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Abstract

A major problem in the design of synthetic genetic circuits is robustness to perturbations
and uncertainty. Because of this, there have been significant efforts in recent years in finding
approaches to implement integral control in genetic circuits. Integral controllers have the unique
ability to make the output of a process adapt perfectly to disturbances. However, implementing
an integral controller is challenging in living cells. This is because a key aspect of any integral
controller is a “memory” element that stores the accumulation (integral) of the error between
the output and its desired set-point. The ability to realize such a memory element in living cells
is fundamentally challenged by the fact that all biomolecules dilute as cells grow, resulting in a
“leaky” memory that gradually fades away. As a consequence, the adaptation property is lost.
Here, we propose a general principle for designing integral controllers such that the performance
is practically unaffected by dilution. In particular, we mathematically prove that if the reactions
implementing the integral controller are all much faster than dilution, then the adaptation error
due to integration leakiness becomes negligible. We exemplify this design principle with two
synthetic genetic circuits aimed at reaching adaptation of gene expression to fluctuations in
cellular resources. Our results provide concrete guidance on the biomolecular processes that are
most appropriate for implementing integral controllers in living cells.

1 Introduction

A long-standing challenge in synthetic biology is the creation of genetic circuits that perform pre-
dictably and reliably in living cells [1, 2]. Variations in the environment [3], unforeseen interactions
between a circuit and the host machinery [4], and unknown interference between circuit components
[5] can all significantly alter the intended behavior of a genetic circuit. Integral control, which is
ubiquitous in traditional engineering systems, is a promising approach to mitigate the impact of
such unknowns on genetic circuits. At the most basic level, an integral controller ensures that the
output of a system can reach a desired set-point while perfectly rejecting (i.e., adapting to) constant
disturbances [6–8]. Due to this unique ability, synthetic biology research has witnessed increasing
efforts toward establishing procedures to realize integral control in living cells [9–17].
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At the core of an integral controller is an indispensable “memory” element that accumulates (i.e.,
integrates) the error between the desired set-point and the measured output over time. While com-
puting this integral is almost trivial using electronic components, realizing it through biomolecular
reactions in living cells is problematic. This is because information about the error is usually stored
in the form of molecular concentrations, and as host cell grows and divides, biomolecules in every
single cell dilute [18, 19], leading to a “leaky” memory that fades away in time. Since cell growth is
unavoidable and even beneficial in a number of applications, such as in biofuel production [20], leaky
integration is a fundamental physical limitation for the implementation of integral control through
genetic circuits in living cells.

Prior theoretical studies have proposed integral control motifs (ICMs), but neglected the presence
of molecule dilution in the analysis [10, 12, 15, 17]. Consequently, while these motifs have theoreti-
cally guaranteed performance in cell-free systems, where dilution is non-existent, their performance
in the presence of molecule dilution is not preserved. In fact, the deteriorating effect of leaky integra-
tion can be significant, as shown in this paper and in other recent studies (e.g., [21, 22]). Therefore,
possible solutions to leaky integration have been proposed [10, 21]. Specifically, the approach pro-
posed in [10] hinges on “canceling” the effect of dilution by producing the “memory species” at the
same rate as its dilution. This approach, however, relies on exact parameter matching and is hence
difficult to realize in practice. A different approach is to use exhaustive numerical simulation to
extract circuit parameters that minimize the effects of leaky integration [21], leading to a lengthy
and ad hoc design process.

In this report, we propose general design principles for ICMs that perform well despite the
presence of dilution. In particular, we mathematically demonstrate that the undesirable effect of
dilution can be arbitrarily suppressed by increasing the rate of all controller reactions. This is true
under mild conditions that are largely independent of specific parameter values. This design principle
guides the choice of core biomolecular processes and circuit parameters that are most suitable for
realizing an ICM in living cells. We illustrate this guided choice on two circuits that are designed to
mitigate the effects of transcription/translation resource fluctuations on gene expression, a problem
that has gained significant attention recently [4, 23–25].

2 Quasi-integral control

The approach that we take in this paper is as follows. We first describe two types of ideal ICMs
in Section 2.1, which were previously proposed abstract circuit motifs for adapting to constant
disturbances in the absence of dilution. We then introduce leaky ICMs, which add dilution to these
ideal ICMs, and demonstrate that the adaptation property is lost. Finally, we describe quasi-ICMs
in Section 2.2, the main novelty of this paper, in which the controller reactions are engineered to
be much faster than dilution, enabling the circuit to restore almost perfect adaptation to constant
disturbances.

2.1 Ideal ICMs and leaky ICMs

We illustrate in Figure 1A two different types of ideal ICMs that abstract the two main mechanisms
for biomolecular integral control proposed in the literature. In both types of motifs, we denote by x
the species whose concentration needs to be kept at a set-point u, despite that its production rate
is affected by a constant disturbance d. Therefore, the output of the process to be controlled is the
concentration of species x, which is denoted by x (italic). The purpose of implementing an integral
controller is thus to have the steady state of x, denoted by x̄, to satisfy x̄ = u regardless of d (i.e.,
x adapts perfectly to d).

In these ideal ICMs, selected controller species realize the memory function essential for integral
control. Specifically, a type I ideal ICM (Figure 1A-I) regulates the expression of x using a single
controller species z. This motif arises from saturating certain Hill-type or Michaelis-Menten-type
kinetics such that the production and the removal rates of z become roughly proportional to u and
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Figure 1: Quasi-integral control mitigates the effect of leaky integration due to dilution. (A)
Two types of ideal ICMs. The controller reactions are boxed in pink, and the rest of the circuit belongs
to the process to be controlled. Dilution of the controller species are neglected in ideal ICMs. (B) When
dilution of the controller species are considered, ideal ICMs become leaky ICMs that cannot carry out
integration. The adaptation error, defined as the extent to which the output is affected by the disturbance,
can be arbitrarily large. (C) All controller reactions in a quasi-ICM are 1/ε times faster than those in the
corresponding leaky ICM, with ε� 1. (D) Simulations of the type I and type II ideal, leaky and quasi-ICMs.
Simulation parameters for both motifs: α = γ = δ = k = 1 hr−1, θ = 1 nM−1·hr−1, ε = 0.02, u = 10 nM
and d = 5 nM·hr−1. Disturbance input d is applied at 15 hr. (E) A general ε-quasi-integral control system.
Output of the process y becomes an input to the quasi-integral controller. Variable z2 is the leaky memory
variable, and z1 represents the remaining controller states, if any. All controller reactions are much faster
than dilution, as characterized by parameter ε. Output of the controller v drives the process to set-point u
and adapt to d.
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x, respectively, resulting in the following approximate mass action kinetics model for the controller
species z [10, 15, 17]:

d

dt
z = k(u− x), (1)

where k is a positive constant called integral gain. Since z =
∫
k(u − x)dt, z is called a memory

variable that represents the integral of the error (u− x) between the set-point and the output over
time. Independent of the exact reactants implementing this ideal ICM, it is immediate from (1) that
by setting the time derivative to 0, the steady state output satisfies x̄ = u regardless of d.

With reference to Figure 1A-II, a type II ideal ICM, arising from what was called the antithetic
integral controller in [12], realizes integral action using two controller species z1 and z2. Their
production rates are engineered to be proportional to the set-point (u) and to the concentration of
the output species (x), respectively. The two controller species can bind together to form a complex

that is removed with rate constant θ: z1 + z2
θ−→ ∅. These biomolecular processes can be described

by the following mass action kinetics model:

d

dt
z1 = ku− θz1z2,

d

dt
z2 = kx− θz1z2. (2)

The memory function is carried out by the hidden memory variable z := z1 − z2, which satisfies
dz/dt = dz1/dt−dz2/dt = k(u−x). As a consequence, independent of the exact choice of reactants,
parameters and the magnitude of disturbance d, at steady state, we must have x̄ = u. With reference
to the simulation results in Figure 1D (black dashed lines), the output x of both types of ideal ICMs
reaches the set-point u and adapts to disturbance d perfectly at steady state.

When dilution of the controller species due to host cell growth is taken into account, the key
integral structure of the memory variables is disrupted (Figure 1B). In fact, in a standard mass
action kinetics model describing reactions in exponentially growing cells, the average effect of cell
growth and division on the dynamics of any species z can be modeled by a first-order additive term
−γz, where γ is the specific growth rate of the host cell [18, 19, 26, 27] (see SI Section S1.1 for
details). Hence, with reference to Figure 1B-I, the dynamics of the memory variable z in a type I
ICM become

d

dt
z = k(u− x)− γz. (3)

Similarly, as shown in Figure 1B-II, the dynamics of the two controller species z1 and z2 in the type
II ICM become

d

dt
z1 = ku− θz1z2 − γz1,

d

dt
z2 = kx− θz1z2 − γz2, (4)

resulting in the dynamics of the hidden memory variable to become

d

dt
z =

d

dt
z1 −

d

dt
z2 = k(u− x)− γz. (5)

From equations (3) and (5), we observe that in both types of motifs, the memory variable z is
no longer integrating the error between the set-point and the output, but rather carries out leaky
integration. We therefore call the motifs in Figure 1B leaky ICMs. In simulations of Figure 1D (blue
dash-dot lines), we demonstrate that including dilution significantly hinders the ability of leaky ICMs
to achieve adaptation to disturbance d, resulting in nearly 100% relative adaptation error. More
generally, as we exemplify in SI Section S1.5, for any fixed dilution rate constant (γ), depending
on the process to be controlled and the parameters in the leaky ICM, the adaptation error can be
arbitrarily large.
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2.2 Quasi-ICMs: almost perfect adaptation to disturbances

In this section, we introduce quasi-ICMs, the main contribution of this paper. While leaky ICMs
cannot achieve perfect adaptation to disturbances, and their performance can be arbitrarily dete-
riorated by the presence of dilution, we propose that one can achieve almost perfect adaptation to
disturbances despite dilution by increasing the rate of all controller reactions in the leaky ICMs.
Therefore, we call a leaky ICM whose controller reactions are much faster than the slower dilution
process a quasi-ICM. These motifs are shown in Figures 1C-I and C-II respectively for the two
types of motifs. In particular, with reference to Figure 1C-I, we use a small dimensionless positive
parameter 0 < ε� 1 to capture the fact that the controller reaction rates in a type I quasi-ICM are
1/ε times faster than those in a type I leaky ICM (Figure 1B-I), resulting in the memory variable
dynamics to become

d

dt
z =

k

ε
(u− x)− γz. (6)

Similarly, when all the controller reaction rates in a type II leaky ICM are increased by a factor of
1/ε (see Figure 1C-II), the controller species dynamics become

d

dt
z1 =

k

ε
u− θ

ε
z1z2 − γz1,

d

dt
z2 =

k

ε
x− θ

ε
z1z2 − γz2, (7)

resulting in the following hidden memory variable dynamics:

d

dt
z =

d

dt
z1 −

d

dt
z2 =

k

ε
(u− x)− γz. (8)

As shown in Figure 1D (red solid lines), for small ε, both types of quasi-ICMs restore the ability to
drive the output x to the set-point u, and to adapt to d almost perfectly despite dilution. These
qualitative observations are reflected mathematically in equations (6) and (8), where for both motifs
the steady state adaptation error e can be computed as e = u − x̄ = εγz̄/k, whose magnitude
can be arbitrarily decreased by detuning ε (i.e., increasing controller reaction rates). Although this
reasoning is intuitive, it is based on the implicit assumption that the steady state concentration of
controller species (z̄) stays roughly unchanged as ε decreases, which is, unfortunately, not always
true and hard to verify in general (see SI Section S1.6 for such an example). Therefore, in the rest
of this section, we provide precise and general mathematical conditions under which performance
deterioration of a leaky integral controller can be arbitrarily suppressed by faster controller reactions.
These results establish a general circuit design principle applicable to any biomolecular process to
be controlled and to any leaky integral controller, including, but not limited to those arising from
the type I and type II ICMs.

We consider a biomolecular process to be controlled, whose dynamics can be written as:

d

dt
x = f(x, v, d), y = h(x), (9)

where x represents process states (i.e., the concentrations of species x forming the biomoelcular
process). The process takes two inputs: v is the control input produced by the controller, and d is a
disturbance input, which could also represent an uncertainty in process parameters. The output of
the process y is determined by a function h(x). The process (9) is connected to an ε-parameterized
biomolecular controller, which contains a leaky integral controller. We study the case where all
controller reactions have an ε-parameterized time-scale separation from dilution. To this end, we
write the controller in the general form:

d

dt
z1 =

1

ε
g(z, u, y)− γz1,

d

dt
z2 =

k

ε
(u− y)− γz2, v = Θ(z), (10)

where z := [z1, z2]T represents the controller states (e.g., concentrations of controller species) and ε
is a small positive parameter. Specifically, z2 is the intended memory variable that carries out the
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leaky integration with gain k, and z1 represents concentrations of additional controller species, if
any. The controller takes the output of the process y as input, and compares it with a set-point u.
The closed loop system is therefore a feedback interconnection of process (9) and controller (10) (see
Figure 1E). Assuming that the closed loop system has a unique locally asymptotically stable steady
state (x̄, z̄), we formally define ε-quasi-integral control as follows.

Definition 1. The closed loop system (9)-(10) realizes ε-quasi-integral control in an admissible input
set U× D if for all (u, d) ∈ U× D, the system’s steady state output ȳ satisfies

lim
ε→0

ȳ(u, d, ε) = u. (11)

Equation (11) implies that, by increasing the rate of controller reactions (i.e., decreasing ε), the
steady state output ȳ of an ε-quasi-integral control system can be made arbitrarily close to the set-
point u in the presence of disturbance d. The following claim provides an easy-to-check condition
for ε-quasi-integral control.

Claim 1. The closed loop system (9)-(10) realizes ε-quasi-integral control if the auxiliary ideal
integral control system consisting of the process (9) and the ideal integral controller

d

dt
z1 = g(z, u, y),

d

dt
z2 = k(u− y), v = Θ(z). (12)

has a unique locally exponentially stable steady state for all (u, d) ∈ U× D.

The proof of this Claim can be found in SI Section S1.2. It establishes that if one can use the ideal
integral controller (12) to obtain perfect adaptation in the absence of dilution, then when dilution
is taken into account, one can always speed up all controller reactions to restore adaptation. From
an engineering perspective, one should therefore select controller biomolecular processes whose rates
are significantly faster with respect to dilution rates. Such processes include, for example, enzymatic
reactions (i.e., phosphorylation, methylation, and ubiquitination), protein-protein interactions, and
RNA-based interactions (i.e., sRNA or microRNA-enabled degradation or sequestration). With
these processes, the designer can then realize type I or type II ideal ICMs as well as additional ideal
ICMs that are in the form of system (12). It is worth to note that even in cases where only part
of the controller reactions can be sped up, it may still be possible to reach ε-quasi-integral control,
although the algebraic conditions to check become slightly more involved (see SI Section S1.7). In
SI Section S4.3, we further demonstrate that when dilution rate constant varies slowly in time, the
adaptation error is still guaranteed to decrease as ε is decreased.

Claim 1 provides the theoretical underpinning to the type I and type II quasi-ICM designs of
Figure 1C. Since the corresponding type I and II ideal ICMs are in the form of (12) and have unique
locally exponentially stable steady states (see proof in SI Section S1.3-1.4), increasing all controller
reaction rates will quench the steady state effect of leaky integration. Furthermore, we also show in
SI Section S1.3-1.4 that the steady states of the type I and II quasi-ICMs are unique and stable.

3 Two biomolecular realizations of quasi-ICMs

In this section, we propose physical implementations of a phosphorylation-based quasi-integral con-
troller and a small RNA-based quasi-integral controller. They are realizations of the type I and type
II quasi-ICMs, respectively, which satisfy the general design principle of fast controller reactions.
For illustration purposes, we use these controllers to mitigate the effect of transcriptional and trans-
lational resource fluctuations on gene expression, a problem that has received considerable attention
in synthetic biology in recent years [4, 23–25].
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3.1 Type I quasi-ICM: phosphorylation cycle

A diagram of the phosphorylation-based quasi-integral control system is shown in Figure 2A. The
controller is intended to regulate the production of protein p to adapt to a disturbance d, which mod-
els a reduction in protein production rate due to, for example, depletion of transcriptional and/or
translational resources in the host cell [4, 23]. In this system, the intended integral control is accom-
plished by a phosphorylation cycle. The regulated protein p is co-expressed with a phosphatase and
the concentration of the kinase acts as the set-point u. The substrate b is expressed constitutively.
When b is phosphorylated by kinase u to become active substrate b∗, it transcriptionally activates
production of protein p. A simplified mathematical model of this system is (see SI Section S2.1 for
detailed derivation from chemical reactions):

d

dt
b∗ = k1

ub

b+K1
− k2

pb∗

b∗ +K2
− γb∗, d

dt
p = R(1− d)

b∗

λ+ b∗
− γp, (13)

where k1 and k2 are the catalytic rate constants of the phosphorylation and dephosphorylation
reactions, respectively, K1 and K2 are the Michaelis-Menten constants, R is the protein production
rate constant, and λ is the dissociation constant between b∗ and the promoter of the regulated gene.

System (13) can be taken to the form of a type I leaky-ICM (3) if both the kinase and the
phosphatase are saturated (i.e., b� K1 and b∗ � K2). These design constraints are present in any
type I ICM, which relies on saturation of Hill-type or Michaelis-Menten kinetics [10, 15, 17], and
can be satisfied in practice when the substrate is over-expressed and the kinase concentration is not
too small (see SI Section S2.3 for details). Under these assumptions and by setting x := p, z := b∗

and σ := k2/k1, we can approximate (13) by

d

dt
x = R(1− d)

z

λ+ z
− γx, d

dt
z = k1(u− y)− γz, y = σx, (14)

which is in the form of a type I leaky-ICM. Since phosphorylation and dephosphorayltion reactions
are typically much faster than dilution, by choosing a phosphorylation cycle to realize the type I
motif, the effect of leaky integration is naturally mitigated. In fact, by setting ε := γ/k1 (ε ∼ 10−3

in bacteria [19]), system (14) is in the form of a type I quasi-ICM:

d

dt
x = R(1− d)

z

λ+ z
− γx, d

dt
z =

γ

ε
(u− y)− γz, y = σx. (15)

As demonstrated in the simulation results in Figure 2B and Figure S8 in SI, the steady state
adaptation error due to leaky integration becomes smaller as ε decreases (i.e., larger time-scale
separation between phosphorylation/dephosphorylation and dilution). We refer the readers to SI
Section S2.2 for mathematical details on the uniqueness and stability of the steady state.

3.2 Type II quasi-ICM: small RNA (sRNA) interference

The sRNA-based quasi-integral controller is a realization of the type II quasi-ICM. It is intended to
regulate translation of protein p to adapt to a disturbance d, which models uncertainty in translation
rate constant due to fluctuation in the amount of available ribosomes [4, 23, 24]. With reference to
Figure 2C, the controller consists of protein p transcriptionally activating production of an sRNA
(s) that is complementary to the mRNA (m) of the regulated protein p. The sRNA and mRNA
can bind and degrade together rapidly [28–30]. The mRNA concentration m is the control input to
the translation process. A constant upstream transcription factor regulates mRNA production as
a set-point input u to the controller. Based on the chemical reactions in SI Section S3.1, the ODE
model of this system is:

d

dt
m = Tu− θms/β − δm,

d

dt
s = Ts

p/ks
1 + p/ks

− θms/β − δs,

d

dt
p = R(1− d)m− γp,

(16)
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where T and Ts characterize the production rates of mRNA and sRNA, respectively. They are
proportional to the copy numbers of the regulated gene and the sRNA-expression DNA. Parameter
ks is the dissociation constant of the binding between protein p and the sRNA promoter, β is the
dissociation constant of mRNA-sRNA binding, θ is the degradation rate constant of the mRNA-
sRNA complexes, and R is the translation rate constant. In addition to dilution due to cell growth,
characterized by rate constant γ, uncoupled mRNA and sRNA are degraded by RNAse [31, 32].
Therefore, we model decay (i.e., dilution and degradation) of uncoupled RNAs by a lumped rate
constant δ such that δ ≥ γ, and assume that this rate constant is the same for mRNA and sRNA
without loss of generality. Our model (16) is similar to established sRNA-based translation regulation
models [29, 33, 34], except that expression of sRNA is activated by the regulated protein (p) to
constitute a feedback loop. These additional reactions are modeled using a standard Hill-type
function in (16), and we refer the readers to SI Section S3.1 for its derivation.

Setting z1 := m, z2 := s and x := p, system (16) can be taken to the form of a type II leaky-ICM:

d

dt
x = R(1− d)z1 − γx,

d

dt
z1 = Tu− θz1z2/β − δz1,

d

dt
z2 = Ty − θz1z2/β − δz2,

y =
Ts
T

x/ks
1 + x/ks

.

(17)

In order to achieve negligible adaptation error, we need to ensure that the controller reactions
(i.e., z1 and z2 dynamics) are much faster than uncoupled RNA decay. On the one hand, coupled
degradation of mRNA-sRNA complexes are by nature much more rapid than uncoupled RNA decay
[30]. We therefore use ε := δ/θ � 1 to characterize this time-scale separation. Additionally, we can
simultaneously increase DNA copy numbers of the controller species m and s by a factor of 1/ε to
increase their production rates. Consequently, the production rate constants of mRNA and sRNA
become T/ε and Ts/ε, respectively. Under these assumptions, system (17) is in the form of a type
II quasi-ICM:

d

dt
x = R(1− d)z1 − γx,

d

dt
z1 =

T

ε
u− θ

εβ
z1z2 − δz1,

d

dt
z2 =

T

ε
y − θ

εβ
z1z2 − δz2,

y =
Ts
T

x/ks
1 + x/ks

.

(18)

The adaptation error can be arbitrarily decreased by detuning ε. In practice, this can be accom-
plished by simultaneously (i) increasing the mRNA-sRNA complex degradation rate constant θ, and
(ii) increasing the copy numbers of the regulated gene and the sRNA-expression DNA. While directly
increasing θ may be difficult to implement in practice, since the parameters θ and β are clustered
together in model (16), we can achieve the same effect by increasing the affinity between sRNA and
mRNA (1/β) [35]. The above results are confirmed by simulations in Figure 2D and Figure S9 in
SI using biologically relevant parameters from bacteria E. coli. In SI Section S3.2, we analytically
demonstrate that the conditions in Claim 1 are indeed satisfied for system (18).

4 Discussion

Due to integral controllers’ unique ability to drive a process to reach a set-point regardless of dis-
turbances/uncertainties, they are especially appealing to synthetic biology, where various forms
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Figure 2: Two physical realizations of quasi-ICMs. (A) Genetic circuit diagram of the
phosphorylation-based quasi-integral controller. Chemical reactions realizing the controller are boxed in
pink. (B) Simulation of the circuit’s response according to (13). A set-point input u = 20 nM is applied at
time 0 and a disturbance input d = 0.5 is applied at 20 hr. The vertical axis represents the ratio between
output y, defined to be proportional to p (y = σp), and set-point u. The dashed black line is the response of
the phosphorylation-based control system assuming no dilution of the active substrate b∗. The dotted blue
line, the thin green line with square markers and the solid red line represent circuit’s response in the presence
of nonzero substrate dilution (γ = 1 hr−1) and decreasing ε, which corresponds to increasing catalytic rates
(ki, i = 1, 2). (C) Genetic circuit diagram of the sRNA-based quasi-integral controller. (D) Simulation of
the circuit’s response according to (16). A set-point input u = 1 is applied at time 0 and a disturbance input
d = 0.5 is applied at 30 hr. The vertical axis represents the ratio between output y, defined in (18), and
set-point input u. The dashed black line represents response of an ideal integral control system, where RNA
decay rate δ is set to 0. The dotted blue line, the thin green line with square markers and the solid red line
represent circuit’s responses in the presence of nonzero RNA decay rate (δ = 3 hr−1, corresponding to half-
life of about 13 mins) and decreasing ε. Parameter ε is decreased by increasing the mRNA-sRNA removal
rate (θ/β). The DNA copy numbers of the regulated gene and the sRNA are increased simultaneously by a
factor of 1/ε as ε decreases. Simulation parameters are listed in SI Section S5, Table 2.
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of disturbances and uncertainties limit the robustness and predictability of synthetic circuits. A
unique and fundamental challenge to realize integral control in living cells is that the concentration
of biomolecules dilute as cells grow, resulting in the impossibility to create a non-leaky biomolecular
memory element, which is indispensable to implement integral control.

In this report, we propose a general design principle to overcome this obstacle. We mathemat-
ically demonstrate that one can design an ideal integral controller to obtain perfect adaptation in
the absence of dilution and then speed up all controller reactions with respect to dilution to re-
store adaptation in the presence of dilution. This implies that the designer should select controller
biomolecular processes whose rates are significantly faster than dilution rates. Our result is equally
applicable to situations where controller species are degraded in addition to being diluted. Due to
the asymptotic nature of our results, they are largely insensitive to system parameters. To solidify
this point, we simulated the phosphorylation-based and the sRNA-based quasi-integral controllers
with randomly generated parameters, and demonstrated that, regardless of the rest of the param-
eters, the adaptation error always decreases as the rates of controller reactions are increased (SI
Section S5.2).

While our mathematical analyses are carried out using ordinary differential equation models
derived from mass action kinetics, we numerically exemplify their effectiveness using a time-varying
Gillespie simulation [36], in which the stochasticity of biomolecular reactions as well as cell volume
expansion and division are explicitly taken into account (see SI Section S5.3 for details). In addition,
we have assumed that the host cells grow at constant rate (constant γ). In practice, however, their
growth rate may change with, for example, temperature, nutrients and metabolic load of the circuit
[37]. We have therefore studied the performance of quasi-integral controllers in changing growth
conditions (see SI Section S4.3), and found that the circuit’s output can still adapt to disturbances
as long as growth rate changes slowly.

Nature may have already utilized the time-scale separation strategy between process and con-
troller that we propose here for realizing adaptation and homeostasis. For example, it has been
suggested that the bacterial chemotaxis system [38] and the yeast osmoregulation system [39] con-
tain integral controllers realized through methylation and phosphorylation, respectively. Since these
processes are much faster than dilution in their respective host cells, it is justifiable to neglect di-
lution in these systems, and almost perfect adaptation can be achieved. Therefore, experimental
study of synthetic realizations of the quasi-integral controllers proposed here may enhance our un-
derstanding of their natural counterparts, which are often embedded in more complex biomolecular
networks and are therefore more difficult to analyze.

From a classical control-theoretic perspective, integral controllers often operate with low integral
gains (i.e., slow integration). This is because with a perfect integrator, steady state adaptation can
be achieved regardless of the magnitude of the integral gain, and a high integral gain often leads to
undesirable effects such as higher energy consumption and tendency to instability [6, 22]. However,
a potential advantage of increasing the leaky integral gain is that it can improve a system’s ability to
track (reject) time-varying references (disturbances). While we demonstrate this capability for the
two example systems through linearization and simulations in SI Section S4.1-4.2, further theoretical
assessment of this property requires deeper study [40, 41].
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[23] Andras Gyorgy, José I. Jiménez, John Yazbek, Hsin-Ho Huang, Hattie Chung, Ron Weiss, and
Domitilla Del Vecchio. Isocost lines describe the cellular economy of gene circuits. Biophys. J.,
109(3):639–646, 2015.

[24] Alon Raveh, Michael Margaliot, Eduardo D Sontag, and Tamir Tuller. A model for competition
for ribosomes in the cell. J. R. Soc. Interface, 13:20151062, 2015.

[25] Tatenda Shopera, Lian He, Tolutola Oyetunde, Yinjie J. Tang, and Tae Seok Moon. Decoupling
resource-coupled gene expression in living cells. ACS Synth. Biol., 6(8):1596–1604, 2017.

[26] J Monod, A.M Pappenheimer, and G Cohen-Bazire. La cinétique de la biosynthèse de la β-
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