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INFERRING FUNCTIONAL NEURAL CONNECTIVITY WITH DEEP
RESIDUAL CONVOLUTIONAL NETWORKS

By TiMmoTHY W. DUNN AND PETER K. KOO

Harvard University

Measuring synaptic connectivity in large neuronal populations re-
mains a major goal of modern neuroscience. While anatomical meth-
ods are advancing, computational techniques for inferring functional
connectivity from recordings of neural activity represent a promising
avenue of analysis. Here, we report significant improvements to a deep
learning method for functional connectomics, as assayed on synthetic
ChaLearn Connectomics data. The method, which integrates recent
advances in convolutional neural network architecture and model-
free partial correlation coefficients, outperforms published methods
on competition data and can achieve over 90% precision at 1% recall
on validation datasets. This suggests that future application of the
model to in vivo whole-brain imaging data in larval zebrafish could
reliably recover on the order of 10° synaptic connections with a 10%
false discovery rate. The model also generalizes to networks with dif-
ferent underlying connection probabilities and should scale well when
parallelized across multiple GPUs. The method offers real potential
as a statistical complement to existing experiments and circuit hy-
potheses in neuroscience.

1. Introduction. Precise brain wiring diagrams can be used to validate and generate hypothe-
ses of neural circuit function. In recent years, considerable resources have been devoted to ultrastruc-
tural reconstructions of synaptic connectivity from serial section electron microscopy (EM) data
(Briggman et al., 2011; Chalfie et al., 1985; Hildebrand et al., 2017). But these anatomical methods,
while improving, remain slow, costly, and laborious. An emerging alternative to EM reconstruc-
tion is statistical inference of the synaptic connectivity latent in observed neural activity patterns.
Various statistical methods for inferring connectivity have been published, ranging from model-free
approaches, such as Granger causality (Cadotte et al., 2008; Garofalo et al., 2009), transfer en-
tropy (Stetter et al., 2012), and partial correlation coefficients (Sutera et al., 2014), to model-based
Bayesian approaches that seek to invert generative models of neural activity (Mishchenko et al.,
2011; Soudry et al., 2015).

One critical issue with connectivity inference is that two unconnected neurons with common
inputs will have correlated activity that is easily interpreted as causal if the common input is
unobserved. A recent method proposes a generalized linear model-based Bayesian method to combat
the common input problem when the analysis is coupled with a “shotgun” imaging experiment that
hypothetically measures activity in all neurons serially (Soudry et al., 2015). The method is accurate
and efficient when prior information about connection sparsity is known and when activity in the
neural population of interest behaves according to the dynamics assumed by the generative model.
In practice, these are strong assumptions when the sparsity of the network is unknown.

The common input problem ceases to be an issue in neural systems with complete observability.
Such universal access has been granted by recent technological advances enabling cellular resolution
fluorescence imaging of neural activity on large scales (Chen et al., 2013). In particular, the activity
of nearly all neurons in the larval zebrafish brain can be imaged at speeds up to 12 Hz (Ahrens
et al., 2013; Dunn et al., 2016; Tomer et al., 2015). While these experiments skirt the common input
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Fig 1: Overview of the problem and method. (a) We train a deep convolutional neural network to predict
the underlying connectivity. (b) The graphs consists of 1000 cells separated into 10 sub-graphs (different
colors) with higher clustering coefficients. For clarity, only 400 cells are shown. (¢) The goal of the method
is to predict the presence or absence of a connection between each cell pair in the network based only on the
observed activity-generated fluorescence in each cell. The method operates on signals subsampled at time
points where the overall network activity is high (black dots).

problem, the acquired data presents a unique set of challenges for connectivity inference, as action
potentials are obscured by the noise and slow dynamics of fluorescent indicators. Nevertheless,
there have been attempts to extract meaningful connectivities from these recordings. Recently,
several methods were published together as part of the Kaggle Chal.earn Connectomics competition
(Orlandi et al., 2014). Here, we report an improved deep learning method that outperforms the
competition leader and, importantly, provides a viable false discovery rate (FDR) at a true positive
rate (TPR) poised to reveal millions of synaptic connections in real brain volumes.

For clarity, throughout this report we will refer to neurons in the synthetic networks that emit
measurable fluorescence signals as “cells” and refer to those synthetic networks as “graphs.” The
neural networks used for prediction and classification will be referred to as “networks” or “models.”

Code for the following models and analyses is available at https://github.com/spoonsso/
TFconnect.

2. Related Work. Convolutional neural networks (CNNs) are considerably powerful for com-
puter vision, automatically extracting spatially invariant, hierarchical features and performing clas-
sification within an end-to-end learning framework (Krizhevsky et al., 2012). Outside of the com-
puter vision domain, CNNs were recently adapted to analyze fluorescence time series from cells in
connected graphs, with spatiotemporal filters operating across cells over time (Fig. 1a) (Romaszko,
2015). These networks learned to classify pairwise binary connectivity when trained on activity
generated from synthetic graphs of 1000 cells, using binary labels from the associated in silico
connectivity matrix.

Over the past three years, a host of improvements to CNN architectures have been published.
These improvements include dropout (Srivastava et al., 2014), where a random subset of connection
weights are temporarily withheld over a mini-batch during training in order to combat overfitting,
batch normalization (Ioffe and Szegedy, 2015), where the pre-activated output of each layer is
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re-normalized before being passed to the next layer in order to improve training efficiency, and
residual blocks (He et al., 2015), which drastically increase the effective depth and therefore the
expressivity of the CNN. Furthermore, parametric rectified linear unit (PReLU) activations allow
the network to learn a suitable leakiness in its non-linear rectification activation, and intelligent
weight initialization has been shown to increase training efficiency (He et al., 2016).

In parallel, several alternative methods for inferring functional connectivity have been published.
One method, using a partial correlation coefficient metric estimated from the inverse covariance
matrix (Sutera et al., 2014), set the state-of-the-art benchmark at the inaugural Kaggle ChaLearn
Connectomics competition, edging out baseline summary statistics like correlation coefficients and
entropy-based causality estimations (Orlandi et al., 2014).

We find that by incorporating these advances in deep network design, and by combining partial
correlation measurements with fluorescence traces, we can dramatically increase the performance of
a residual CNN (RCNN) model for connectomics analysis. While we focus primarily on the Kaggle
ChaLearn competition datasets, as they enable direct comparisons across several methods, we will
discuss our work in the context of formal Bayesian approaches that attempt to infer underlying
connectivity matrices via inversion of generative models. Compared to these approaches, we suggest
that our RCNN method is more robust to variation in graph connection probability and will be
much more scalable.

3. Synthetic Graph Architecture. The Kaggle Chal.earn Connectomics data are generated
from a realistic model of neural dynamics, calcium buffering, and fluorescence (Stetter et al., 2012;
Orlandi et al., 2014). Graph model parameters were tuned so that cells were spontaneously active,
including periods of pan-graph bursting. These parameters and associated dynamics were chosen
by the competition organizers to closely resemble real networks of primary cultured neurons. In the
future, we aim to train on synthetic data generated from graphs whose architectures and dynamics
better resemble that of brains in vivo. That being said, the existing competition dataset does include
realistic features that are likely shared by the brains of real animals.

In our study, we used signals from cells in 8 different graphs for the purposes of training, vali-
dation, testing, and analysis. Six of the graphs had the same average architecture, with 3 used for
training sets, 1 for validation, and 2 for testing. Each of these graphs contained 1000 cells with
an overall average connection probability p = 0.014 (Fig. 1b). The graph comprised 10 subgraphs
whose cells had higher within group connection probabilities (p;,: = 0.012) than between group con-
nection probabilities (pez+ = 0.002). The weights of connections, which were all positive/excitatory,
were the same within a given subgraph, and the weights in each subgraph were ultimately optimized
to produce a desired universal bursting frequency of 0.1 Hz.

4. Residual Convolutional Neural Network Architecture.

Preprocessing of fluorescence signals. Before training, signals were subjected to three rounds of
preprocessing in order to accentuate information content and reduce overall data size. First, signal
noise arising from simulated light scattering effects was removed via spatial deconvolution (physical
locations of each cell were provided as part of the dataset). Second, each signal was downsampled
by thresholding a high-pass filtered representation of the total graph activity (Fig. 1c). Third, each
downsampled signal was z-scored by subtracting the downsampled signal mean and dividing by the
downsampled signal standard deviation.

Structuring training input. Following the general scheme of (Romaszko, 2015), these processed
signals were then assembled into chunks of 3x330 continuous samples, beginning at random starting
points in the processed signals. The first two rows of this data structure contained processed signals
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Fig 2: Details of the RCNN and training. (a) Summary of layer architecture. (b) Training time-course for
a single model. Where indicated, the batch size was annealed to promote learning. (¢) Training time-course
but for area under the receiver operator characteristic and precision recall curve metrics (ROC-AUC and
PR-AUC, respectively). Note that the typical number of training epochs was 200 for each batch period (this
example shows only 100/50/50).

from a pair of cells, with the associated label referencing the binary directed connection between the
cell in row 1 and the cell in row 2. The third row contained the corresponding average fluorescence
across the entire graph for the time interval included in rows 1 and 2 (Fig. 1a).

The final training set included approximately 1.1 million paired examples in this format, with
equal representation of positive and negative examples (i.e. the presence or absence of a directed
connection, respectively). Note that 550,000 far exceeds the total number of positive examples
contained in 3 networks (~ 42,000), but a rich, unique training set can be assembled because the
starting position for each 330-sample training chunk is random for each example. Of the ~ 1.1
million examples in the training set, 75% were used for training epochs and the other 25% were
used as cross-validation.

Residual convolutional neural network architecture. The RCNN begins with input [3 x 330 x 1],
contains 1 block of (1 + 2) convolutional + residual convolutional layers (each [2 x 326 x 32] with
filters [2 x 5 x 1]), another 1 block of (1 4+ 2) convolutional + residual convolutional layers (each
[1 x 322 x 64] with filters [2 x 5 x 32]) followed by [1 x 10] max pooling, another full convolutional
layer (size [1 x 32 x 128] with filters [1 x 1 x 64]), 1 block of (1 + 2) dense + residual dense layers
(each with 256 units), and a dense readout layer (2 units) indicating the final softmax classification
(Fig. 2a). Each layer implemented PReLU activations.
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Fig 3: Performance of the RCNN. (a) ROC curves on a validation network for 5 individual models (gray lines)
and a final ensemble-averaged model (black line). (b) PR curves for the same models. (¢) Schematics of three
problematic connectivity motifs with which the model struggles. Black arrows represent true connections
and red arrows denote inferred false positives.

Training. The model was trained using a cross-entropy loss function based on proper binary
classification of each cell pair’s connectivity (Fig. la, 1c). For each individual model, we started
with a batch size of 100 and performed a maximum of 200 epochs with an automatic early stopping
criterion: if the best cross-validation loss did not improve over a span of 20 epochs, training halted.
We then annealed the batch size, progressing to 1000 examples and then 2000 examples per batch.
These extra steps consistently resulted in large, sudden reductions in training loss (Fig. 2b) and
gains in performance metrics (Fig. 2c). Gradient descent was performed using Adam optimization
using recommended default parameters (Kingma and Ba, 2014). We employ [2 weight decay with
a regularization parameter set to 1075.

The RCNN was implemented in Python using tfomics (https://github.com/p-koo/tfomics),
a high-level API for TensorFlow (v0.12.1). On a single NVIDIA Titan X Pascal graphics card, 1
epoch during the 100 batch phase took 434 s (50 ms / batch) including a forward pass for cross-
validation, during the 1000 batch phase took 241 s (280 ms / batch), and during the 2000 batch
phase took 245 s (569 ms / batch).

During training, we also introduced dropout at each of the layers in the RCNN. For the con-
volutional layers, the dropout probability was set to 0.2, and for the dense layers, the dropout
probability was set to 0.5. At each layer, we included batch normalization of parameters. At the be-
ginning of training, weights were initialized following the distribution outlined in (He et al., 2016).
Taken together, these measures help to reduce overfitting and increase training efficiency.

Testing. Similar to (Romaszko, 2015), we completed 14 forward passes through the trained net-
work for each cell pair, tiling the entire length of the signals in 330 sample patches. The predicted
scores were then averaged across each of these 14 passes to arrive at a final prediction for connec-
tivity between the two cells. Forward passes took 1.3 ms per cell pair, for a total of ~21.7 minutes
to evaluate the entire connectivity matrix. We then ensemble averaged the predictions for each
cell pair from 5 independent models trained separately, with differences in final model parameters
resulting from the random initialization of weights and the random assembly of network input from
training data.

5. Results.
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The RCNN sets competition benchmark. When we evaluated the RCNN performance on the Kag-
gle Chal.earn Connectomics competition test datasets, it outperformed all other entries in the area
under the receiver operator characteristic (ROC) curve (Table 1). Examination of full ROC curves
on the “normal” validation network revealed that while the model ensemble outperformed any
individual model in total area under the curve (AUC), some individual models performed better
than the ensemble locally within small ranges along the curve (Fig. 3a). The RCNN model also
outperformed the winning algorithm, which was based on partial correlation coefficients (PCs) be-
tween cells across the dataset, on a denser validation network with a higher average connection
probability p = 0.022. However, the RCNN model struggled on a sparser validation network with
a lower average connection probability p = 0.007 (Table 1).

Evaluating the model’s realistic potential. The ultimate goal of our method is to infer, with an
acceptable degree of precision, real synaptic connectivity from real neural imaging data. Exami-
nation of the model’s precision recall (PR) curve on the validation dataset suggests that RCNNs
could achieve a stable level of ~80% precision (~20% FDR) at up to 5% recall (Fig. 3b). For a
real zebrafish brain imaging dataset with 10° cells and 10'° possible connections with ~ 2% con-
nectivity (Stobb et al., 2012), even 5% recall would report 107 connections, with 1 in 5 being false.
At an FDR of 10%, the RCNN recalls 0.07% of the connections, or ~ 10° connections in a typical
zebrafish brain.

To gain a better understanding of where the RCNN model fails, we quantified the frequency
of three potentially problematic connectivity motifs. Because the RCNN operates only on pairwise
input, the model is particularly susceptible to misclassifying correlated activity from common inputs
as a directed causal relationship (Fig. 3c, top). Similarly, and enhanced by the slow indicator
dynamics and acquisition rate, the RCNN might also mistake a chain of connectivity for a directed
connection between the first and last cell in the chain (Fig. 3c, bottom left). Finally, without access
to millsecond spike times, it should be difficult for a model operating on slow and noisy fluorescence
signals to infer the direction of causality in correlated activity (Fig. 3c, bottom right). Indeed, 47%
of all possible common input relationships, 49% of all possible “short circuit” motifs, and 71% of
all possible “reciprocated” connectivities were classified as false positives (Table 2). The model
especially struggled when two or more of these motifs were combined, with 98% of all possible false
positives shared by all 3 motifs being classified erroneously.

Improving the model. We reasoned that many of these errors could be eliminated if the RCNN
could make multivariate evaluations that considered the activity across all cells in the graph rather
than just pairwise correlations. Partial correlation coefficients (PCs) are multivariate summaries
of causality and led the overall competition leaderboard (Sutera et al., 2014). Reasoning that the
strengths of PC-based classification and our RCNN model might be complementary, we incorpo-
rated the PC for each cell pair into our input structure as a fourth row of data during evaluation and
training. Other than adjusting the size of input layer and the first residual block to accommodate
the PC addition, this RCNN 4 PC model used the same gross network topology.

The final RCNN + PC model, which was an ensemble average of 8 models, including 1 model
trained on data with an unequal representation of positive and negative examples (10% and 90%,
respectively), significantly improved the ROC curves on the validation dataset (Fig. 4a) and the
ROC-AUC and PR-AUC metrics on all validation and test datasets (Table 1).

Comparing the precise regions of the PR curves across algorithms reveals that the RCNN +
PC model provides an increase in the precision plateau at the start of the curve, maintaining over
85% precision past 3% recall, a significant improvement over the original RCNN model and the
PC algorithm alone (Fig. 4b). Note that at up to 0.5% recall, the PC algorithm shows enhanced
precision over the RCNN 4+ PC model, but this may be due to the incorporation of predictions
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Fig 4: Improvement of predictions in precise regimes. (a) Full PR curves on a validation dataset for the
original RCNN, a new RCNN that incorporates multivariate partial correlation (RCNN + PC), and PC
alone (b). Zoomed-in PR curves for the same models, plus a model with pre-ensemble weight optimization
(opt) and an ensemble average excluding a model with low representation of positive examples (standard).
(¢) Full ensemble (solid) and “standard” ensemble (dashed) PR curves for additional dense (black) and
sparse (magenta) connectivity validation networks.

from the model trained on 10%/90% positive/negative examples; without this model, the RCNN
+ PC ensemble shows enhanced precision at low recall but does not sustain this precision for long.
We were also able to enhance the early precision (from 0 to 2% recall) of the full RCNN + PC
ensemble using a Gaussian process search for each model’s weight.

These improvements in PR reflect, at least in part, reductions in the misclassification of some
problematic connectivity motifs (Table 2). Overall common input false positives (FPs) were reduced
by 20%, “short circuit” FPs by 22%, “reciprocated” FPs by 3%, doublet FPs by 14%, and triplet
FPs by 2%. For the top 1% of the predictions, however, these gains were somewhat muted. In
this regime, “reciprocated” FPs actually increased in the RCNN + PC, perhaps indicating the
dominance of the PC representation, which is agnostic to edge direction, in this regime.

6. Model Generalization. Effective generalization is a major consideration for future ap-
plications of these models to real data. Any model trained on data generated from a limited set
of synthetic graphs will likely need to operate on signals arising from a graph with a different
underlying parameter distribution, even if the models can eventually be trained on ground truth
labeled data. It is thus important that the predictive power of the model generalize to validation
graphs with different architectures that were not included in the training set. We thus tested the
trained RCNN + PC ensemble on the dense and sparse validation datasets. For the sparse graph,
the model was reduced in effectiveness, achieving on 75% precision at 1% recall, although there
continued to be regimes where the model achieved high levels of precision. For the dense graph,
the model performed better, achieving almost 95% precision at 1% recall (Fig. 4c). Note that the
connection probability of the dense graph is close to the anticipated average connection density of
the zebrafish brain (Stobb et al., 2012).

Successful generalization also requires that a desirable prediction threshold deduced from analysis
on validation data be effective when applied to real data, where PR curves cannot be plotted in
search of a viable threshold. While the distribution tails of prediction scores depend on connection
sparsity, (Fig. ba), we find that recall and precision on the dense and sparse validation data can be
recovered by choosing thresholds matched to prediction score percentiles in the “normal” validation
dataset (Figs. 5b, 5c).
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Fig 5: Generalization of the model to networks with different structure. (a) Histograms of score distribution
tails for each network. (b) Model recall for densely and sparsely connected validation networks as a function
of recall on a validation network whose density matched the training data. (c) Precision for each network as
a function of validation recall.

7. Scalability. The evaluation times for the trained RCNN + PC model have time complexity
O(n?), as the network independently operates on all cell pairs in the dataset. With a current
evaluation time for 1.3 seconds for a single cell pair, we anticipate that applying the method
on a full fish dataset of 10° cells will require 3611 GPU hours. This evaluation process is easily
parallelized, however, as independent GPUs can load the final model parameters and evaluate
batches of input independently. On a 128 GPU cluster, this process would take 28.2 hours for a
single model running perfectly parallel. While this evaluation would need to be run multiple times,
once for each model in the ensemble, we note that we found a single model that outperformed the
ensemble on the competition test ROC-AUC metric. Future work should determine the utility of
single-model solutions to reduce compute time. We also note that these times reflect evaluation on
an entire brain. Analyses of local connectivity in smaller brain nuclei would be considerably faster.

8. Discussion.

Improvements to the RCNN architecture. Future work should explore a larger space of layer topol-
ogy and hyperparameters in order to test the limits of classification efficacy. Deeper models may
improve the overall performance and efficiency of the training process. The input data structure
may also benefit from an expansion in the total number of samples passed to the network dur-
ing evaluation and training. Longer traces, which contain more information about the temporal
relationships between cells, may also improve the overall performance of the model.

The model should, in principle, be at least as good as the PC metrics passed to the network
alongside the fluorescence signals, but in early regimes of the PR curve, the PC algorithm alone
appears to be more accurate. In order to provide more salience to the PC score, it may help to
pass PC coefficients through the model separated from the learned convolutional filters, as PC
coefficients have no spatiotemporal correspondence to cell activity. Future model designs should
also incorporate better multivariate representations of cell activity throughout the graph. If the
model were able to operate on more than just one cell pair at a time, it could in principle learn
representations of higher order correlational structure.

In order to combat problematic connectivity motifs, it may help to over-represent them in the
training dataset. In the final RCNN + PC ensemble, we included a model that was trained on
10%/90% positive/negative examples rather than 50%/50% with the hope that including more FP
examples might help the network distinguish FPs from true positives more easily. While we have not
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explored this configuration exhaustively, that model appeared to contribute greater precision in the
1-5% recall range at the expense of precision in the 0-1% recall range. Future work should explore
the extent to which models trained on different proportions of positive and negative examples can
complement each other and enhance overall classification accuracy.

Generalization to non-synthetic neural data. While ground truth labeled data may become avail-
able as EM and all-optical circuit mapping techniques progress, the success of the current method
will rely on synthetic training data reflecting realistic models of neural dynamics. Studies of neural
network generalization from synthetic to real data (Jaderberg et al., 2014; Le et al., 2017) suggest
that training on synthetic data can result in powerful generalization, given that the networks are
trained on a large enough space of synthetic examples. Going forward, it will be critical to simulate
neural activity and concomitant fluorescence signals that better reflect the activity observed in
vivo. We also note that generalization of the RCNN model will depend on what it has learned to
detect in the fluorescence traces. It is unclear how much the learned convolution filters depend on
the specifics of the observed neural dynamics and thus the underlying parameters of the generative
model of simulated activity. It’s possible that the RCNN model is learning a model-free causality
statistic that will generalize well even to neural dynamics that differ substantially from the training
data. Future saliency analyses and probes of RCNN network representation will thus speak to the
method’s overall potential for generalization.

Ultimately, the vision is to train the RCNN on synthetic data closely matching the dynamics
observed spontaneously in larval zebrafish (Dunn et al., 2016). Conservative predictions, thresholded
at a percentile reflecting a target confidence in precision or recall, can be cross-validated against
known larval zebrafish brain anatomy and eventually validated via optical or ultrastructural circuit
mapping methods, such as channelrhodopsin/GCaMP (Packer et al., 2015), PA-GFP (Dunn et al.,
2016), and EM (Hildebrand et al., 2017). The idea is not that the current method will be able to
uncover the complete connectome of an animal but rather that it will be able to lend statistical
support to circuit-level hypotheses of neural structure and function.

One advantage of this method over Bayesian techniques for inferring functional connectivity is
that it works directly on calcium imaging data, avoiding slow and potentially error-prone inference
of spike timing from fluorescence signals. Furthermore, full Bayesian inference of adjacency matrices
is slow, and faster approximations typically make strong assumptions about underlying connection
sparsity (Soudry et al., 2015), a property that is not straightforward to estimate in real systems.
In contrast, our method is relatively robust to changes in connection probability.

Finally, we note that the precision of the method is agnostic to the types of underlying FPs.
While it will be important in the future to better combat problems related to common inputs in
order to improve the overall accuracy of the method, the RCNN 4+ PC model is applicable in its
current form as long as one accepts the uncertainty of a target FDR. As in genomics analyses, a
target FDR of 5 to 10% should be reasonable assuming the researcher is aware of its implications.

Summary. We present here a new deep learning method for inferring functional connectivity from
recordings of fluorescence from calcium-dependent activity indicators. The method sets an impor-
tant state-of-the-art benchmark, as evaluated on the Kaggle Chal.earn Connectomics competition,
and shows immediate promise for applications to real data. Going forward, a comprehensive un-
derstanding of the constraints and pitfalls of the method will be critical for establishing reliable,
conservative predictions of functional connectivity.
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Valid Network Test Network 1 || Test Network 2 || Dense Network || Sparse Network

Algorithm ROC PR ROC ROC ROC PR ROC PR
corr. coef. 0.681 0.026 0.664 0.689 0.595 0.030 0.691 0.023
PC 0.939 0.388 0.942 0.941 0.942 0.413 0.955 0.334

CNN n.d. n.d. 0.940 0.941 n.d. n.d. n.d. n.d.
RCNN 0.943 0.359 0.943 0.944 0.952 0.383 0.910 0.222
RCNN + PC 0.953 | 0.449 0.951 0.952 0.954 | 0.456 0.955 | 0.372

TABLE 1
Comparison of algorithms on predictions for five networks from the Chalearn connectomics challenge. Area under
the ROC and PR curves is compared. PR curves for Test Networks 1 and 2 are unavailable as the data are managed
by Kaggle. RCNN + PC sets benchmarks in all networks and metrics.

O O. O
/o |
FP # (Base Fraction) O—0 O O Doubles Triples
RCNN 50218 (0.47) | 38196 (0.49) | 6015 (0.71) | 27985 (0.72) | 2885 (0.98)
RCNN, 99th pctl. 5232 (0.05) 3517 (0.04) | 1597 (0.19) | 3960 (0.10) 924 (0.31)
RCNN + PC 40161 (0.37) | 29629 (0.36) | 5308 (0.68) | 24102 (0.62) | 2820 (0.95)
RCNN + PC, 00th petl. | 4665 (0.04) | 2903 (0.03) | 2082 (0.24) | 3718 (0.10) | 1187 (0.40)
TABLE 2

Analysis of predicted false positives (FPs) for the original RCNN model and the improved RCNN model
incorporating partial correlation coefficients. For each of the FP types (icons left to right: common input, short
circuit, reciprocated), and combinations thereof (overlapping double and triple motifs), the total number of false

positives and fraction of the total possible base frequency of each type are indicated. FPs are evaluated using either
forced choice or at a 99" percentile prediction score threshold.
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