets corresponding to four depression or 

depression-related phenotypes. Nevertheless, our analysis was limited to traits with available GWAS (and summary 

statistics); we did not cover all subtypes of depression and did not address specific symptoms of the disorder. For 

instance, atypical depression has not been studied via GWAS and was therefore not covered. Further GWAS or 

sequencing studies with detailed characterization of disease subtypes and phenotypes are warranted in view of lack of 

studies in this area. Also, we employed the MDD-CONVERGE sample to analyze severe melancholic depression, 

which is a relatively homogeneous sample comprising Chinese women21. Further studies are required to confirm 

whether our findings can be generalized to other ethnic groups or male subjects. Nevertheless, there is evidence that 

GWAS results from Europeans are highly replicable in East Asians and the effect sizes are also correlated153. In 

addition, as we relied on summary statistics in our polygenic score analysis, we could not easily control for covariates 

of interest, such as smoking. Non-linear effects are also not captured. Future studies using raw genotype data will 

enable more flexible analyses. Furthermore, as explained earlier, we focused on assessing genetic overlap of 

depression and cardiometabolic traits, but did not directly address behavioral factors (e.g. poor treatment compliance) 

that may be associated with the comorbidities. Further clinical studies are required to assess the magnitude and 

directions of effect sizes of depression phenotypes on CV risks in practice. As for the drug enrichment analyses, we 

have employed a relatively intuitive approach by testing for over-representation of shared genes associated with 

existing drugs. The significance of each gene is determined by the most significant variant and we did not take into 

account of LD structure and size of each gene or the significance of all SNPs in the gene. Due to the relatively 

moderate sample size of MDD-CONVERGE and MDD-PGC, for some traits there are no markers with tdr11>0.5 and 

hence were not included in the pathway or drug enrichment analyses. Another limitation is that we tested for 

over-representation of drug-related gene sets but the directions of drug effects were not explicitly considered. 

Delineation of the actual directions of drug actions may require more in-depth understanding of the effects of 

individual disease genes, and how individual drugs act on those genes. While we have presented a computational 

framework for drug repositioning for comorbidities, the approach should be considered exploratory rather than 

confirmatory, and further validation in preclinical and clinical studies are crucial before applications in the clinic.  

 

Conclusions 

Our study highlights a significantly shared genetic basis of MDD, general depressive symptoms and neuroticism with 

various cardiometabolic traits. We observed positive polygenic associations with CV risks for all depression 

phenotypes except MDD-CONVERGE, which represents severe melancholic depression. Counter-intuitively, we 

observed inverse polygenic associations with CV risks for MDD-CONVERGE. Enrichment analyses of shared SNP 
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reveal many interesting pathways, such as immune- or inflammation-related pathways, the statin pathway and BDNF 

signaling, that underlie the comorbidity of depressive and cardiometabolic traits. We also presented for the first time a 

drug repositioning approach for comorbidities using human genomics data, and many of the candidates are supported 

by the literature. We hope that our work will stimulate further investigations into the complex relationships between 

depressive and cardiometabolic diseases, and our findings will provide an important reference for future researchers.  
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Table 1   Polygenic risk score (PRS) analysis between MDD-PGC and cardiometabolic traits  

  PRS: MDD-PGC as outcome PRS: MDD-PGC as predictor LD score regression 

  best_p pval coef qval best_p pval coef qval rg pval qval 

Adiponectin 0.01 1.81E-03 -6.89E-02 1.81E-02 0.2 1.82E-05 -2.58E-03 1.82E-04 -1.80E-01 1.72E-01 7.00E-01 

BMI 0.001 1.51E-01 6.51E-02 8.33E-01 0.3 6.42E-02 8.68E-04 2.27E-01 -1.37E-02 8.24E-01 8.64E-01 

CAD 0.5 6.80E-11 4.10E-02 3.71E-10 0.5 1.77E-05 3.53E-03 9.86E-05 1.20E-01 1.07E-01 5.87E-01 

DM 0.1 5.99E-03 8.69E-03 3.53E-02 0.2 1.61E-03 5.51E-03 1.61E-02 3.22E-02 7.57E-01 8.64E-01 

Fat percent 0.001 3.46E-01 2.61E-02 9.94E-01 0.001 6.33E-02 5.92E-03 4.28E-01 3.82E-02 6.40E-01 8.58E-01 

FG 0.05 1.12E-02 -2.91E-02 8.32E-02 0.001 2.01E-01 2.44E-03 9.65E-01 -5.30E-02 5.83E-01 8.58E-01 

FG-adjBMI 0.1 3.37E-03 -4.00E-02 3.19E-02 0.001 1.22E-01 2.89E-03 9.60E-01 -4.17E-02 6.63E-01 8.58E-01 

HDL 0.001 3.22E-06 1.52E-01 3.22E-05 0.01 2.12E-01 1.56E-03 7.84E-01 1.08E-02 8.97E-01 8.97E-01 

HOMA-IR 0.4 2.68E-02 2.94E-02 1.41E-01 0.005 8.59E-02 2.32E-03 6.86E-01 7.44E-02 6.40E-01 8.58E-01 

INS 0.1 6.23E-01 5.66E-03 9.87E-01 0.001 3.01E-01 1.66E-03 9.20E-01 -1.02E-01 3.86E-01 8.49E-01 

INS-adjBMI 0.3 2.51E-01 -1.14E-02 8.40E-01 0.001 1.91E-01 2.47E-03 7.87E-01 -5.97E-02 6.40E-01 8.58E-01 

LDL 0.05 6.92E-02 -2.70E-02 1.56E-01 0.4 1.30E-01 -8.36E-04 5.71E-01 -9.87E-02 2.66E-01 7.31E-01 

Leptin-adjBMI 0.3 6.63E-04 -3.91E-02 4.95E-03 0.5 8.35E-03 -1.38E-03 5.68E-02 7.06E-02 6.22E-01 8.58E-01 

Leptin 0.2 2.41E-01 -1.09E-02 7.12E-01 0.001 9.77E-02 6.23E-03 8.96E-01 5.93E-02 6.61E-01 8.58E-01 

TC 0.05 1.74E-01 2.06E-02 6.09E-01 0.3 2.40E-01 7.56E-04 9.40E-01 -1.89E-02 8.18E-01 8.64E-01 

TG 0.1 2.88E-02 3.18E-02 1.13E-01 0.001 3.70E-03 8.00E-03 3.70E-02 1.76E-01 2.03E-02 2.23E-01 

WHR 0.3 1.58E-04 5.37E-02 1.09E-03 0.1 1.07E-04 2.35E-03 1.07E-03 1.46E-01 1.98E-02 2.23E-01 

WHR-adjBMI 0.2 4.62E-07 7.34E-02 4.62E-06 0.1 1.23E-03 1.99E-03 1.05E-02 1.26E-01 4.58E-02 3.36E-01 

DBP 0.3 1.07E-01 6.48E-03 2.79E-01 0.001 8.28E-02 -1.78E-01 3.93E-01 -1.62E-01 2.23E-01 7.00E-01 

SBP 0.5 2.12E-02 5.49E-03 1.10E-01 0.05 8.15E-02 8.38E-02 8.15E-01 -1.43E-01 3.35E-01 8.20E-01 

Best_p, best p-value threshold for polygenic score association; coef, regression coefficient; pval, p-value; qval, q-value; rg, genetic correlation. 

BMI, body mass index; CAD, coronary artery disease; DM, type 2 diabetes mellitus; Fat percent, total fat percentage; FG-adjBMI, fasting glucose adjusted for BMI; FG, fasting glucose; HDL, high-density 

lipoprotein; HOMA-IR, Insulin resistance; INS-adjBMI, fasting insulin adjusted for BMI; Insulin, fasting insulin; LDL, low-density lipoprotein; leptin-adjBMI, leptin adjusted for BMI; TG, triglycerides; 

TC, total cholesterol; WHR, waist-hip ratio; WHR-adjBMI, waist-hip ratio adjusted for BMI; DBP, diastolic blood pressure; SBP, systolic blood pressure. 

Results with q-value <0.05 are in bold and those with q-value between 0.05 and 0.1 (suggestive associations) are in italics. 
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Table 2   Polygenic risk score (PRS) analysis between MDD-CONVERGE and cardiometabolic traits 

  MDD-CONVERGE as outcome MDD-CONVERGE as predictor LD score regression 

  best_p pval coef qval best_p pval coef qval rg p qval 

Adiponectin 0.01 4.80E-02 2.24E-02 3.07E-01 0.2 1.41E-01 -6.09E-04 4.54E-01 2.86E-01 5.72E-02 1.14E-01 

BMI 0.03 1.64E-07 -1.42E-01 1.19E-06 0.05 5.87E-05 -1.72E-03 5.87E-04 -1.83E-01 6.30E-03 4.49E-02 

CAD 0.4 3.88E-02 -1.31E-02 1.65E-01 0.5 5.98E-05 -2.89E-03 2.28E-04 -4.59E-02 4.92E-01 5.42E-01 

DM 0.05 1.65E-01 4.25E-03 3.98E-01 0.03 5.18E-03 -5.70E-03 5.18E-02 -2.32E-01 8.90E-03 4.49E-02 

Fat percent 0.001 6.59E-02 -3.06E-02 4.01E-01 0.3 2.27E-03 -1.50E-03 7.77E-03 -1.85E-01 2.72E-02 8.55E-02 

FG 0.3 2.77E-02 -1.67E-02 5.58E-02 0.01 3.67E-02 -1.14E-03 3.67E-01 -2.15E-01 2.03E-02 7.44E-02 

FG-adjBMI 0.01 1.06E-01 -1.90E-02 5.03E-01 0.01 1.29E-01 -8.49E-04 9.69E-01 -1.55E-01 8.87E-02 1.63E-01 

HDL 0.4 4.79E-05 4.91E-02 3.91E-04 0.5 4.29E-05 1.69E-03 2.97E-04 6.56E-02 4.48E-01 5.42E-01 

HOMA-IR 0.2 6.96E-02 2.52E-02 3.89E-01 0.01 3.34E-02 -1.49E-03 2.25E-01 -2.08E-01 1.87E-01 2.74E-01 

INS 0.005 2.68E-01 -2.02E-02 6.77E-01 0.01 5.80E-02 -1.05E-03 2.60E-01 -1.06E-01 3.41E-01 4.41E-01 

INS-adjBMI 0.1 1.78E-01 1.16E-02 6.48E-01 0.005 3.68E-01 5.23E-04 9.70E-01 2.19E-02 8.39E-01 8.79E-01 

LDL 0.001 5.27E-01 -2.35E-02 9.83E-01 0.001 1.10E-01 2.93E-03 5.62E-01 -6.30E-03 9.43E-01 9.43E-01 

Leptin-adjBMI 0.005 9.00E-03 -7.44E-02 9.00E-02 0.001 8.65E-02 -3.05E-03 5.37E-01 -1.78E-01 1.72E-01 2.71E-01 

Leptin 0.05 1.67E-02 -2.78E-02 1.20E-01 0.01 1.99E-02 -2.59E-03 1.14E-01 -3.74E-01 9.30E-03 4.49E-02 

TC 0.01 1.49E-01 3.47E-02 5.94E-01 0.001 8.10E-02 3.11E-03 7.63E-01 -4.97E-02 4.90E-01 5.42E-01 

TG 0.4 9.19E-04 -4.07E-02 4.86E-03 0.3 6.77E-05 -1.64E-03 3.44E-04 -1.35E-01 1.02E-01 1.72E-01 

WHR 0.01 3.38E-05 -1.26E-01 3.38E-04 0.5 8.59E-07 -1.79E-03 5.92E-06 -1.69E-01 6.90E-03 4.49E-02 

WHR-adjBMI 0.01 6.65E-03 -8.33E-02 6.65E-02 0.5 2.02E-04 -1.37E-03 1.23E-03 -7.84E-02 2.12E-01 2.91E-01 

DBP 0.01 3.62E-01 6.95E-03 9.97E-01 0.4 3.19E-01 -1.22E-02 7.37E-01 -2.84E-01 4.47E-02 1.14E-01 

SBP 0.05 3.09E-01 2.50E-03 7.85E-01 0.1 1.00E-01 -4.22E-02 4.78E-01 -3.10E-01 1.02E-02 4.49E-02 

Please refer to the legends of Table 1.  

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 23, 2017. ; https://doi.org/10.1101/140590doi: bioRxiv preprint 

https://doi.org/10.1101/140590
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Table 3   Polygenic risk score (PRS) analysis between depressive symptoms (DS) and cardiometabolic traits 

 

  PRS: DS as outcome PRS: DS as predictor LD score regression 

  best_p pval coef qval best_p pval coef qval rg pval qval 

Adiponectin 0.2 2.70E-01 9.49E-04 7.79E-01 0.03 2.80E-02 9.85E-03 1.12E-01 -6.90E-02 3.59E-01 4.64E-01 

BMI 0.03 3.25E-14 2.65E-02 3.25E-13 0.2 5.77E-17 2.30E-02 3.95E-16 9.61E-02 2.27E-02 7.13E-02 

CAD 0.1 1.09E-07 4.22E-03 7.36E-07 0.1 6.67E-13 4.04E-02 6.32E-12 1.42E-01 1.10E-03 8.07E-03 

DM 0.3 1.02E-01 3.50E-04 3.87E-01 0.2 6.00E-08 5.92E-02 4.25E-07 7.03E-02 2.69E-01 4.22E-01 

Fat percent 0.1 3.29E-04 2.56E-03 3.29E-03 0.2 2.89E-11 2.68E-02 1.17E-10 2.02E-01 2.00E-04 2.20E-03 

FG 0.001 1.35E-01 -1.04E-02 5.79E-01 0.001 3.62E-02 1.68E-02 3.62E-01 4.41E-02 4.31E-01 4.99E-01 

FG-adjBMI 0.001 6.23E-02 -1.24E-02 5.89E-01 0.01 2.09E-02 9.26E-03 1.11E-01 5.45E-02 3.51E-01 4.64E-01 

HDL 0.4 1.32E-08 -9.72E-03 4.93E-08 0.5 1.06E-09 -2.02E-02 5.11E-09 -9.96E-02 4.67E-02 1.28E-01 

HOMA-IR 0.3 1.31E-05 8.08E-03 5.89E-05 0.2 3.36E-08 1.67E-02 2.26E-07 1.42E-01 1.27E-01 2.53E-01 

INS 0.001 1.90E-01 9.65E-03 9.32E-01 0.001 1.11E-03 2.20E-02 1.11E-02 5.39E-02 4.87E-01 5.35E-01 

INS-adjBMI 0.001 1.07E-01 1.07E-02 4.27E-01 0.4 1.56E-07 1.18E-02 6.91E-07 1.40E-01 5.22E-02 1.28E-01 

LDL 0.5 1.13E-03 5.06E-03 5.65E-03 0.2 1.61E-02 9.16E-03 8.08E-02 -7.20E-03 8.93E-01 9.35E-01 

Leptin-adjBMI 0.005 2.05E-02 -9.09E-03 2.05E-01 0.05 3.63E-01 -4.07E-03 9.90E-01 2.23E-01 3.70E-03 1.63E-02 

Leptin 0.01 1.21E-02 6.24E-03 1.21E-01 0.3 4.00E-03 1.33E-02 2.55E-02 8.95E-02 2.51E-01 4.22E-01 

TC 0.3 4.84E-05 6.60E-03 4.84E-04 0.2 1.03E-03 1.22E-02 5.48E-03 3.70E-03 9.35E-01 9.35E-01 

TG 0.001 1.63E-06 2.71E-02 1.17E-05 0.1 2.35E-11 2.48E-02 2.35E-10 1.38E-01 3.60E-03 1.63E-02 

WHR 0.2 2.86E-12 1.43E-02 2.86E-11 0.5 7.69E-14 2.18E-02 7.69E-13 1.76E-01 2.80E-05 6.16E-04 

WHR-adjBMI 0.03 2.96E-07 1.51E-02 2.96E-06 0.5 1.83E-04 1.10E-02 1.11E-03 1.09E-01 7.80E-03 2.86E-02 

DBP 0.01 9.56E-04 3.12E-03 9.56E-03 0.001 4.20E-05 1.78E+00 4.20E-04 1.07E-01 3.18E-01 4.64E-01 

SBP 0.001 2.67E-01 9.52E-04 9.76E-01 0.4 9.29E-03 3.90E-01 3.88E-02 1.48E-01 2.19E-01 4.01E-01 

Please refer to the legends of Table 1.  
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Table 4   Polygenic risk score (PRS) analysis between neuroticism and cardiometabolic traits 

  PRS: neuroticism as outcome PRS: neuroticism as predictor LD score regression 

  best_p pval coef qval best_p pval coef qval rg pval qval 

Adiponectin 0.05 4.29E-01 -7.90E-04 9.09E-01 0.3 5.29E-03 -9.21E-03 2.41E-02 -1.00E-01 8.30E-02 2.80E-01 

BMI 0.001 1.64E-02 -1.63E-02 1.64E-01 0.001 1.39E-01 -1.18E-02 6.71E-01 -3.49E-02 3.57E-01 5.61E-01 

CAD 0.01 1.45E-08 7.40E-03 1.35E-07 0.3 9.37E-10 3.16E-02 9.37E-09 7.83E-02 2.77E-02 2.03E-01 

DM 0.001 1.83E-01 -1.27E-03 8.98E-01 0.03 4.92E-02 2.87E-02 2.28E-01 -4.29E-02 4.88E-01 6.70E-01 

Fat percent 0.1 9.84E-03 1.77E-03 9.84E-02 0.5 9.14E-03 1.01E-02 3.66E-02 5.60E-02 2.90E-01 4.91E-01 

FG 0.03 7.86E-02 2.92E-03 4.71E-01 0.1 2.45E-03 7.94E-03 1.18E-02 6.10E-02 1.73E-01 3.80E-01 

FG-adjBMI 0.05 5.86E-02 2.87E-03 3.84E-01 0.1 2.91E-03 7.60E-03 9.92E-03 6.70E-03 8.91E-01 8.91E-01 

HDL 0.001 3.70E-01 4.31E-03 9.36E-01 0.4 2.05E-01 -4.27E-03 8.27E-01 7.90E-03 8.29E-01 8.69E-01 

HOMA-IR 0.03 8.99E-05 1.06E-02 8.99E-04 0.5 7.92E-04 9.71E-03 3.51E-03 1.13E-01 2.41E-01 4.81E-01 

INS 0.1 4.64E-03 3.87E-03 4.64E-02 0.1 3.75E-05 9.13E-03 3.75E-04 1.48E-01 1.01E-01 2.80E-01 

INS-adjBMI 0.2 2.64E-01 1.19E-03 7.04E-01 0.2 1.17E-04 9.22E-03 4.58E-04 1.05E-01 1.02E-01 2.80E-01 

LDL 0.03 2.89E-02 5.19E-03 1.04E-01 0.4 4.33E-02 7.42E-03 1.17E-01 1.82E-02 6.85E-01 8.69E-01 

Leptin-adjBMI 0.05 3.44E-01 -1.92E-03 9.47E-01 0.03 3.41E-02 1.05E-02 1.95E-01 1.91E-02 8.03E-01 8.69E-01 

Leptin 0.01 3.05E-01 2.49E-03 7.73E-01 0.4 1.46E-01 6.67E-03 4.07E-01 2.12E-02 7.56E-01 8.69E-01 

TC 0.4 3.52E-04 5.60E-03 1.78E-03 0.005 1.30E-04 2.78E-02 1.30E-03 4.46E-02 2.76E-01 4.91E-01 

TG 0.05 4.85E-07 1.19E-02 3.59E-06 0.001 2.13E-07 5.09E-02 1.30E-06 8.68E-02 9.46E-02 2.80E-01 

WHR 0.2 6.74E-05 7.97E-03 6.10E-04 0.5 2.23E-06 1.40E-02 1.14E-05 8.32E-02 1.01E-02 1.11E-01 

WHR-adjBMI 0.5 3.75E-07 9.21E-03 2.60E-06 0.05 2.74E-07 1.96E-02 1.29E-06 1.19E-01 4.00E-04 8.80E-03 

DBP 0.05 8.24E-04 2.35E-03 8.24E-03 0.3 1.65E-04 3.47E-01 1.65E-03 1.68E-01 7.47E-02 2.80E-01 

SBP 0.4 1.65E-01 1.74E-04 5.08E-01 0.5 5.29E-02 2.75E-01 2.16E-01 7.29E-02 4.34E-01 6.37E-01 

Please refer to the legends of Table 1.
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Table 5   Top genes shared between depression phenotypes and cardiometabolic traits  

 
Gene Freq AvgRank Present_In      

MDD-PGC        

1 TRPS1 7 11 BMI, DBP, HDL, LDL, Leptin, Leptin-adjBMI, TC 

2 NOTCH4 4 3 DBP, LDL, TC, TG   

3 C5orf67 4 3.5 HDL, TG, WHR, WHR-adjBMI  

4 TMEM241 4 22.5 BMI, DBP, HDL, TG   

5 NR2C2AP 3 7 LDL, TC, TG    

6 ABO 3 10.3 CAD, LDL, TC    

7 MAP2K5 3 11 BMI, HDL, WHR    

8 PPM1G 3 12 LDL, TC, TG    

9 ITIH3 3 12.3 BMI, DBP, LDL    

10 ANKDD1B 3 13.3 BMI, LDL, TC    

 

MDD-CONVERGE 

      

1 ADCY5 6 3.8 BMI, FG, Fatpercent, HDL, TG, WHR  

2 BPTF 6 7.2 BMI, Fatpercent, HDL, TC, TG, WHR  

3 SEMA5A 4 9.8 Adiponectin, CAD, HDL, TG   

4 SIK3 4 9.8 CAD, HDL, TC, TG   

5 JMJD1C 4 28 BMI, HDL, TG, WHR   

6 GPHN 4 31 Adiponectin, Fatpercent, HDL, TG  

7 FTO 4 31 BMI, Fatpercent, HDL, WHR   

8 DIP2B 3 2.3 LDL, SBP, TC    

9 PBX4 3 3 LDL, TC, TG    

10 CD19 3 6.3 BMI, Fatpercent, TC   

 

Depressive symptoms 

      

1 TNXB 8 25.6 DBP, HDL, LDL, SBP, TC, TG, WHR, WHR-adjBMI 

2 ABO 8 30.5 CAD, DBP, DM, HDL, LDL, TC, TG, WHR 

3 TRPS1 7 7.9 BMI, HDL, HOMA_IR, INS, INS-adjBMI, LDL, Leptin 

4 VEGFA 7 18 CAD, DBP, HDL, SBP, TG, WHR, WHR-adjBMI 

5 FTO 7 42.6 BMI, DM, Fatpercent, HDL, INS, TG, WHR 

6 PSORS1C1 6 4.5 HDL, LDL, TC, TG, WHR, WHR-adjBMI  
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7 FADS2 6 6.3 FG, FG-adjBMI, HDL, LDL, TC, TG  

8 IGF2BP2 6 12.2 BMI, DBP, DM, FG, FG-adjBMI, WHR-adjBMI 

9 C5orf67 6 16.3 HDL, INS, INS-adjBMI, TG, WHR, WHR-adjBMI 

10 ZHX3 6 31.3 DBP, DM, Fatpercent, LDL, SBP, TC  

 

Neuroticism 

       

1 RFLNA 10 37 Adiponectin, BMI, CAD, DM, Fatpercent, HDL, INS-adjBMI, TG, WHR, 

WHR-adjBMI 

2 TCF7L2 10 51.5 BMI, CAD, DM, FG, FG-adjBMI, Fatpercent, HDL, INS, INS-adjBMI, SBP 

3 MSRA 9 33 BMI, DBP, DM, FG, Fatpercent, HDL, INS-adjBMI, SBP, TG 

4 PPARG 9 62.3 BMI, DM, Fatpercent, HDL, INS-adjBMI, LDL, TG, WHR, WHR-adjBMI 

5 MBD5 9 81.7 Adiponectin, CAD, DBP, FG, FG-adjBMI, Fatpercent, TG, WHR, WHR-adjBMI 

6 TNXB 9 131.4 BMI, DBP, Fatpercent, HDL, SBP, TC, TG, WHR, WHR-adjBMI 

7 ZHX3 9 137.7 BMI, CAD, DBP, HDL, INS-adjBMI, LDL, SBP, TC, TG 

8 PEPD 8 72.8 Adiponectin, CAD, DM, Fatpercent, HDL, INS-adjBMI, TG, WHR 

9 BLK 8 110.1 BMI, CAD, DBP, INS-adjBMI, LDL, SBP, TC, TG 

10 CELF1 7 7.3 BMI, FG, Fatpercent, HDL, TC, TG, WHR   

We first extracted SNPs with high probability of being shared between depressive and cardiometabolic traits (tdr11>0.5). SNPs were then mapped to genes using BioMart. Here we reordered the genes 

based on how frequent they are listed among the top (Freq) and the average rank (AvgRank) of the corresponding gene 

 

 

 

 

Table 6  Top pathways enriched among genes shared by MDD-PGC and MDD-CONVEGE with cardiometabolic traits  

 

  Pathway Freq AvgRank Present_In 

MDD-PGC (same directions of effects on depression and CV 

risks) 

       

1 Allograft rejection 5 4.2 DBP (same), LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

2 Graft-versus-host disease 5 5.8 DBP (same), LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

3 Type I diabetes mellitus 5 6.8 DBP (same), LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

4 Viral myocarditis 5 7.2 DBP (same), LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

5 Autoimmune thyroid disease 5 8.8 DBP (same), LDL (same), TC (same), TG (same), WHR-adjBMI (same) 
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6 Allograft Rejection 5 10 DBP (same), LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

7 Antigen processing and presentation 5 13 DBP (same), LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

8 Cell adhesion molecules (CAMs) 5 19 DBP (same), LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

9 Phagosome 5 19.4 BMI (same), LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

10 Staphylococcus aureus infection 4 3.2 LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

11 Asthma 4 5.5 LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

12 Intestinal immune network for IgA production 4 10.2 LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

13 Influenza A 4 10.5 LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

14 MHC class II antigen presentation 4 13.8 LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

15 Inflammatory bowel disease (IBD) 4 15.5 LDL (same), TC (same), TG (same), WHR-adjBMI (same) 

         
         
MDD-CONVERGE (opposite directions of effects on depression and CV risks)      

1 Angiopoietin Like Protein 8 Regulatory Pathway 3 4.7 BMI (opposite), Fatpercent (opposite), WHR (opposite) 

2 Oxytocin signaling pathway 2 3 BMI (opposite), Fatpercent (opposite)  

3 Brain-Derived Neurotrophic Factor (BDNF) signaling 

pathway 

2 3.5 Fatpercent (opposite), WHR (opposite)  

4 Signaling Pathways in Glioblastoma 2 8.5 BMI (opposite), WHR (opposite)   

5 Longevity regulating pathway - multiple species 1 1 BMI (opposite)    

6 Olfactory Signaling Pathway 1 1 HDL (same)    

7 Regulation of Androgen receptor activity 1 1 TC (opposite)    

8 RHO GTPases activate PAKs 1 1 CAD (opposite)    

9 Neuronal System 1 1 TG (opposite)    

10 Pathways Affected in Adenoid Cystic Carcinoma 1 1 WHR (opposite)    

11 Olfactory transduction 1 2 HDL (same)    

12 NCAM1 interactions 1 2 BMI (opposite)    

13 Chromatin modifying enzymes 1 2 TC (opposite)    

14 Validated targets of C-MYC transcriptional repression 1 2 WHR (opposite)    

15 Voltage gated Potassium channels 1 2 TG (opposite)       

Please refer to Table 5 for legends. 
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Table 7  Top pathways enriched among genes shared by depressive symptoms and neuroticism with cardiometabolic traits  

 

  Pathway Freq AvgRank Present_In 

Depressive symptoms (same directions of effects on depression and CV risks)        

1 Activation of C3 and C5 5 12.8 LDL (same), TC (same), TG (same), WHR (same), WHR-adjBMI (same) 

2 Complement Activation 5 16.8 LDL (same), TC (same), TG (same), WHR (same), WHR-adjBMI (same) 

3 Regulation of Complement cascade 5 20.6 LDL (same), TC (same), TG (same), WHR (same), WHR-adjBMI (same) 

4 Cohesin Loading onto Chromatin 4 16 BMI (same), CAD (same), LDL (same), TC (same)  

5 Establishment of Sister Chromatid Cohesion 4 18.2 BMI (same), CAD (same), LDL (same), TC (same)  

6 Statin Pathway 4 25.2 HDL (opposite), LDL (same), TC (same), TG (same) 

7 Photodynamic therapy-induced NF-kB survival signaling 4 30.8 HDL (opposite), TG (same), WHR (same), WHR-adjBMI (same) 

8 Phosphatidylinositol signaling system 3 3 DM (same), FG (same), FG-adjBMI (same)  

9 Mitotic Telophase/Cytokinesis 3 6.3 CAD (same), LDL (same), TC (same)   

10 Choline metabolism in cancer 3 6.7 DM (same), FG (same), FG-adjBMI (same)  

11 Brain-Derived Neurotrophic Factor (BDNF) signaling pathway 3 23.3 BMI (same), FG-adjBMI (same), Fatpercent (same)  

12 Phospholipase D signaling pathway 2 6 FG (same), FG-adjBMI (same)   

13 internal ribosome entry pathway 2 6 HDL (opposite), INS (same)   

14 Human Complement System 2 7.5 WHR (same), WHR-adjBMI (same)   

15 VEGFA-VEGFR2 Pathway 2 8.5 BMI (same), FG-adjBMI (same)   

  

 

 

       

         

Neuroticism (same directions of effects on neuroticism and CV risks)        

1 RXR and RAR heterodimerization with other nuclear receptor 5 34.4 DM (same), HDL (opposite), TG (same), WHR (same), WHR-adjBMI (same) 

2 Statin Pathway 4 14.5 HDL (opposite), LDL (same), TC (same), TG (same) 

3 Statin Pathway, Pharmacodynamics 4 21.2 HDL (opposite), LDL (same), TC (same), TG (same) 

4 Lipoprotein metabolism 4 22.8 HDL (opposite), LDL (same), TC (same), TG (same) 

5 Transcription factor regulation in adipogenesis 4 26 HDL (opposite), TG (same), WHR (same), WHR-adjBMI (same) 

6 Lipid digestion, mobilization, and transport 4 28.8 HDL (opposite), LDL (same), TC (same), TG (same) 

7 ECM proteoglycans 4 29.8 CAD (same), TG (same), WHR (same), WHR-adjBMI (same) 
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8 Transcriptional regulation of white adipocyte differentiation 3 10 HDL (opposite), WHR (same), WHR-adjBMI (same) 

9 DAG and IP3 signaling 3 14.3 BMI (same), FG (same), FG-adjBMI (same)  

10 visceral fat deposits and the metabolic syndrome 3 16.3 HDL (opposite), WHR (same), WHR-adjBMI (same) 

11 Phospholipase D signaling pathway 3 17.3 DM (same), FG (same), WHR (same)   

12 EGFR interacts with phospholipase C-gamma 3 17.3 BMI (same), FG (same), FG-adjBMI (same)  

13 amb2 Integrin signaling 3 17.3 CAD (same), FG (same), HDL (opposite)  

14 PLC-gamma1 signalling 3 18.3 BMI (same), FG (same), FG-adjBMI (same)  

15 Focal adhesion 3 20 BMI (same), CAD (same), WHR-adjBMI (same)   

Please refer to Table 5 for legends. 
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Table 8  Drugs enriched among the top shared genes between depression and cardiometabolic traits 

  Drug Freq AvgRank     Drug Freq AvgRank 

MDD-PGC 
   

Depressive symptoms 
  

1 lipase 4 5.8 
 

1 lipase 7 5.4 

2 glutathione 3 7 
 

2 fluorescein 5 11.2 

3 flucloxacillin 3 2.7 
 

3 indocyanine green 4 2.8 

4 allopurinol 3 1.3 
 

4 metronidazole 4 4.8 

5 fluorescein 2 8.5 
 

5 atorvastatin 4 5.5 

6 immune globulin 2 7.5 
 

6 heparin 4 7.5 

7 ribavirin 2 7.5 
 

7 rosuvastatin 4 9.2 

8 indocyanine green 2 4.5 
 

8 pravastatin 4 17.8 

9 lumiracoxib 2 1 
 

9 adenosine 4 22.8 

10 dactinomycin 1 14 
 

10 simvastatin 3 2 

11 heparin 1 13 
 

11 bupropion 3 3.7 

12 rosuvastatin 1 12 
 

12 lovastatin 3 4.7 

13 nadh 1 11 
 

13 fenofibrate 3 12 

14 simvastatin 1 10 
 

14 dopamine 3 12 

15 ethanol 1 9 
 

15 glutathione 3 14.3 

         
MDD-CONVERGE 

   
Neuroticism 

  
1 rosuvastatin 3 1.7 

 
1 lipase 9 7.8 

2 simvastatin 3 5.3 
 

2 tretinoin 9 14.6 

3 atorvastatin 2 2.5 
 

3 vitamin A 9 19.9 

4 epinephrine 2 3.5 
 

4 insulin recombinant 8 24.9 

5 glycine 2 3.5 
 

5 glutathione 7 16.1 

6 bupropion 2 4 
 

6 bupropion 7 20 

7 lovastatin 2 6 
 

7 collagenase 7 38.1 

8 adenosine 2 7 
 

8 simvastatin 6 8.3 

9 methamphetamine 1 1 
 

9 atorvastatin 6 8.5 

10 yohimbine 1 1 
 

10 heparin 6 12.5 

11 verapamil 1 1 
 

11 fluphenazine 6 15.3 

12 furosemide 1 2 
 

12 adenosine triphosphate 6 16.3 

13 norepinephrine 1 2 
 

13 gemfibrozil 6 20.2 
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14 dexamethasone 1 2 
 

14 rosuvastatin 5 5.4 

15 alteplase 1 3   15 methamphetamine 5 9 

Please refer to Table 5 for legends. 
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