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Abstract 

Depression and cardiometabolic diseases, such as coronary artery disease (CAD) and type 2 diabetes (DM), are 

commonly considered as risk factors to each other. However, little is known about the mechanism underlying the 

relationship between depression and cardiometabolic traits. Using a polygenic risk score approach, we investigated the 

genetic overlap of major depressive disorder (MDD) with various cardiometabolic traits based on summary statistics 

from large-scale meta-analyses of genome-wide association studies (GWAS). GWAS results for MDD were taken 

from MDD-CONVERGE which represents a relatively homogenous sample of severe depression. We also identified 

shared genetic variants and inferred the enriched pathways. In addition, we looked for drugs over-represented among 

the top shared genes, with an aim to finding repositioning opportunities for both kinds of disorders.  

We found significant polygenic sharing between MDD and cardiometabolic traits, including positive associations 

with CAD, fat percentage, LDL, triglyceride, body mass index (BMI), waist-hip ratio (WHR) and WHR adjusted for 

BMI, and an inverse association with HDL. We also observed a modest association of MDD with DM but no 

significant associations with other glycemic traits or leptin. Some of the shared pathways include lipoprotein 

metabolism, neurotrophin and oxytocin pathways. Using a gene-set analysis approach, we revealed drugs that may be 

repositioned for both types of disorders, many of which are supported by previous studies, such as statins, bupropion, 

verapamil and s-adenosylmethionine. Our study highlights shared genetic bases of MDD with cardiometabolic traits, 

and implicates the potential of repurposing drugs for comorbidities based on overlapping genetic factors.  
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Introduction 

Major depression is a common psychiatric disorder worldwide. More than 300 million people globally suffer from 

major depressive disorder (MDD)1 and it is ranked as the leading cause of disability worldwide by the World Health 

Organization in a latest report1. Depression has also been reported to be associated with numerous physical illnesses, 

including cardiovascular and metabolic diseases2, as well as cardiovascular risk factors such as obesity3 and 

dyslipidemia4. A book-length review on this subject is given in Baune and Tully5. However, the mechanism underlying 

the relationship between depression and cardiometabolic traits is not well understood. As common biological pathways 

may underlie both depression and cardiometabolic traits5, shared genetic factors have been proposed as one of the 

mechanisms contributing to the comorbidities. Studies have shown genetic overlap between depression and blood 

pressure, total cholesterol level, body mass index (BMI), and heart rate variability 6-9. However, only a limited spectrum 

of cardiometabolic abnormalities was considered in previous studies. These studies were mainly twin-based or 

family-based and the aim was to investigate an overall shared genetic basis; as such, they did not identify which genetic 

variants are most likely shared or the pathways involved. A recent systematic review nicely summarizes the current 

evidence for susceptibility genes shared between depression and cardiometabolic traits from candidate gene and some 

genome-wide studies10. Nevertheless, the review mainly focused on a qualitative assessment of the evidence and the 

results of candidate gene studies, which is a main part of the review, may not as reliable as large-scale GWAS.  

 

In this study, we systematically study the genetic overlap of MDD with cardiometabolic abnormalities by a variety of 

approaches. Firstly, we study whether polygenic risk score (PRS) of depression is associated with cardiometabolic traits 

and vice versa. Secondly, we identify the genetic variants most likely shared between the disorders, by a statistical 

approach based on local true discovery rates. Based on the shared genetic markers, we identify the enriched biological 

pathways and gene ontology terms, and drugs potentially linked to both kinds of disorders. To our knowledge, this is the 

also first study to make use of human genomic data to guide drug discovery or repositioning for comorbid disorders.  

 

Drug repositioning is gaining increasingly attention in recent years as a cost-effective approach to identify novel 

therapies11. The development of every new drug requires a major investment on drug design, testing and manufacturing 

standards12. In contrast, the repositioned drugs have passed through multiple stages of clinical development, and thus 

have well-known safety and pharmacokinetic profiles 13. An example of drug repositioning in this field is pioglitazone, 

an insulin sensitizer which was studied in a clinical trial and shown to be a safe and effective adjunctive medication in 

non-diabetic patients with MDD 14.  

 

It is worth noting that depression is widely regarded as a heterogeneous condition15. Depression has a lifetime 

prevalence of up to 17% according to a US study16 and the diagnosis is entirely based on clinical symptoms with no 

reliable biomarkers. As such, it is likely that substantial genetic and phenotypic heterogeneity underlie this diagnosis. 
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Indeed, recent studies have shown that severe depression exhibited a stronger association with MDD polygenic scores, 

implying a heavier genetic loading17. A previous meta-analysis on the association of depression with cardiovascular 

disease risks also remarked on the high level of heterogeneity among studies18, which could be partially attributed to the 

heterogeneity of depression itself.  A recent twins study on the genetic overlap of depression with type 2 diabetes 

mellitus (DM) suggested that the genetic factors underlying the comorbidity might be different in males and females19. 

In this study we focus on a relatively homogenous group of severe depressive patients from the MDD-CONVERGE 

study20. This sample is composed of Chinese women with mainly hospital-ascertained cases of severe depression (85% 

of them had melancholic symptoms). This study was also the first GWAS to reveal genome-wide significant loci for 

MDD, reflecting its good power20. Besides, since we will employ the PRS approach to study shared genetic bases, the 

absence of sample overlap between MDD-CONVERGE and other GWAS studies also avoids the possibility of false 

positive associations due to overlap issues.  

 

METHODS  

Polygenic sharing of depression with cardiometabolic disorders or traits 

We studied polygenic sharing of MDD 21 with a panel of cardiometabolic traits, including body mass index (BMI) 22, 

waist-hip ratio (WHR) 21, fasting glucose (FG)23, fasting insulin (INS)23, Insulin resistance (HOMA-IR)24, 

fat-percentage 25, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG), total cholesterol 

(TC) 26, leptin25, coronary artery disease (CAD) 27 and type 2 DM28. GWAS summary statistics were downloaded from 

the Psychiatric Genomics Consortium website (https://www.med.unc.edu/pgc) and LD hub 

(http://ldsc.broadinstitute.org/). Details of each study may be found in the references listed above.  

   

Polygenic risk score (PRS) is a weighted sum of allelic counts, with the weights given by log odds ratios of 

individual SNPs. The PRS for an individual i, or ri , can be computed by j ij
i

w x∑ , where ijx is the centered allelic 

count for the jth SNP for the ith individual, jw  is the weight given to the jth SNP, given by the log odds ratio or 

regression coefficient in a linear regression. In this study we performed analyses using the summary statistics of each 

pair of traits, as raw genotype data are not available. Association testing was carried out by the method “gtx” 

described by Johnson 29. This method was also described and elaborated in a number of papers e.g. 30-32. Briefly, we 

tested for the association of the PRS derived from the first trait with a second trait iy  (with values centered) by 

regression:  

i iy rα=   

 

Then it can be shown that the regression coefficient α  can be estimated by 
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where ˆ
jβ  is the regression coefficient when the second trait iy  is regressed onto the jth SNP and js is 

corresponding standard error of ˆ
jβ . This method was implemented in the R program PRsice33. We performed 

LD-clumping with an R2 threshold of 0.05 prior to association analyses, following the suggestions given in the PRsice 

vignette. A series of ten p-value thresholds (0.001, 0.005, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) was considered. 

Multiple testing was corrected by the false discovery rate (FDR) approach, which controls the expected proportion of 

false positives among the results declared to be significant. FDR-adjusted p-value (q-value) was calculated by the R 

program p.adjust using the Benjamini-Hochberg procedure34. Results with q-value below 0.05 are regarded as 

significant, and those with q-value below 0.1 are regarded as suggestive associations. 

 

Discovery of genetic variants associated to both MDD and cardiometabolic traits 

The SNPs shared by MDD and cardiometabolic traits were identified by an approach based on the concept of local false 

discovery rates35. For each SNP, the probability of being associated with both traits (denoted by tdr11) was calculated 

based on the observed z-statistics. The approach is closely related to the conditional false discovery rate36 but here we 

focused on the chance of shared associations instead of probability of association conditioned on the other trait. We 

adopted the same statistical formulation proposed by Chung et al.37, although we worked with the z-statistics instead 

of p-values. Briefly, we assumed a four-group mixture model of z-statistics:  

00 00 10 10 01 01 11 11( , ) ( , ) ( , ) ( , ) ( , )A B A B A B A B A Bf z z p f z z p f z z p f z z p f z z= + + +  ----(1) 

where zA and zB refer to the z-statistics of trait A and trait B respectively. There are four possibilities for each SNP 

when two traits are considered: 1) the SNP is associated with none of the traits; (2) the SNP is associated with the first 

trait only; (3) the SNP is associated with the second trait only; and (4) the SNP is associated with both traits. Each of 

these four possibilities are represented in the above mixture model. For instance, p11 denotes the proportion of markers 

that has association with both traits, and f11 denotes the probability density function of the z-statistics of this group of 

markers. From equation (1) we can derive the probability that a SNP is associated with both traits (denoted by tdr11), 

using an expectation-maximization (EM) algorithm. Further details of the method are given in Supplementary 

Information. 
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Pathway and Gene Ontology (GO) enrichment analysis by ConsensusPathDB 

Shared SNPs with tdr11 > 0.5 were selected and mapped to related genes using the Bioconductor package BioMart. 

However, some SNPs were mapped to multiple genes, which may lead to the enrichment of certain pathways that 

consist of genes from the same (or a few) SNPs. We adopted the following method to correct for this potential bias. 

We first extracted variant consequences (using sequence ontology [SO] terms) of variants via BioMart, and each SNP 

was mapped to the gene corresponding to the highest impact rating (as listed in 

http://asia.ensembl.org/info/genome/variation/predicted_data.html#consequences). ConsensusPathDB was used to 

infer the biological pathways and gene ontology (GO) (level 5) terms enriched among the top shared genes. 

ConsesusPathDB is a comprehensive resource that integrates multiple databases for pathway analyses38. 

Over-representation of pathways or GO terms was assessed by hypergeometric tests with a p-value cutoff of 0.01 with 

at least two genes in each pathway, following the default settings. 

 

Drug repositioning by over-representation analyses in WebGestalt 

We then looked for drug-related gene-sets that are over-represented among the most significantly shared genes. We 

used WebGestalt39 for this analysis. WebGestalt employed a computational approach known as GLAD4U40 to query 

the scientific literature to retrieve and prioritize gene lists associated with drugs. The over-represented drugs were 

identified by hypergeometric tests. We require at least 2 genes in each gene-set and the top 10 significant results were 

retrieved.  

 

We expected to discover drugs associated with the overlapping genes, and therefore identify known drugs that have 

genetic associations to non-target disorders. This may provide us hints for new indications of known drugs; for 

example, drugs known to treat psychiatric disorder can be used as a therapy for cardiometabolic diseases, or vice versa. 

We may also find repositioning candidates with undiscovered beneficial effects on both depressive and 

cardiometabolic diseases.  

 

Results   

Polygenic associations between MDD and cardiometabolic traits 

Polygenic associations between MDD and cardiometabolic traits are shown in Table 1. Firstly, PRSs were constructed 

from MDD, and metabolic traits are regarded as target (i.e. dependent) phenotypes. Polygenic score of MDD was 

positively and significantly associated with CAD (q = 2.28E-04), BMI (q = 5.87E-04), WHR (q = 5.92E-06), and 

WHR adjusted for BMI (q = 1.23E-03). Statistically significant associations were also observed for traits of lipid 

metabolism, including fat percentage (q = 7.77E-03), HDL (q = 2.97E-04), and TG (q = 3.44E-04). The direction of 

association was positive for fat percentage and TG, and negative for HDL. MDD polygenic score also predicted DM 

at a suggestive level of significance (q = 5.18E-02).  
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  When cardiometabolic traits were used to construct PRS and MDD was regarded as the outcome, polygenic score of 

HDL was negatively associated with MDD (q = 3.91E-04), while the scores of BMI (q = 1.19E-06) and WHR (q = 

3.38E-04) both showed positive associations. After controlled for BMI, the association between WHR and MDD was 

slightly attenuated (q = 6.65E-02). Other suggestive associations included FG and leptin (adjusted for BMI), both in 

the positive direction. Polygenic scores of CAD (q = 1.65E-01) and fat percentage (q = 4.01E-01) were not significant 

predictors for MDD.  

 

Shared SNPs and Pathway and GO term over-representation analysis 

The top SNPs shared by MDD and cardiometabolic traits are shown in Tables 2 and 3. To facilitate interpretation, we 

have performed LD-clumping (with an R-squared threshold of 0.1 and a window-size of 250 kb) on the shared SNPs 

using PLINK41, and extracted the top five SNPs for presentation.  

 

To explore whether the genes shared by MDD and cardiometabolic traits share specific canonical pathways and 

functional features, we performed pathway and GO enrichment analysis using ConsensusPathDB. For CAD and HDL, 

many overrepresented pathways and GO terms were related to lipid and lipoprotein metabolism (Table 4 & 

Supplementary Tables 1-2), including the statin pathway. We also found enrichment of pathways related to 

neurotrophins [e.g. brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)] and oxytocin in the 

genes shared between MDD and BMI, fat percentage, and WHR (Table 4-5 and Supplementary Tables 1-2). Some 

other enriched pathways included insulin signaling (for TG and WHR), epidermal growth factor receptor (EGFR) and 

fibroblast growth factor (FGF) receptor pathways (for BMI).  

 

Drug enrichment analysis 

Results of drug enrichment analysis were listed in Table 6. Consistent with the finding in the pathway enrichment 

analysis, the top drugs overrepresented in candidate genes shared by MDD and CAD, HDL, TG, TC, and fat 

percentage included drugs used for reducing cholesterol level, including statins. Some other interesting hits included 

the antidepressant bupropion (for BMI), the calcium channel blocker verapamil (for fat percentage), the lipid-lowering 

agent fenofibrate (for TG) and s-adenosylmethionine (SAMe) (for TC).   

 

Discussion 

In this study we discovered significant polygenic sharing between MDD and multiple cardiometabolic traits, and 

inferred pathways that are enriched among the shared genes. These findings provide further support to common 

pathophysiology shared between the two types of disorders. We also explored drugs with the potential of being 

repositioned for the comorbid disorders. The results of each part of analyses are discussed below.  
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Polygenic associations of MDD with cardiometabolic traits 

When polygenic score of MDD is treated as predictor, it showed strong associations with CAD; on the other hand, the 

association was insignificant when polygenic score of CAD was used to predict MDD (Table 1). One possibility is 

that the genetic variants may not (only) exert pleiotropic effects (the variants affecting each trait separately); instead, 

the variants that influence MDD risk may promote the development of CAD through a causal effect of MDD on CAD. 

It is obviously possible for the co-existence of both pleiotropic and causal effects. A number of meta-analyses have 

found significant associations of depression with CAD, although there is substantial heterogeneity among these 

studies42. To the best of our knowledge, this is the first study revealing a polygenic association between MDD and 

CAD.  

 

With regards to type 2 DM, when using MDD PRS as a predictor, we observed a suggestive association (p = 

5.18E-03; q = 5.18E-02) with type 2 DM although no significant association was found for fasting glucose, fasting 

insulin or HOMA-IR (Table 1). The association between depression and type 2 DM is supported by a number of 

studies. A meta-analysis showed an association between depression and incident DM that could not be completely 

explained by either use of antidepressant drugs or being overweight 43.  Another meta-analysis reported that DM is 

also associated with increased risk for depressive symptoms, with slightly lower adjusted and unadjusted risk ratios44. 

As for the evidence of genetic overlap, a recent twins study revealed shared genetic factors between depression and 

type 2 DM in two samples19. Interestingly, in the Swedish sample, the relationship between the two disorders was 

driven mainly by genetic factors in females but in males the association was mostly explained by environmental 

factors. In the other Danish sample, genetic effects account for most of the covariance in both sexes. This study also 

suggests that different genetic risk factors contribute to the comorbidity in males and females19. The findings highlight 

the heterogeneity of depression and its association with other diseases, and supports our use of a more homogenous 

sample of severe depression in women to delineate shared genetic effects.  

    

  As for the other traits related to glucose metabolism (FG, fasting insulin, HOMA-IR), most did not show 

significant associations with MDD, although we observed a suggestive association of FG with MDD (q = 5.58E-02) 

using FG PRS as a predictor. It is worth noting that the genetic bases of the glucose levels and DM might not 

completely overlap. For example, Merino et al. reported that the polygenic score of 12 variants having strong 

associations with FG did not significantly predict the risk of type 2 DM 45. It has also been reported that some SNPs 

may have differential effects on quantitative glycemic traits and the risk of frank diabetes46, 47. A more detailed review 

was given by Marullo et al.48.  

 

MDD PRS was also associated with BMI, WHR (with and without adjustment for BMI) and components related to 
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lipid metabolism (fat percentage, HDL and TG), and vice versa in most cases. High body fat percentage, BMI, WHR 

and TG as well as low HDL obesity have all been reported as risk factors for DM and cardiovascular diseases in 

numerous studies49, 50.  

 

Shared genetic variants and pathways  

We will briefly discuss some interesting pathways shared between MDD and cardiometabolic traits inferred from 

shared genetic markers. Our analyses demonstrated that many lipid-related pathways and GO terms were 

overrepresented among genes shared by MDD with CAD and HDL. Particularly, the statin pathway was enriched in 

both sets of shared genes (Table 4). Statins were also ranked highly in drug enrichment tests of CAD and HDL (Table 

6). Consistent with our results, statins have been found to exert many pleiotropic beneficial effects on cardiovascular 

diseases, including anti-inflammatory actions, beyond their LDL cholesterol-lowering effects 51. Recently, some 

researchers started to study its therapeutic potential on depression, as previous studies postulated that inflammation 

also played a role in depression 52, 53. A Swedish national cohort study reported that statin possibly reduced risk of 

depression in individuals over the age of 40 54. It was suggested that concomitant treatment with selective serotonin 

reuptake inhibitor (SSRI) and statin might have superior antidepressant effect than SSRI treatment alone 55. A Korean 

group also successfully showed an anti-depressant action of statin in patients with acute coronary syndrome (ACS) 56. 

Taken together, our result provides additional evidence for the use of statins as a novel therapy for depression, 

especially for patients with comorbid cardiovascular diseases.  

 

Other pathways that were enriched included the neurotrophin and oxytocin signaling pathways which have been 

implicated in the pathophysiology of depression. Depression may be associated with impaired neuronal plasticity, and 

decreased BDNF and NGF level have been proposed as biomarkers for major depression 57, 58. Oxytocin is also 

postulated to attenuate activity of the hypothalamic-pituitary adrenal (HPA) axis 59, 60 and was suggested to have 

therapeutic effects on depression61.  

 

These signaling pathways were enriched for the shared genes between BMI, fat percentage and WHR with 

depression, suggesting an association with obesity traits. In addition, we observed enrichment of GO terms related to 

neuronal or synaptic functions for several cardiometabolic traits, particularly BMI (Table 5). Although the exact 

relationship between neurotrophins and metabolic disorders has yet to be elucidated, NGF and BDNF were suggested 

to play important roles in cardiometabolic functioning; for example, both exert insulinotropic effect and suppress food 

intake 62. More detailed reviews on this topic are available elsewhere63, 64. On the other hand, oxytocin can ameliorate 

weight gain in diet-induced obese rats by enhancing adipose tissue lipolysis and fatty acid β-oxidation via the 

production of oleoylethanolamide, a peroxisome proliferator-activated receptor alpha (PPARα) activator 65, 66. It is 

worthwhile to further investigate the molecular mechanisms by which neurotrophin and oxytocin signaling pathways 
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are involved in the comorbidity of MDD and cardiometabolic abnormalities.  

 

Drug enrichment analyses  

As already discussed above, statins were ranked highly in our drug enrichment tests and previous studies supported its 

therapeutic effects for both cardiovascular and depressive disorders. We will discuss other repositioning hits backed up 

by prior clinical or pre-clinical studies. Bupropion is the top-ranked drug candidate when we considered the shared 

genes between BMI and MDD. Interestingly, bupropion has been shown in a meta-analysis to be the only 

antidepressant that produces weight loss both at the acute phase and over longer period of treatment67. Bupropion 

provides an important example supporting the validity of our approach in identifying repositioning opportunities for 

comorbid disorders.  

 

  Fenofibrate is a well-known lipid-lowering agent. However, an animal study also revealed antidepressant-like 

effects of fenofibrate by PPARα stimulation in the mesolimbic dopamine system68. Verapamil is a calcium channel 

blocker mainly used for hypertension, angina and arrhythmias. Studies have also suggested this drug might also have 

broader beneficial effects on cardiometabolic abnormalities. For example, verapamil has been shown to correct 

autophagic defects related to obesity69. The administration of this drug to obese mice reduced the accumulation of 

hepatic lipid droplets, and ameliorated pathologies of fatty liver such as inflammation and insulin resistance69. 

Regarding the effects on mood disorders, calcium channel blocker has been proposed as a novel therapeutic option for 

bipolar disorder and depression, although the evidence was mixed70.  Verapamil has been reported to demonstrate 

antidepressant-like effects in animal models71-73. Interestingly, we found verapamil among the top repositioning hits 

for MDD with fat percentage, broadly consistent with literature findings.  

 

Another drug worthy of mentioning is s-adenosylmethionine (SAMe), which has been shown to have antidepressant 

properties in clinical studies74, 75, although the results are mixed and there is no conclusive evidence yet for clinical 

use76. On the other hand, SAMe is also related to lipid metabolism; for example, depletion of SAMe may lead to 

accumulation of lipid droplets in human skin fibroblasts77. It has been suggested SAMe supplementation may be 

useful in patients with non-alcoholic fatty liver disease in limiting the progression to steatohepatitis, although it 

requires further verification in clinical trials78. 

 

There are a few limitations to our study. Firstly, as we relied on summary statistics in our polygenic score analysis, 

we could not easily control for covariates of interest. For example, a number of datasets (e.g. GWAS on lipids) do not 

provide results adjusted for BMI or WHR, hence we are unable to conclude if the association between MDD and 

cardiometabolic abnormalities is independent of overweight or obesity status. Future studies using raw genotype data 

will enable more flexible analyses including covariate adjustment. Also in this study we have focused on a relatively 
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homogenous sample of severe depression in Chinese women20. This approach alleviates the issue of heterogeneity 

among depressive patients; however, as most other GWAS samples are composed of Caucasians, the polygenic 

associations between MDD and cardiometabolic phenotypes may be attenuated. Nevertheless, there is evidence that 

GWAS results from Europeans are highly replicable in East Asians and the effect sizes are also highly correlated79. 

Further studies are required to confirm whether our results can be generalized to other ethnic groups, male subjects, or 

individuals with different severity or subtypes of MDD. In addition, the sample size of MDD-CONVERGE is 

relatively moderate (N = 10640)20 when compared to other GWAS studies. Further studies, preferably with larger 

sample sizes, are warranted to validate our findings and to detect weaker polygenic associations.  

 

As for the drug enrichment analyses, we have employed a relatively straightforward approach by testing for 

over-representation of shared genes among known drugs. Also, the significance of each gene is determined by the 

most significant variant and we did not take into account of LD structure and size of each gene or the significance of 

all SNPs in the gene. Due to the relatively moderate sample size of MDD-CONVERGE, for some traits there are no 

markers with tdr11>0.5 and hence are not included in the pathway or drug enrichment analyses. Here we tested for 

over-representation of drug-related gene sets but the directions of drug effects are not explicitly considered. Further 

methodological developments are warranted in view of these limitations. While we have presented a computational 

framework for drug repositioning for comorbidities, the approach should be considered exploratory rather than 

confirmatory, and further validation in preclinical and clinical studies are crucial before applications in the clinic.  

 

Conclusions 

Our study highlights a significantly shared genetic basis of MDD with CAD, lipid and obesity-related traits, and a 

modest association with type 2 DM. The various enrichment analyses of shared SNP reveal the importance of several 

pathways, e.g. lipid metabolism, NGF, BDNF, and oxytocin signaling pathways in the comorbidity of depressive and 

cardiometabolic traits. Using a gene-set analysis approach, we also revealed drugs that may be repositioned for both 

types of disorders, some of which are supported by prior preclinical and clinical studies. Increased awareness and 

further investigation into the the complex relationship between depressive and cardiometabolic diseases are warranted 

to reduce the morbidities and mortalities in patients with either or both kinds of health problems. 
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Table 1.  Polygenic risk score (PRS) analysis between MDD and cardiometabolic traits 

  MDD-CONVERGE as Target   MDD-CONVERGE as Base 

best_p pval coef qvalue best_p pval coef qvalue 

BMI 0.03 1.64E-07 1.42E-01 1.19E-06 0.05 5.87E-05 1.72E-03 5.87E-04 

CAD 0.4 3.88E-02 1.31E-02 1.65E-01 0.5 5.98E-05 2.89E-03 2.28E-04 

DM 0.05 1.65E-01 -4.25E-03 3.98E-01 0.03 5.18E-03 5.70E-03 5.18E-02 

Fat-percentage 0.001 6.59E-02 3.06E-02 4.01E-01 0.3 2.27E-03 1.50E-03 7.77E-03 

FG-adj-BMI 0.01 1.06E-01 1.90E-02 5.03E-01 0.01 1.29E-01 8.49E-04 9.69E-01 

FG 0.3 2.77E-02 1.67E-02 5.58E-02 0.01 3.67E-02 1.14E-03 3.67E-01 

HDL 0.4 4.79E-05 -4.91E-02 3.91E-04 0.5 4.29E-05 -1.69E-03 2.97E-04 

HOMA-IR 0.2 6.96E-02 -2.52E-02 3.89E-01 0.01 3.34E-02 1.49E-03 2.25E-01 

Insulin 0.005 2.68E-01 2.02E-02 6.77E-01 0.01 5.80E-02 1.05E-03 2.60E-01 

INS-adj-BMI 0.1 1.78E-01 -1.16E-02 6.48E-01 0.005 3.68E-01 -5.23E-04 9.70E-01 

LDL 0.001 5.27E-01 2.35E-02 9.83E-01 0.001 1.10E-01 -2.93E-03 5.62E-01 

Leptin 0.05 1.67E-02 2.78E-02 1.20E-01 0.01 1.99E-02 2.59E-03 1.14E-01 

Leptin-adjBMI 0.005 9.00E-03 7.44E-02 9.00E-02 0.001 8.65E-02 3.05E-03 5.37E-01 

TC 0.01 1.49E-01 -3.47E-02 5.94E-01 0.001 8.10E-02 -3.11E-03 7.63E-01 

TG 0.4 9.19E-04 4.07E-02 4.86E-03 0.3 6.77E-05 1.64E-03 3.44E-04 

WHR 0.01 3.38E-05 1.26E-01 3.38E-04 0.5 8.59E-07 1.79E-03 5.92E-06 

WHR-adj-BMI 0.01 6.65E-03 8.33E-02 6.65E-02   0.5 2.02E-04 1.37E-03 1.23E-03 

Best_p, best p-value threshold for polygenic score association; coef, regression coefficient.  

BMI, body mass index; CAD, coronary artery disease; DM, type 2 diabetes mellitus; Fat-percentage, total fat percentage; 

FG-adj-BMI, fasting glucose adjusted for BMI; FG, fasting glucose; HDL, high-density lipoprotein; HOMA-IR, Insulin resistance; 

INS-adj-BMI, fasting insulin adjusted for BMI; Insulin, fasting insulin; LDL, low-density lipoprotein; leptin-adjBMI, leptin 

adjusted for BMI; leptin, leptin; TG, triglycerides; TC, total cholesterol; WHR, waist-hip ratio; WHR-adj-BMI, waist-hip ratio 

adjusted for BMI. 

Results with q-value <0.05 are in bold and those with q-value between 0.05 and 0.1 (suggestive associations) are in italics. 
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Table 2   Top 5 SNPs shared by MDD with CAD and lipid traits 

Trait Chr SNP Tdr11 Gene 

CAD 

2 rs10168194 0.862 SPHKAP 

10 rs1492705 0.847 

10 rs2639468 0.842 

9 rs7028268 0.841 CDKN2B-AS1 

12 rs11172113 0.838 LRP1; STAT6 

LDL 

12 rs10876041 0.555 DIP2B 

19 rs7252981 0.503 PBX4 

1 rs12239399 0.499 

11 rs888246 0.463 SIK3; APOA1-AS 

19 rs17347726 0.462 ZNF229 

HDL 

12 rs838913 0.857 SCARB1 

3 rs9881942 0.811 ADCY5 

16 rs176060 0.808 

11 rs1900198 0.799 SIK3 

3 rs9831938 0.769 ETV5 

TC 

7 rs10261412 0.761 CNTNAP2; RANP2 

7 rs10261412 0.761 

11 rs2080586 0.738 SIK3 

12 rs10876041 0.730 DIP2B 

19 rs7252981 0.680 PBX4 

TG 

11 rs2080586 0.712 SIK3 

11 rs1900198 0.709 SIK3 

17 rs12449442 0.692 BPTF 

19 rs7252981 0.646 PBX4 

6 rs1265093 0.645 PSORS1C1; CCHCR1; PSORS1C2; POLR2LP1 

Please refer to the legends of Table 1 for abbreviations. 
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Table 3    Top 5 SNPs shared by MDD with obesity-related (left column) and glycemic traits (right column) 

Trait Chr SNP Tdr11 Gene   Trait Chr SNP Tdr11 Gene 

BMI 

3 rs12638263 0.922 ETV5-AS1; ETV5 

DM 

10 rs10998853 0.404 

1 rs11119409 0.897 SYT14 2 rs243085 0.401 

11 rs10742752 0.846 12 rs3764002 0.382 WSCD2 

3 rs2332510 0.811 ADCY5 4 rs4834481 0.369 

19 rs287104 0.809 KCTD15 2 rs243054 0.340 MIR4432HG 

Fatpercent 

15 rs12898654 0.823 SKOR1; RNU6-1 

FG 

3 rs9865576 0.676 ADCY5 

8 rs7009799 0.800 LINC00536 11 rs7942309 0.597 

3 rs2332510 0.794 ADCY5 3 rs13097625 0.524 PCNP 

16 rs1477196 0.774 FTO 2 rs17265240 0.501 

2 rs2943657 0.769   7 rs10260512 0.493 DGKB 

Leptin 

2 rs12617139 0.445 STAM2 

FG 

-adjBMI 

2 rs17265240 0.382 

12 rs11168547 0.408 OR5BJ1P 3 rs13097625 0.318 PCNP 

2 rs12468450 0.401 11 rs377432 0.313 PDE2A 

14 rs10129827 0.399 GPHN 3 rs9865576 0.279 ADCY5 

14 rs6573663 0.398   7 rs10260512 0.278 DGKB 

Leptin 

-adjBMI 

18 rs1348017 0.253 

INS2012 

12 rs1078869 0.389 

14 rs8013247 0.223 GPHN 1 rs12043275 0.338 

1 rs12144426 0.217 19 rs4804833 0.316 MAP2K7;LRRC8E 

3 rs3863070 0.198 KALRN 7 rs38171 0.283 

2 rs4832117 0.179 TRABD2A 11 rs6589846 0.263 GRIK4 

12 rs3764002 0.752 WSCD2 

INS 

-adjBMI 

12 rs1078869 0.297 

17 rs12449442 0.751 BPTF 7 rs38171 0.236 

WHR 3 rs2332510 0.686 ADCY5 13 rs7339054 0.208 

20 rs6090583 0.651 EYA2 19 rs4804833 0.196 MAP2K7;LRRC8E 

  2 rs11695471 0.650 DNMT3A 1 rs10802828 0.172 FMN2; RPS7P5 

WHR-adjBMI 

2 rs12991495 0.251 DNMT3A 

HOMA-IR 

10 rs10997875 0.498 SIRT1; HERC4 

7 rs12700794 0.237 11 rs6589846 0.409 GRIK4 

12 rs3764002 0.203 WSCD2 18 rs10871708 0.386 

20 rs1412957 0.159 EYA2 12 rs1078869 0.374 

9 rs4149261 0.155 ABCA1 7 rs1915973 0.356   

Please refer to the legends of Table 1 for abbreviations. 
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Table 4. Top pathways enriched in genes shared by MDD with CAD and lipid-associated traits 

Pathway p-value q-value 

CAD with MDD 
  

1.            Retinoid metabolism and transport 8.15E-05 1.03E-02 

2.            Statin Pathway, Pharmacodynamics 3.41E-04 1.17E-02 

3.            LDL-mediated lipid transport 4.46E-04 1.17E-02 

4.            SREBP signalling 5.33E-04 1.17E-02 

5.            Lipoprotein metabolism 5.90E-04 1.17E-02 

6.            srebp control of lipid synthesis 6.22E-04 1.17E-02 

7.            Statin Pathway 6.51E-04 1.17E-02 

8.            Abacavir transport and metabolism 1.32E-03 1.98E-02 

9.            Purine metabolism 1.42E-03 1.98E-02 

10.         Visual phototransduction 1.94E-03 2.04E-02 

Fat percentage with MDD 
  

1.            BDNF signaling pathway 3.66E-04 1.87E-02 

2.            Pancreatic secretion - Homo sapiens (human) 1.54E-03 3.92E-02 

3.            Neurotrophin signaling pathway - Homo sapiens (human) 2.91E-03 4.95E-02 

4.            Oxytocin signaling pathway - Homo sapiens (human) 6.29E-03 7.84E-02 

5.            Antiarrhythmic Pathway, Pharmacodynamics 7.69E-03 7.84E-02 

HDL with MDD 
  

1.            Olfactory Signaling Pathway 4.15E-12 1.20E-09 

2.            Olfactory transduction - Homo sapiens (human) 1.32E-10 1.91E-08 

3.            Signaling by GPCR 1.21E-08 1.16E-06 

4.            GPCR downstream signaling 1.42E-07 1.03E-05 

5.            Signal Transduction 1.38E-05 7.97E-04 

6.            Glycerophospholipid metabolism 7.50E-05 3.61E-03 

7.            Glycerolipid metabolism - Homo sapiens (human) 1.02E-03 4.22E-02 

8.            Cation-coupled Chloride cotransporters 1.17E-03 4.22E-02 

9.            Lipoprotein metabolism 1.48E-03 4.58E-02 

10.         Statin Pathway 1.63E-03 4.58E-02 

TC with MDD 
  

1.            Regulation of Androgen receptor activity 4.84E-03 7.80E-02 

2.            Constitutive Signaling by Aberrant PI3K in Cancer 6.86E-03 7.80E-02 

3.            Vesicle-mediated transport 7.13E-03 7.80E-02 

4.            RMTs methylate histone arginines 9.46E-03 7.80E-02 
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TG with MDD 
  

1.            Neuronal System 7.31E-05 1.83E-03 

2.            Transcriptional regulation of white adipocyte differentiation 2.53E-04 3.16E-03 

3.            Uptake and actions of bacterial toxins 7.17E-04 5.97E-03 

4.            Voltage gated Potassium channels 2.22E-03 1.39E-02 

5.            Transmission across Chemical Synapses 4.31E-03 1.68E-02 

6.            Amphetamine addiction - Homo sapiens (human) 5.22E-03 1.68E-02 

7.            Endoderm Differentiation 5.37E-03 1.68E-02 

8.            PPAR signaling pathway - Homo sapiens (human) 5.37E-03 1.68E-02 

9.            Insulin secretion - Homo sapiens (human) 8.24E-03 2.13E-02 

10.         GABAergic synapse - Homo sapiens (human) 8.80E-03 2.13E-02 

Up to 10 most significantly enriched pathways with p-value <0.01 are listed. Cardiometabolic traits with no shared genetic variants 

having tdr11>=0.5 are not included for analyses.  
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Table 5. Top pathways enriched in genes shared by MDD and obesity-related traits 

Pathway p-value q-value 

BMI with MDD 
  

1.            Signaling by EGFR 3.61E-04 2.19E-02 

2.            Oxytocin signaling pathway - Homo sapiens (human) 3.82E-04 2.19E-02 

3.            NGF signalling via TRKA from the plasma membrane 5.39E-04 2.19E-02 

4.            Downstream signaling of activated FGFR2 1.11E-03 2.19E-02 

5.            Downstream signaling of activated FGFR1 1.11E-03 2.19E-02 

6.            Downstream signaling of activated FGFR3 1.11E-03 2.19E-02 

7.            Downstream signaling of activated FGFR4 1.11E-03 2.19E-02 

8.            IL2 1.15E-03 2.19E-02 

9.            Signaling by FGFR3 1.19E-03 2.19E-02 

10.         Signaling by FGFR4 1.19E-03 2.19E-02 

WHR with MDD 
  

1.            Insulin Signaling 1.52E-04 4.41E-03 

2.            NGF signalling via TRKA from the plasma membrane 1.05E-03 9.53E-03 

3.            Validated targets of C-MYC transcriptional repression 1.18E-03 9.53E-03 

4.            Signaling Pathways in Glioblastoma 1.48E-03 9.53E-03 

5.            Gap junction - Homo sapiens (human) 1.70E-03 9.53E-03 

6.            Signalling by NGF 1.97E-03 9.53E-03 

7.            Neurotrophin signaling pathway - Homo sapiens (human) 3.06E-03 1.27E-02 

8.            BDNF signaling pathway 4.37E-03 1.58E-02 

9.            Oxytocin signaling pathway - Homo sapiens (human) 5.24E-03 1.69E-02 

10.         Chemokine signaling pathway - Homo sapiens (human) 7.35E-03 2.01E-02 

The 10 most significantly enriched pathways with p-value <0.01 are listed. Cardiometabolic traits with no shared genetic variants 

having tdr11>=0.5 are not included for analyses.  
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Table 6.  Drugs enriched among the top shared genes between MDD and cardiometabolic traits 

Drug p-value q-value Overlapped genes 

BMI with MDD 

bupropion 3.00E-04 4.50E-03 ERC2_CSMD1_SALL4_PCDH15 

tamoxifen 1.40E-03 1.05E-02 ETS2_FOXO3_ERBB4 

CAD with MDD 

atorvastatin 9.15E-05 1.70E-03 LPL_LPA_LDLR_SREBF1 

lipase 2.00E-04 1.90E-03 LPL_LPA_LDLR_LRP1 

rosuvastatin 4.00E-04 2.50E-03 LPL_CELSR2_LPA_LDLR 

pravastatin 1.00E-03 3.80E-03 LPA_LDLR_SREBF1 

fluvastatin 9.00E-04 3.80E-03 LDLR_SREBF1 

lovastatin 1.50E-03 4.10E-03 LPL_LDLR_SREBF1 

aminocaproic acid 1.30E-03 4.10E-03 PPP1R12A_LPA 

simvastatin 2.10E-03 5.00E-03 LPL_LDLR_SREBF1 

cyclosporine 8.80E-03 1.86E-02 AGT_ILF3 

s-adenosylmethionine 1.03E-02 1.96E-02 AS3MT_CARM1 

Fat percentage with MDD 

dantrolene 1.00E-04 1.10E-03 RYR2_ATP2A1 

verapamil 2.00E-04 1.10E-03 SLC22A3_ATP2A1 

isoproterenol 1.10E-03 3.00E-03 RYR2_ADCY5 

caffeine 1.00E-03 3.00E-03 RPTOR_RYR2 

epinephrine 2.10E-03 4.60E-03 RYR2_SLC22A3 

tacrolimus 2.60E-03 4.80E-03 RPTOR_RYR2 

atorvastatin 3.40E-03 5.30E-03 COBLL1_ABCA1 

simvastatin 3.90E-03 5.40E-03 COBLL1_ABCA1 

tobramycin 6.10E-03 7.50E-03 RNU6-1_IGF2BP1 

adenosine 9.80E-03 1.08E-02 ATP2A1_BPTF_ABCA1 

HDL with MDD 

simvastatin 3.00E-04 2.10E-03 LPL_SCARB1_MVK_ABCA1 

fenofibrate 1.00E-04 2.10E-03 LPL_ABCA1_JMJD1C 

lovastatin 2.00E-04 2.10E-03 LPL_SCARB1_MVK_ABCA1 

glycine 3.00E-04 2.10E-03 LPL_TCAP_GRIN3A_TPM1_GPHN 

probucol 6.00E-04 2.80E-03 SCARB1_ABCA1 

lipase 5.00E-04 2.80E-03 LPL_SCARB1_ABCA1_ANGPTL4 
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yohimbine 9.00E-04 3.20E-03 GNAO1_NISCH 

rosuvastatin 8.00E-04 3.20E-03 LPL_TCAP_SLC12A4_GNAO1 

epinephrine 1.40E-03 4.20E-03 GRIN3A_GNAO1_NISCH 

xanthophyll 1.50E-03 4.20E-03 SCARB1_STARD3 

TC with MDD 

s-adenosylmethionine 1.60E-03 4.80E-03 EHMT2_CARM1 

rosuvastatin 7.60E-03 1.12E-02 SLC12A4_PBX4 

adenosine 1.12E-02 1.12E-02 SMARCA4_BPTF_CARM1 

TG with MDD 

fenofibrate 1.00E-04 3.00E-04 LPL_JMJD1C 

glycine 1.00E-04 3.00E-04 LPL_GPHN_STX1A 

lipase 1.60E-03 3.20E-03 LPL_ANGPTL4 

rosuvastatin 2.10E-03 3.20E-03 LPL_PBX4 

heparin 4.10E-03 4.90E-03 LPL_ANGPTL4 

glutathione 1.30E-02 1.30E-02 MPP5_STX1A 

WHR with MDD 

tamoxifen 5.00E-04 5.00E-04 FOXO3_XBP1 

Up to 10 most significant results with q-value <0.05 are shown. Note that we require at least two overlapping genes for each drug.  
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