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Stratified time-course gene preselection shows a
pre-diagnostic transcriptomic signal for metastasis

in blood cells: a proof of concept from the NOWAC
study

Einar Holsbø, Vittorio Perduca, Lars Ailo Bongo, Eiliv Lund, and Etienne Birmelé.

Abstract—We investigate whether there is information in gene
expression levels in blood that predicts breast cancer metastasis.
Our data comes from the NOWAC epidemiological cohort study
where blood samples were provided at enrollment. This could
be anywhere from years to weeks before any cancer diagnosis.
When and if a cancer is diagnosed, it could be so in different
ways: at a screening, between screenings, or in the clinic, outside
of the screening program. To build predictive models we propose
that variable selection should include followup time and stratify
by detection method. We show by simulations that this improves
the probability of selecting relevant predictor genes. We also
demonstrate that it leads to improved predictions and more
stable gene signatures in our data. There is some indication that
blood gene expression levels hold predictive information about
metastasis. With further development such information could be
used for early detection of metastatic potential and as such aid
in cancer treatment.

Index Terms—Predictive models, Biomedical informatics, Ge-
netic expression, Medical tests

I. INTRODUCTION

ABOUT one in ten women will at some point develop
breast cancer. About 25% have an aggressive cancer

at the time of diagnosis, with metastatic spread to axillary
lymph nodes. 1 Spread is detected by a sentinel node biopsy:
a surgical procedure to check the lymph nodes closest to
the cancer site for metastasized cancer. A cancer that has
developed to the point of metastasis is much more dangerous
than a local one. The absence or presence of metastatic spread
largely determines the patient’s survival. Early detection is
hence very important in terms of reducing cancer mortality.
Were we able to detect signs of metastasis or metastatic
potential by a blood sample, perhaps in a screening setting, we
could conceivably start treatment earlier and treat the cancer
before the onset of large, deadly metastasized tumors.

Several recent articles develop this idea of liquid biop-
sies [1]. Different relevant signals appear in blood for already-
diagnosed breast cancer. For instance: circulating tumor
cells [2], circulating tumor DNA [3], serum microRNA [4],
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or tumor-educated platelets [5]. A recent review in Cancer
and Metastasis Reviews [6] lists liquid biopsies and large
data analysis tools as important challenges in metastatic breast
cancer research.

Norwegian Women and Cancer (NOWAC) [7] is a prospec-
tive study that includes blood samples. A subset of these have
been processed on microarrays to provide gene expression
measurements in the form of mRNA abundance (transcrip-
tomics). Any information contained in blood gene expression
will be of a systemic nature. Since cancer grows over time,
so presumably does any systemic response increase over time
accordingly. This would mean that blood samples provided
long before a cancer has grown enough to be detectable and
diagnosable necessarily holds less information than a more
recent blood sample. Hence prospective blood samples provide
gene expression trajectories over time. Such trajectories should
diverge between cases and controls as the tumor grows. Lund
et al. [8] show a significant difference in trajectories for groups
of genes. In this paper we aim to show that we can go further
and find predictive information about metastatic spread to the
closest lymph nodes (the sentinel nodes).

Making predictions from gene expression is a high-
dimensional problem. There are about ten thousand potential
predictor genes. In such a setting it is very easy to find noise
that looks like a signal. The hope is usually to uncover lower-
dimensional structures in the data. For instance, we expect
genes to work together in pathways. We do not expect all
genes to be relevant in all processes. The analysis of high-
dimensional data is an active research area of statistics and
machine learning [9]. The common methods for discovering
low-dimensional structure are projection approaches like PLS-
methods [10] and variable selection.

Variable selection approaches highlight the most discrimina-
tive variables. A set of selected variables is simpler to interpret
than a projection. There is a variety of variable selection
schemes; Fan and Lv [11] provide a review. Working with
gene expression we can rank genes for example based on
genewise t-tests for differential expression. The top k of these
provide a lower-dimensional space where we can apply any
prediction method. Haury et al [12] show that such a ranking
coupled with a simple classifier method compares favorably
to more sophisticated methods. There are also integrated
methods that do simultaneous selection and model fitting. A
popular choice is the penalized maximum likelihood family of
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generalized linear models, which optimize the likelihood plus
a penalty term that encourages sparse solutions. These include
the popular lasso and elastic net methods [13].

The chosen set of predictors is often unstable in that
they change with perturbations to methodology or data set.
Ein-Dor et al. [14] examined the effect of using different
subsets of the same data to choose a predictive gene set.
They show that predictor gene sets depend strongly on the
subset of patients used for analysis. Stability criteria make
a complimentary feature to predictive power. These can be
integrated in the model selection, as the stability selection for
penalized regression [15], or they can be used for posteriori
evaluation [12].

In this article we examine some feature selection schemes
for metastasis prediction with blood samples from a prospec-
tive study. We use gene expression data from 88 case–
control pairs from the NOWAC study. The blood samples were
provided 6–358 days before diagnosis. We propose variable
selection based on a gene’s prediagnostic progression over
time and the manner in which the cancer was diagnosed. We
also provide a means to simulate prospective gene expression
data, extending a previous method.

For both variable selection and prediction we use simple,
well-established methods. We do not attempt to provide a
survey and comparison of advanced techniques: the size of the
data only permits approximate insights. For this same reason
we do not enumerate any predictive gene set—in fact we shall
see that such gene sets are quite unstable. Biologically we
see some evidence of a signal predictive of metastasis already
present before diagnosis in these data. This gives some hope
for the pursuit of liquid sentinel node biopsies for diagnosis
or crucial early detection. Statistically we see that the use of
followup time and especially stratification is important to find
this information.

II. MATERIAL AND METHODS

A. Data

We analyze 88 pairs of cases with breast cancer diagnoses
and age-matched healthy controls from the NOWAC Post-
genome cohort. Dumeaux et al. describe the NOWAC study in
detail [7]. In brief, women in a certain age group received an
invitation to participate by random draw from the Norwegian
National Registry. The women who chose to participate filled
out a questionnaire and provided a blood sample. Over the
years the Cancer Registry of Norway provided followup in-
formation on cancer diagnoses and lymph node status. The
women in this particular data set received a breast cancer
diagnosis at most one year after providing a blood sample.

The NTNU genomics core facility processed the blood sam-
ples with Illumina microarray chips of either the HumanWG-
6 v. 3 or the HumanHT-12 v. 4 type. To keep case–control
pair as comparable as possible, the pair is intact throughout
processing pipeline. This means that they are processed on
the same day by the same person and lie next to one another
physically on the microarray chip. All NOWAC data sets go
through a standardized technical quality control [16]. We have
removed low-signal and low-quality probes. Finally we have

normalized the data by quantile normalization before analysis.
The preprocessing for these particular data is described in
detail by Lund et al. [8].

The end-result is a 88 × 12404 fold change matrix, X ,
on the log2 scale. For each gene, g, and each case–control
pair, i, we have the measurement log2 xig − log2 x

′
ig. Here

xig is the g expression level for the ith case, and x′ig is the
corresponding control. For each case we have the number of
days between the blood sample and the cancer diagnosis. We
will call this the followup time, or simply the followup of
a case. Although followup introduces a time aspect, these are
not time series data. Each observation is a different woman, so
there should be no autocorrelation to speak of, and followup
time is random. The variable detection stratum takes one of
the following values:
• Screening denotes a cancer that was detected in the

regular screening program.
• Interval denotes a cancer that was detected between two

screening sessions. The interval between screenings is
two years.

• Clinical denotes a cancer that was detected outside of the
screening program. These women either never took part
in the screening program, or did not attended a screening
in at least two years.

The response variable, metastasis (∈ {0, 1}), indicates
whether a sentinel node biopsy showed evidence of metastasis.
We sometimes refer to this as spread. Table I shows the
incidence of metastasis in the different strata. There is a certain
heterogeneity. We conjecture that an interval cancer grows
rapidly, having appeared in the two years between screens,
and that a clinical cancers has been growing for a long time
before becoming problematic enough that the patient suspects
something herself.

Screening Interval Clinical
No spread 43 10 13

Spread 6 6 10
Table I

INCIDENCE OF METASTASIS ACROSS DETECTION STRATA. THERE IS
NOTICEABLE BETWEEN-STRATUM VARIATION. THE INCIDENCE IS MUCH

LOWER IN THE SCREENING STRATUM.

B. Variable selection

We investigate four ways to rank genes, which we describe
briefly in this section. The methods all assess differential
expression between groups in some way. We propose the
first—ANOVA—to take into account a hypothetical func-
tional relationship between gene expression and time. The
other three—SAM, t-tests, and LIMMA moderated t-tests—
are well-established methods for ranking genes and assessing
differential expression.

1) ANOVA: We hypothesize that the expression of genes
that are relevant to the cancer process diverges over time. To
detect this behavior we regress fold change, e, on time, t, and
metastasis, M , in the following model:

e = β0 + β1t+ β2M + β3tM + ε, (1)

where ε is iid noise. We refer to this as ANOVA-f below.
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We suspect that different genes may be relevant in different
detection strata. We model this by expanding equation 1 to
include an interaction with stratum, S:

e = β0 + . . .+ β4S + β5tS + β6SM + β7tSM + ε. (2)

We refer to this as ANOVA-fs below.
Finally we entertain the possibility that followup is not

important and that stratum alone is of interest. This yields
the model

e = β0 + β1S + β2M + β3SM + ε, (3)

which we refer to as ANOVA-s below. Note the abuse of
notation in Equations 2 and 3; S has three levels and will
be coded as a dummy variable.

We rank genes by the F -statistic obtained under the null
hypothesis that the model in Equation 1, 2, or 3 is no better
than the intercept-only model, e = β0 + ε. Ignoring both
stratum and followup is equivalent to a regular t-test for
metastasized vs not as in Section II-B2 below.

2) t-test: We rank genes by Welch’s two-sample t-
statistic [17] between metastasized and non-metastasized cases
(t-test below). This is complementary to the three methods
above, as regressing on a single binary grouping variable can
be used as a test for difference in means.

3) SAM: The Significance Analysis of Microarrays (SAM)
procedure of Tusher, Tibshirani and Chu [18] defines the
relative difference in gene expression for the ith gene as:

d(i) =
x̄I(i)− x̄U (i)

s(i) + s0
.

Here x̄I(i) and X̄U (i) are the average expression levels of
gene i in the two states I and U (metastasized or not), s(i) is
the pooled standard deviation estimate in the two states, and
finally s0 is a small positive constant added to all genes to
make the variance of di independent of gene expression level.
We rank genes by d(i).

4) LIMMA t-test: Smyth’s Linear Models for Microarray
Data (LIMMA) is a general empirical Bayes framework for
assessing differential expression [19]. The LIMMA moderated
t-statistic, t̃i, is similar to the SAM d(i) in that it modifies the
denominator of a regular t-statistic. In this case we have that
for the ith gene,

t̃i =
x̄I(i)− x̄U (i)

s̃i
√
vi

,

where vi is a factor that has to do with the variance of
x̄I(i) − x̄U (i). The standard deviation estimate s̃i has been
shrunk by empirical Bayes methods toward the average stan-
dard deviation across all genes. We refer to this as LIMMA-t
below.

C. Prediction

Having ranked genes and chosen the top k as predictors,
we use these in the following logistic regression model for
the probability, p, of metastasis:

logit(p) = β0 + β1x1 + . . .+ βkxk. (4)

This model uses only gene expression levels regardless of
whether stratum (or time) was used in selecting the predictors.
This model can be used in a screening setting (where the
cancer has not yet happened and hence we do not have
information about its detection). Since followup time is a result
of these data coming from a cohort study, it could not be used
in a realistic predictive model.

Considering Table I it is likely that detection type is
informative of the probability of metastasis. Conceivably a
predictive model could be used at time of diagnosis where
this information is available. Our model for such a setting
is simply Equation 4 with an extra interaction with stratum,
much like in the variable selection in Section II-B1:

logit(p) =β0 + . . .+ βk+1S + βk+2Sx1+

. . .+ β(2k+1)Sxk.
(5)

We estimate models 4 and 5 by Bayesian generalized linear
models with a weakly informative prior from Gelman et
al. [20]. This is more for convenience than from a particular
wish to do Bayesian modeling: when selecting the k “best”
predictors out of thousands of candidates it is quite likely
to find some where the metastasis and non-metastasis points
are linearly separable (ie. their respective convex hulls are
disjoint). In such a setting, the classical iteratively reweighted
least squares optimization does not converge. Predictors se-
lected for some function of their effect size would likely
regress toward the mean in new data and some amount of
shrinkage is prudent. The standard prior of Gelman et al.
provides a sensible and convenient regularization without a
need for parameter tuning.

D. Baseline

We compare predictive performance against two naive and
two more sophisticated baselines. The more sophisticated
baselines use all genes without prior ranking and selection.

The first naive model we consider is the “random guess”
intercept-only model logit(p) = β0. Second we compare
against using the stratum information, logit(p) = β0 + β1S,
corresponding to making a recommendation based only on the
manner in which the cancer was detected.

The other two baselines are penalized logistic regression
models. These models take the same form as Equation 4, using
all predictors rather than the top k, but maximize the likelihood
subject to the constraint that c(β̂) ≤ t. Ie. the magnitude c(·)
of the coefficients βi must not exceed some threshold t. We
investigate ridge penalty, cr(β̂) =

∑
β̂2
i , and Tibshirani’s lasso

penalty, cl(β̂) =
∑
|β̂i| [21]. These are well-known models.

The lasso provides an end-to-end solution that does variable
selection and model fitting in one go. Using a ridge penalty
simply uses all predictors but shrinks coefficients toward zero
quadratically in their magnitude. Both of these methods require
the selection of t; we choose this by cross validation.

E. Metrics

We evaluate models by three criteria. Brier score [22] is
the mean squared error,

B̄ = n−1
∑

(ŷi − yi)2,
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between the probability that was predicted by the model, ŷ,
and the known outcomes, y. Concordance probability is the
probability of ranking (in terms of probability) a randomly
chosen positive higher than a randomly chosen negative (ie
a metastatic vs a non-metastatic case, respectively). This is
equivalent to area under the receiver operating characteris-
tic curve (AUC), and is proportional to the Mann-Whitney-
Wilcoxon U statistic [23]. Finally, stability is the probability
of recovering the same predictor genes between different
realizations of the modeling procedure. We follow Haury et
al. [12] and measure this by the Jaccard index, |S1∩S2|

|S1∪S2| , where
S1 and S2 are two sets of predictor genes.

F. Validation

1) Optimism bootstrap: For estimation of concordance
probability and Brier score we take the optimism-corrected
bootstrap approach described amongst other places in Efron
and Gong [24]. This has the advantage of using all of the
data in estimating model performance opposed to data splitting
procedures such as out-of-bootstrap or k-fold cross-validation
where only a portion of the data is used to fit the model.

The apparent score (or training score), sc(x, F̂ ), is the
expected score of a model fit to the sample, x, w.r.t. the
empirical distribution of this sample, F̂ . This is necessarily
an overoptimistic estimate. To correct for this, we estimate
the expected overoptimism, ω, by the bootstrap:

ω̂B =
1

B

∑
b

sc(x∗b , F̂ )− sc(x∗b , F̂ ∗b ),

where x∗b is the bth bootstrap sample and F̂ ∗b is the empirical
distribution function of the same. Hence sc(x∗b , F̂

∗
b ) is the

apparent score of the bth bootstrapped model, and sc(x∗b , F̂ )
is the expected score of the same model w.r.t. the empirical
distribution of the original sample. The optimism-corrected
expected score of our model becomes

ŝcB = sc(x, F̂ ) + ω̂B ,

which is a bias correction of the apparent score.
It does not make sense to estimate stability by optimism

correction. Let S(X) be the gene set selected in the original
data and S(X∗b ) be the gene set selected in the bth bootstrap
sample. The bootstrap estimate of expected stability is then

ŝtB =
1

B

∑
b

|S(X) ∩ S(X∗b )|
|S(X) ∪ S(X∗b )|

.

2) Standard errors: We measure uncertainty in the boot-
strap estimates by the jackknife-after-bootstrap procedure. The
jackknife estimate of standard error for any statistic θ̂ is

σ̂J =

√
n− 1

n

∑
(θ̂(i) − θ̂(·))2, (6)

where θ̂(i) is the statistic computed with the i-th sample
removed, and θ(·) = 1

n

∑
θ̂(i). In principle the bootstrap

procedure has to be repeated for each θ̂(i). But there is a com-
putational shortcut here due to the fact that a bootstrap sample
drawn with replacement from x1, . . . , xi−1, xi+1, . . . xn has

the same distribution as a bootstrap sample drawn from
x1, . . . , xn in which xi does not appear (the jackknife-after-
bootstrap lemma in Efron and Tibshirani [25]).

G. Simulation study

To simulate a time-course, stratified gene expression data
we extend the scheme of Dembélé [26]. We wish to compare
ranking methods in a simple setting, do not consider metas-
tasized cases vs non-metastasized cases and examine only a
general case vs control scheme.

Briefly, Dembélé’s scheme is to model the the log2 gene
expression levels x for gene i as

xi = ai + si + ni + ti,

where xi is a vector of the observed values of gene i for all
subjects. Vector ai contains baseline expression values, while
si defines offsets for differential expression. The offset is zero
for controls and genes that are not differentially expressed.
The vector ni contains independent noise and the vector ti,
unused, models technical errors.

We modify the gene expression component ai + si so that

xi = ai + ki � ui � si + . . . ,

where � denotes element-wise multiplication. The factor ki
introduces a decay in effect size for longer followup time. We
sample a followup-time vector ti ∼ U [0, 1]n and set ki =
1 − ti. This shrinks differential expression toward zero pro-
portinally to followup time. The factor ui introduces a stratum
effect. We first draw a stratum indicator rij ∼ Bernoulli(.5),
and then let uij = .5 if rij = 1 and uij = 1 otherwise.
This gives us the stratum effect vector ui = [uij ]j=1...n. The
expected differential expression in stratum 1 is half of that that
in stratum 0.

Dembélé’s method is implemented in the R-package
madsim. It allows one to specify an empirical distribution to
sample from. We use 30 000 random gene expression values
from our real data as a seed to the algorithm. There are several
parameters to the method. Important to us are µmin

de and λ2.
Differential expression is realized∼ N(µmin

de +E′, σde), where
E′ ∼ exp(λ2). Hence µmin

de is the smallest possible average
differential expression, and λ2 a parameter that adjusts how
often average differential expression departs noticeably from
this minimum. We set µmin

de = 0.1 and σde = 0.025, to make
the smallest possible effect quite small and stable. The noise
component is ni ∼ N(0, σn). We set σn = 0.2 to roughly
match the variance we see in our own data. This gives us
a signal-to-noise ratio of .5 in the worst case. The expected
differential expression in this model is µmin

d e+ 1/λ2. We let
λ2 be an adjustable parameter to aid our investigations.

We make our modified simulation scheme available as an
R package at https://github.com/3inar/pmadsim.
This is a fork of madsim and shows all modifications we
have made to the original package. It provides a function that
generates data according to the above specifications.
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Figure 1. Probability of selecting a truly differentially expressed gene when
there is a linear time effect in our simulation. ANOVA-f, SAM and t-tests
behave similarly, but accounting for time with ANOVA-f yields a slightly
higher selection probability.
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Figure 2. Probability of selecting a truly differentially expressed gene
when there is a linear time effect and a stratum in our simulation. Both
ANOVA methods, SAM and t-tests behave similarly. Accounting for time with
ANOVA-f yields a slightly higher selection probability. However accounting
for stratum with ANOVA-fs does not in this case increase the selection
probability further.

III. RESULTS

This section presents our results. First those from our sim-
ulation, then those from predicting metastasis in the NOWAC
data.

A. Simulations

We generate 10 000 gene expression measurements for 33
cases and 55 controls. This roughly matches our data set,
which has about 12 000 expression measurements for 33
metastasized cases and 55 non-metastasized cases. We set the
probability of differential expression to 0.01 for around 100
differentially expressed genes.

We let λ2 range over a set of values so that the expected
value β = 1/λ2 of the corresponding exponential is a series of
ten evenly spaced numbers between 0.01 and 2 for an expected
effect size from 0.02 to 2.01. For each λ2 and each selection
method we do 1 000 simulations.

We measure the probability of recovering the 100 differ-
entially expressed genes when picking the top 100 genes as
ranked by the different selection methods. Figure 1 shows the
results in the presence of a simulated followup decay effect.
The differences between methods is slight, but ANOVA-f
yields a slightly higher selection probability for all effect sizes

(smaller effect sizes omitted in the figure). Figure 2 shows
the results in the presence of both a followup and a stratum
effect. Again the differences are slight. ANOVA-f still does
best, outperforming the correct model of ANOVA-fs. This is
likely because ANOVA-fs must estimate three extra parameters
per gene with the same small amount of data.

B. NOWAC metastasis prediction

Below all bootstrapped results are based on 2 500 resamples.
For all ranking methods we choose the top ten genes and
use them as predictors for the models described in Equations
4 and 5. This is based on the folk wisdom to have around
ten observations per estimated parameter in the regression
model. In practice we end up with fewer observations per
parameter, especially for model 5, so the models are slightly
over-parameterized. This likely contributes to uncertainty in
our results.

Tables II and III show the Brier score and AUC for predic-
tions based on the different selection schemes we investigate.
Models 4 and 5 refer to Equations 4 and 5 in Section II-B1.
That is, respectively, the “screening” prediction using only
gene expression in the model, and the “at diagnosis” prediction
that uses the additional information of detection stratum.

model 4 model 5
t-test .17± .45 .17± .33
ANOVA-fs .27± .13 .18± .10
SAM .34± .11 .20± .15
ANOVA-s .33± .22 .20± .25
ANOVA-f .31± .084 .21± .11
LIMMA-t .35± .14 .20± .17

intercept .19± .010
stratum .22± .029
lasso .27± .19
ridge .23± .30

Table II
BRIER SCORES PRESENTED AS POINT ESTIMATE PLUS/MINUS TWO

STANDARD ERRORS. MEASURES ERROR IN FORECAST PROBABILITY:
LOWER IS BETTER. MODEL NUMBER REFERS TO THE EQUATIONS IN

SECTION II-C. MODEL 5 INCLUDES STRATUM AS A PREDICTOR. BELOW
THE BREAK ARE THE FOUR BASELINE MODELS.

Brier score is a measure of error: the lower the better.
Table II shows Brier score as point estimate plus/minus two
standard errors in decreasing order by Model 5 point estimate.
The results do not suggest any simple interpretation, but it is
noteworthy that the intercept-only model is among the best-
calibrated. The uncertainty is large enough that is difficult to
say that any selection method is better than any other. It is clear
that the interaction with detection method in model 5 improves
calibration for all models. There is also lower uncertainty in
the ANOVA-f/fs models.

AUC or concordance probability is a measure of a model’s
ability to discriminate between outcomes: the higher the
better. Brier score alone does not provide full information
about predictive performance; the intercept-only model is well-
calibrated but cannot be used for prediction at all. Random
guess (or forecasting a constant for every observation) yields
AUC of .5; perfect discrimination yields AUC of unity. Table
III shows AUC as point estimate plus/minus two standard
errors in decreasing order by model 5. Again the clearest signal
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model 4 model 5
LIMMA-t .44± .30 .76± .20
SAM .46± .26 .75± .24
ANOVA-fs .51± .29 .75± .16
ANOVA-s .41± .57 .75± .38
t-test .65± 1.5 .74± .71
ANOVA-f .44± .25 .72± .21

intercept .5
stratum .49± .055
lasso .36± 1.4
ridge .81± 3.3

Table III
AUC PRESENTED AS POINT ESTIMATE PLUS/MINUS TWO STANDARD
ERRORS. MEASURES THE PROBABILITY OF FORECASTING A HIGHER

PROBABILITY OF METASTASIS FOR A RANDOMLY CHOSEN METASTASIS
CASE THAN FOR A RANDOMLY CHOSEN NON-METASTASIS CASE: HIGHER

IS BETTER. MODEL NUMBER REFERS TO THE EQUATIONS IN SECTION
II-C. MODEL 5 INCLUDES STRATUM AS A PREDICTOR. BELOW THE

BREAK ARE THE FOUR BASELINE MODELS.

is that the added information from detection method is very
important. Point estimates improve markedly and standard
errors generally decrease. Also here does use of stratification
and followup time in preselection reduce uncertainty.

The ridge regression baseline performance has a very good
AUC point estimate, but the standard error is very large.
Too large: it is a theorem that the upper bound on standard
deviation in a variable ∈ [0, 1] is 1

2 . This says something about
the imperfection of the jackknife as an estimator of standard
error. The blame lies at least in part with the correctional factor
n−1
n in Equation 6, which was originally defined heuristically.

Since it is difficult to suggest a sensible alternative, we choose
to live with this.

The collected results for model 5 suggest some reason for
optimism. Due to the size of the standard errors we must
necessarily be uncertain about even the first significant digit
of our point estimates. But even accounting for uncertainty
there seems to be predictive information better than random
guess. As in the simulations, there is not too much difference
between the different methods, perhaps apart from the simple
t-test, for which we observe much variance. Note that both
SAM and LIMMA are flexible frameworks and we could have
accounted for stratum and followup in either. Our comparison
is between using this information and various ways of not
using it, and there is no reason to believe that either framework
should perform poorly if we were to use more refined models
there.

ANOVA-f .095± .15
SAM .070± .10
ANOVA-fs .067± .16
LIMMA-t .061± .10
ANOVA-s .055± .086
t-test .00036± .0039
lasso 0± .26

Table IV
STABILITY AS POINT ESTIMATE PLUS/MINUS TWO STANDARD ERRORS.
STABILITY IS AN ESTIMATE OF THE PROBABILITY OF RECOVERING THE

SAME GENE SET WITH DIFFERENT REALIZATIONS OF A MODELING
PROCEDURE. A LARGER STABILITY PROVIDES MORE CERTAIN

BIOLOGICAL INTERPRETATION. THE LASSO IS THE ONLY BASELINE
METHOD INCLUDED HERE AS IT IS THE ONLY ONE THAT DOES VARIABLE

SELECTION.

Table IV shows the predictor set stability as point estimate
plus/minus two standard errors. Stability is in general very
low, and the standard errors suggest that there is even some
uncertainty to the order of magnitude of the point estimates.
A possible interpretation is that the correlation between genes
is such that many different genes hold similar information.
It is at least clear that we need much more data if we want
to find a stable set of predictor genes. If we take the point
estimates at face value, Table IV reflects the fact that we see
lower uncertainty using ANOVA-f/fs in Tables II and III.

IV. CONCLUSION

We have found some indication that predicts breast cancer
metastasis could be predicted from blood transcriptomic mea-
surements. The information about how a cancer was detected
is very important in this respect. This suggests separate mech-
anisms at work in the different strata and that perhaps these
three settings should be explored separately. These results are
a long way from practical application, but the potential impact
of early detection of metastasis is great. Larger studies should
be conducted to provide reliable evidence, especially if there
is to be any hope for identifying a stable gene signature set
for metastasis.
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