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ABSTRACT The objective was to provide a definitive proof that prediction of non-assessed single 17 

crosses (SCs) is efficient. We provided a new genetic model for genomic prediction. The SNP and 18 

QTL genotypic data for DH lines, the QTL genotypic data of SCs, and the phenotypic data for DH 19 

lines and SCs were simulated assuming 10,000 SNPs, 400 QTLs, two groups of 70 selected DH 20 

lines, and 4,900 SCs. The heritabilities for the assessed SCs were 30, 60 and 100%. The scenarios 21 

included three sampling processes of DH lines, two sampling processes of SCs for testing, two SNP 22 

densities, DH lines from the same population, DH lines from populations with lower LD, two 23 

genetic models, three statistical models, and three statistical approaches. The efficiency of 24 

prediction of untested SCs was based on the prediction accuracy and the efficacy of identification of 25 

the best 300 (7-9%) non-assessed SCs (coincidence index), computed based on the true genotypic 26 

values. Concerning the prediction accuracy and coincidence, our results proved that prediction of 27 

untested SCs is very efficient. The accuracies and coincidences ranged from approximately 0.80 28 

and 0.50, respectively, under low heritability, to 0.90 and 0.7, assuming high heritability. 29 

Additionally, we highlighted the relevance of the overall LD and evidenced that efficient prediction 30 

of untested SCs can be achieved for crops that show no heterotic pattern, for reduced training size 31 

set (10%), for SNP density of 1 cM, and for distinct sampling processes of DH lines, based on 32 

random choice of the SCs for testing. 33 

INTRODUCTION 34 

The genomic selection is a reality in animal breeding, especially for dairy cattle (Van 35 

Eenennaam et al. 2014). The same cannot yet be said concerning crop breeding, with exceptions. 36 
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The main reasons for the effective application of genomic selection in livestock breeding are: it is 37 

efficient, that is, the process has high prediction accuracy, the cost of phenotyping (mainly progeny 38 

test) is higher than the cost of genotyping, and the process significantly shorten the selection cycle 39 

(Meuwissen et al. 2013). It is worth to remember that prediction of breeding and genotypic values is 40 

not exclusive for genomic selection, having been pioneered by the best linear unbiased prediction 41 

method (BLUP) (Henderson 1974). In spite of the many field and simulation-based studies with 42 

genomic selection in plant breeding, in general the cost of phenotyping is much lower than the cost 43 

of genotyping, restricting its application in breeding programs. Jonas and de Koning (2013) 44 

consider that genomic selection has the potential to improve existing plant breeding schemes. 45 

However, based also on the high diversity and complexity of plant breeding methods, they stated 46 

that there are great obstacles to overcome. 47 

An important application of genomic selection in plant breeding is the prediction of untested 48 

single crosses (genotypic value prediction) and testcrosses (general combining ability effect 49 

prediction) in hybrid breeding (Zhao et al. 2015). The prediction of untested single crosses was 50 

pioneered by Bernardo (1994), also based on BLUP. Many significant studies on prediction of 51 

untested single cross and testcross performance have been published in the last 23 years, focused on 52 

the assessment of the prediction accuracy. Most investigations were based on empirical data and 53 

estimated the prediction accuracy using a cross-validation procedure. Very few were based on 54 

simulated data (Li et al. 2017; Technow et al. 2012a). With no exception, the inference was that 55 

prediction of untested single crosses and testcrosses is an efficient process, proportional to 56 

heritability, training set size, and number of tested inbreds in hybrid combination (both, one, and 57 

none parents tested). It is impressive that this inference have been stated from studies differing for 58 

molecular markers, density of markers, number of inbreds, level of relatedness, diversity and 59 

linkage disequilibrium (LD) between inbreds, heterotic patterns, training set size, genetic model, 60 

and statistical approach (Zhao et al. 2015). 61 
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Most papers on genomic prediction of maize single cross performance published since 2011 62 

have employed single nucleotide polymorphism (SNP), with the SNP number in the range 425 63 

(Zhao et al. 2013a) to 39,627 (Technow et al. 2012a). Based on the physical length of the maize 64 

genome (approximately 2,000 megabase pairs (Mb) according to Maize genetics and genomics 65 

database), the density ranged from approximately 5 to 0.05 Mb, respectively. For grain yield, the 66 

relative prediction accuracies (accuracy/root square of the heritability) in these two papers ranged 67 

from 0.27 to 0.62 and from 0.65 to 0.95, respectively. The number of inbreds in each heterotic 68 

group was highly variable too, ranging from six and nine (Bernardo 1994) to 75 and 75 (Technow et 69 

al. 2012a). The relative accuracy observed by Bernardo (1994) ranged between 0.72 and 0.89. The 70 

number of testcrosses ranged between 255 (Windhausen et al. 2012) and 1,894 (Albrecht et al. 71 

2014). The relative accuracies ranged from 0.46 to 0.52 and from 0.33 to 0.65, respectively. The 72 

level of relatedness ranged from non-related inbreds in each group (Technow et al. 2012a) to an 73 

maximum average value of 0.58 (Bernardo 1995). The relative accuracy obtained by Bernardo 74 

(1995) ranged from 0.41 to 0.80. The common heterotic groups were Stiff Stalk and non-Stiff Stalk 75 

(Kadam et al. 1916) or Dent and Flint (Technow et al. 2014). The study of Bernardo (1996a) 76 

involved nine heterotic groups and the (statistically significant) relative accuracies ranged from 0.43 77 

to 0.88. No study provided clearly greater prediction accuracy of the additive-dominance model 78 

relative to the additive model. Finally, only with testcrosses the genomic BLUP (GBLUP) approach 79 

outperformed BLUP (Albrecht et al. 2014; Albrecht et al. 2011) concerning prediction accuracy. 80 

After so many years of research on prediction of untested single crosses, with consistent 81 

results from reduced and large data sets, it is was a challenge to plan a study that could provide a 82 

new and significant contribution on efficiency of prediction of untested single cross performance. 83 

We believe have achieved our purpose. For the first time, our simulation study has provided for 84 

breeders a direct measure of efficiency of identification of the best 300 of the really non-assessed 85 

single crosses, additionally to the standard prediction accuracy (coincidence index). These measures 86 

of efficacy were provided for a large data set (4,900 single crosses) and for low (30%) to high 87 
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heritability (100%), assuming scenarios not favorable to prediction of non-assessed single cross 88 

performance, as low level of relatedness and a not high heterotic pattern. Additionally, we provided 89 

a new genetic model for genomic prediction, supported by quantitative genetics theory, highlighted 90 

the relevance of the overall LD (not only for linked SNPs and QTLs), and evidenced that efficient 91 

prediction of untested single crosses can be achieved for crops that show no clear heterotic pattern, 92 

as rice, wheat, and barley, for reduced training size set (10%), for SNP density of 1 cM, and for 93 

distinct processes of doubled haploid (DH) lines sampling. Finally, we showed that the choice of 94 

the single crosses for testing must be based on a random process, but never by sampling DH or 95 

inbreds lines for a diallel. Thus, our objective was to provide to breeders a definitive proof that 96 

prediction of non-assessed single crosses can be efficient and that they should make widespread use 97 

of this procedure for identification of the best hybrids, prior to field testing. 98 

MATERIALS AND METHODS 99 

Theory 100 

LD in a group of selected DH or inbred lines 101 

Consider a group of DH or inbred lines selected from a population or heterotic group. Assume 102 

also a quantitative trait locus (QTL) (alleles B/b) and a SNP (alleles C/c) where B and b are the 103 

alleles that increase and decrease the trait expression, respectively. Define the joint genotype 104 

probabilities (equal to the joint haplotype probabilities) as 22f)BBCC(P  , 20f)BBcc(P  , 105 

02f)bbCC(P  , and 00f)bbcc(P  , where the subscript indicates the number of copies of the 106 

major allele (B and C). The measure of LD between the QTL and the SNP is 107 

02f20f00f22fbc   (Kempthorne 1954) and the haplotype frequencies are 108 

bccpbp22f)BC(P  , bccqbp20f)Bc(P  , bccpbq02f)bC(P  , and 109 

bccqbq00f)bc(P  , where p  is the frequency of the major allele (B or C) and p1q   is 110 

the frequency of the minor allele (b or c). Notice that 20f22fbp   and 02f22fcp  . It is 111 
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important to highlight the fact that we are not assuming that the QTL and the SNP are linked and in 112 

LD in the population or heterotic group, because this is not necessary for genomic prediction. But 113 

we are assuming that they are in LD in the group of DH or inbred lines. Furthermore, because 114 

selection, genetic drift, and inbreeding (only for inbreds and linked QTLs and SNPs), the gene and 115 

genotypic frequencies and the LD values concerning the selected DH or inbred lines cannot be 116 

traced to the values in the population or heterotic group. 117 

SNP genotypic values of DH or inbred lines 118 

The average genotypic value for a group of selected DH or inbred lines is 119 

babqbpbmILM 





  , where bm  is the mean of the genotypic values of the homozygotes and 120 

ba  is the deviation between the genotypic value of the homozygote of higher expression and bm . 121 

Thus, the average SNP genotypic values for the DH or inbred lines CC and cc are 122 

    CCAILMSNPcq2ILMbabm02fbabm22f
2.f

1
CCG 



   123 

    ccAILMSNPcp2ILMbabm00fbabm20f
0.f

1
ccG 



   124 

where babcba
cqcp

bc
SNP 















 
  is the average effect of a SNP substitution in the group of DH 125 

or inbred lines and A is the SNP additive value for a DH or inbred line. Notice that E(A) = 0. 126 

Assuming two QTLs (alleles B and b, and E and e) in LD with the SNP, the average effect of 127 

a SNP substitution in the selected DH or inbred lines is eacebabcSNP  , where 128 













 


cqcp
ce

ce . Thus, in general, the average effect of a SNP substitution (and the SNP additive 129 

value) is proportional to the measure of LD and to the a deviation for each QTL that is in LD with 130 

the marker. 131 
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SNP genotypic values of single crosses 132 

Aiming to maximize the heterosis, maize breeders commonly assess single crosses originated 133 

from selected DH or inbred lines from distinct heterotic groups. Consider n1 DH or inbred lines 134 

from a population or heterotic group and n2 DH or inbred lines from a distinct population or 135 

heterotic group. The average genotypic value for the single crosses derived by crossing the DH or 136 

inbred lines from group 1 with the DH or inbred lines from group 2 is 137 

bd2bp1bq2bq1bpba2bq1bq2bp1bpbmHM 





 






   138 

where bd  is the dominance deviation (the deviation between the genotypic value of the 139 

heterozygote and bm ). 140 

The average genotypic values for the single crosses derived from DH or inbred lines CC and 141 

cc of the group 1 are 142 

1CCGCAHM

1SNP1cqHM2b1bc1cqHMbd2bp2bqba1bc1cqHM1CCM














 

 143 

1ccGCAHM1SNP1cpHM2b1bc1cpHM1ccM   144 

where 2b  is the average effect of allelic substitution in the population derived by random crosses 145 

between the DH or inbred lines of group 2, 1SNP  is the SNP effect of allelic substitution in the 146 

hybrid population relative to a SNP derived from group 1, and GCA stands for the general 147 

combining ability effect for a SNP locus. Notice that 1SNP  depends on the LD in group 1 148 

( 1cq1cp/1bc1bc  ) and the average effect of allelic substitution in the population derived by 149 

random crosses between the DH or inbred lines of group 2. Further, 150 

01ccGCA1cq1CCGCA1cp)GCA(E  . Concerning the single crosses derived from DH or 151 

inbred lines CC and cc of the group 2 we have 152 
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2CCGCAHM

2SNP2cqHM1b2bc2cqHMbd1bp1bqba2bc2cqHM2CCM














 

 153 

2ccGCAHM2SNP2cpHM1b2bc2cpHM2ccM   154 

Notice that E(GCA) = 0 also. The average genotypic values for the single crosses concerning 155 

the SNP locus are 156 

2xCC1CCSCA2CCGCA1CCGCAHM

bd2bc1bc2cq1cq22SNP2cq1SNP1cqHM2xCC1CCM




 157 

2xcc1ccSCA2ccGCA1ccGCAHM

bd2bc1bc2cp1cp22SNP2cp1SNP1cpHM2xcc1ccM




 158 

2xcc1CCSCA2ccGCA1CCGCAHM

bd2bc1bc2cp1cq22SNP2cp1SNP1cqHM2xcc1CCM




 159 

2xCC1ccSCA2CCGCA1ccGCAHM

bd2bc1bc2cq1cp22SNP2cq1SNP1cpHM2xCC1ccM




 160 

where SNPdbd2bc1bc   is the SNP dominance deviation in the hybrid population and SCA 161 

stands for the specific combining ability effect for a SNP locus. Notice that )SCA(E  162 

02xcc1ccSCA2cq1cq2xCC1ccSCA2cp1cq2xcc1CCSCA2cq1cp2xCC1CCSCA2cp1cp  and163 

, for each group, E(SCA|CC) = E(SCA|cc) = 0. That is, the expectation of the SNP SCA effects 164 

given a SNP genotype for the common DH or inbred line is also zero. Notice also that the four 165 

genotypic values depends on four parameters ( HM , 1SNP , 2SNP , and SNPd ). 166 

Assuming two QTLs (alleles B and b, and E and e) in LD with the SNP, the SNP dominance 167 

deviation is ed2ce1cebd2bc1bcSNPd  . Thus, generally, the SNP dominance deviation 168 
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(and the SNP SCA effect) is proportional to the product of the LD values in both groups of DH or 169 

inbred lines and to the dominance deviation for each QTL that is in LD with the marker. 170 

The previous model expressed as a function of the GCA and SCA effects is that proposed by 171 

Massman et al. (2013), but these authors assumed 0ccGCACCGCA   (for each heterotic group 172 

and for each SNP) and 2xCC1ccSCA2xcc1CCSCA2xcc1ccSCA2xCC1CCSCA  . 173 

Technow et al. (2012b) have used a standard extension from QTL to SNP, defining the single cross 174 

genotypic value for a SNP as a function of the SNP a and d deviations. That is, 175 

d3u2a2u1a1uHMM  , where 1u  and 2u equal to 1/2 or 1/2 if the corresponding DH or 176 

inbred line is homozygous for distinct SNP alleles (CC or cc), and 3u  equal to 0 if the single cross 177 

is homozygous or 1 if heterozygous. 178 

SNP genotypic values of single crosses from DH or inbred lines derived from the same 179 

population or heterotic group 180 

Well defined heterotic groups are known for maize, but not for special maize as popcorn and 181 

sweet corn and for other crops as wheat (Zhao et al. 2013b), rice (Xu et al. 2014), and barley 182 

(Philipp et al. 2016). Thus, for many breeders, it is interesting to know about the efficiency of 183 

genomic prediction of singles crosses when there are no heterotic groups. Assuming n DH or inbred 184 

lines derived from the same population or heterotic group, the average genotypic values for the 185 

single crosses concerning the SNP locus are 186 

CCxCCSCACCGCA2Mbd2
bc

2
cq2SNPcq2MCCxCCM   187 

ccxccSCAccGCA2Mbd2
bc

2
cp2SNPcp2MccxccM   188 

  CCxccSCAccGCACCGCAMbd2
bccqcp2SNPcpcq2MCCxccM   189 

where   bdcqcp2bacqcpbmM   is the hybrid population mean, 190 

   bbcbdbpbqbabcSNP   is the average effect of a SNP substitution in the hybrid 191 
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population, and bd2
bcSNPd   is the SNP dominance deviation. Notice that the SNP GCA effects 192 

are equal to half the SNP additive value for the single crosses (A), the SNP SCA effects are the SNP 193 

dominance deviations for the single crosses (D), and that the three genotypic values depends on 194 

three parameters ( M , SNP , and SNPd ). Notice also that E(GCA) = E(A) = E(SCA) = 195 

E(SCA|CC) = E(SCA|cc) = E(D) = 0. 196 

Accuracy of single cross genomic prediction 197 

Assuming a QTL and a SNP in LD in the two groups of DH or inbred lines, the predictor of 198 

the single cross QTL genotypic value is the single cross SNP genotypic value (because they are 199 

proportional). Thus, the covariance between predictor and predicted genotypic value is 200 

 

 

 
2

)SNP(G
2

SNPSCA
)2(2

SNPGCA
)1(2

SNPGCA

2
SNPd2cq2cp1cq1cp4

2

2SNP2cq2cp
2

1SNP1cq1cp

2

bd2bc1bc2cq2cp1cq1cp4
2

1b2bc2cq2cp
2

2b1bc1cq1cp

2
HM2xbb1bbSCA2bbGCA1bbGCAHM2xcc1ccSCA2ccGCA1ccGCAHM2

00f1
00f

...

2xBB1BBSCA2BBGCA1BBGCAHM2xcc1CCSCA2ccGCA1CCGCAHM2
20f1

22f

2xBB1BBSCA2BBGCA1BBGCAHM2xCC1CCSCA2CCGCA1CCGCAHM2
22f1

22fG,G~Cov














































































201 

 202 

where the GCA and SCA effects for the QTL are 2b1bq1BBGCA  , 2b1bp1bbGCA  , 203 

1b2bq2BBGCA  , 1b2bp2bbGCA  , bd2bq1bq22xBB1BBSCA  , 204 

bd2bp1bq22xbb1BBSCA  , bd2bq1bp22xBB1bbSCA  , and bd2bp1bp22xbb1bbSCA  , 205 

2
GCA  and 2

SCA  are the GCA and SCA variances for the SNP locus, and 2
G  is the SNP 206 

genotypic variance. The GCA and SCA variances for the QTL are 
2

2b1bq1bp)1(2
GCA 






 , 207 
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2
1b2bq2bp)2(2

GCA 





 , and  2bd2bq2bp1bq1bp42

SCA  . The QTL genotypic variance is 208 

2
SCA

)2(2
GCA

)1(2
GCA

2
G   Thus, the single cross prediction accuracy is 209 

 2
G

2
)SNP(G

G,G~ 


  210 

Assuming s SNPs, 211 

2
G

2
G~/

s

1r
2

))r(SNP(GG,G~ 


  212 

where 2
G~  is the variance of the predicted single cross genotypic values and 2

G  is the single cross 213 

genotypic variance. Further, 214 

























 


k

1i
2i1ir

k

1i
2i

1rq1rp
1ir

1)r(SNP , where k' is the number of QTLs in LD with the SNP 215 

r) in group 1, and 216 









 













 















 


k

1i
id2ri1ri

k

1i
id

2rq2rp
2ir

1rq1rp
1ir

)r(SNPd  where k'' is the number of QTLs in LD with 217 

the SNP r in both groups 218 

Notice that because the accuracy of genomic prediction of single crosses depends on the 219 

squares of the average effects of SNP substitution and the SNP dominance deviations, it is not 220 

affected by the linkage phase (coupling or repulsion), as it does not depend on linkage. But it 221 

depends on the magnitude of the LD in each group of DH or inbred lines. 222 

Assuming single crosses derived from DH or inbred lines of a single population or heterotic 223 

group we have    2SNPdcqcp22
SNPcqcp22

)SNP(G   and 224 

   2bdbqbp22
bbqbp22

G  . Therefore, the prediction accuracy of single crosses derived 225 
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from DH or inbred lines from two distinct populations or heterotic groups differ from the prediction 226 

accuracy of single crosses resulting from DH or inbred lines obtained from each population or 227 

heterotic group. 228 

The statistical model for single cross genomic prediction 229 

Assume n1 and n2 (several tens) DH or inbred lines from two populations or heterotic groups 230 

genotyped for s (thousands) SNPs and the experimental assessment of h (few hundred) single-231 

crosses (h much lower than n1.n2) in e (several) environments (a combination of growing seasons, 232 

years, and locals). Defining y  as the adjusted single cross phenotypic mean, the statistical model 233 

for prediction of the average effects of SNP substitution and the SNP dominance deviations is 234 

error
s

1r rSNPd
r3z

r2SNPr2z
r1SNPr1zHMy 








   235 

where 1rq
r1z  , 2rq

r2z  , and 2rq1rq2
r3z   if the SNP genotypes for the DH or inbred lines 236 

are CC (group 1) and CC (group 2), 1rp
r1z  , 2rp

r2z  , and 2rp1rp2
r3z   if the SNP 237 

genotypes for the DH or inbred lines are cc (group 1) and cc (group 2), 1rq
r1z  , 2rp

r2z  , and 238 

2rp1rq2
r3z   if the SNP genotypes for the DH or inbred lines are CC (group 1) and cc (group 2), 239 

and 1rp
r1z  , 2rq

r2z  , and 2rq1rp
r3z   if the SNP genotypes for the DH or inbred lines are 240 

cc (group 1) and CC (group 2). 241 

Regarding the single crosses obtained from DH or inbred lines of the same population or 242 

heterotic group we have 243 

error
s

1r rSNPd
r2z

rSNPr1zMy 








   244 
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where rq2
r1z   and 2

rq2
r2z   if the SNP genotypes for the DH or inbred lines are CC and CC, 245 

rp2
r1z   and 2

rp2
r2z   if the SNP genotypes for the DH or inbred lines are cc and cc, and 246 

 rprq2
r1z   and rqrp2

r2z   if the SNP genotypes for the DH or inbred lines are CC and cc. 247 

The statistical problem of genomic prediction when there are a very large number of 248 

molecular markers and relatively few observations have been addressed thorough several 249 

regularized whole-genome regression and prediction methods (Daetwyler et al. 2013; de Los 250 

Campos et al. 2013). Then, the predicted effects of SNP substitution and SNP dominance deviations 251 

must be used to provide genomic prediction of non-assessed single crosses. The predicted genotypic 252 

value for a non-assessed single cross of DH or inbred lines from two groups is 253 
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For a non-assessed single cross of DH or inbred lines from the same group, the predicted 255 

genotypic value is 256 
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Simulation 258 

The SNP and QTL genotypic data for DH lines, the QTL genotypic data of single crosses, and 259 

the phenotypic data for DH lines and single crosses were simulated using the software 260 

REALbreeding. The program has been developed by the first author using the software REALbasic 261 

2009 (Viana et al. 2017a; Viana et al. 2017b; Viana et al. 2016; Azevedo et al. 2015; Viana et al. 262 

2013). Based on our input, the software distributed 10,000 SNPs and 400 QTLs in ten 263 

chromosomes (1,000 SNPs and 40 QTLs by chromosome). The average SNP density was 0.1 264 

centiMorgan (cM). The QTLs were distributed in the regions covered by the SNPs (approximately 265 

100 cM/chromosome). Initially, REALbreeding sampled 700 DH lines from two non-inbred 266 

populations (heterotic groups) in LD (350 from each population). The populations were composites 267 
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of two populations in linkage equilibrium. In a composite, there is LD only for linked SNPs and 268 

QTLs (Viana et al. 2016). The number of DH lines from each S0 plant was one (scenario 1) or 269 

ranged from 1 to 5 (scenario 2). We also sampled 350 DH lines from each population after three 270 

generations of selfing (using the single seed descent process). The number of DH lines from each S3 271 

plant ranged from 1 to 5 (scenario 3). For each scenario, the software then crossed 70 selected DH 272 

lines from each population, using a diallel design. The heritability for the DH lines was 30%. 273 

The genotypic values of the DH lines and of the single crosses were generated assuming a 274 

single set of 400 QTLs and two degrees of dominance. To simulate grain yield and expansion 275 

volume, a measure of popcorn quality, we defined positive dominance (0 < (d/a)i ≤ 1.2, i = 1, ..., 276 

400) and bidirectional dominance (1.2 ≤ (d/a)i ≤ 1.2), respectively, where d/a is the degree of 277 

dominance. To compute the genotypic values, REALbreeding used our input relative to the 278 

maximum and minimum genotypic values for homozygotes. For grain yield and expansion volume, 279 

we defined 140 and 30 g/plant and 55 and 15 mL/g, respectively. The phenotypic values were 280 

obtained from the sum of the population mean, genotypic value, and experimental error. The error 281 

variance was computed from the broad sense heritability. To avoid outliers, we defined the 282 

maximum and minimum phenotypic values as 160 and 10 g/plant and 65 and 5 mL/g. 283 

The heritabilities for the assessed single crosses were 30, 60, and 100%. Thus, the genotypic 284 

value prediction accuracies of the assessed single crosses were 0.55, 0.77, and 1.00, respectively. 285 

For each scenario were processed 50 resamplings of 30 and 10% of the single crosses (1,470 and 286 

490 assessed single crosses). That is, we predicted 70 and 90% of the single crosses (3,430 and 287 

4,410 non-assessed single crosses). Additionally, to assess the relevance of the number of DH lines 288 

sampled, we fixed the number of DH lines to achieve the same number of assessed single crosses, 289 

using a diallel. That is, we sampled 50 times 38 and 22 DH lines in each group for a diallel 290 

(scenario 4), generating 1,444 and 484 single crosses for assessment, respectively. We called these 291 

processes as sampling of single crosses (scenarios 1 to 3) and sampling of DH lines (scenario 4). 292 

Other additional scenarios were: genomic prediction of single crosses from selected DH lines from 293 
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same heterotic group (interestingly for wheat, rice, and barley breeders, for example) (scenario 5) 294 

and from selected DH lines from populations with lower LD (scenario 6), to emphasize that the 295 

prediction accuracy depends on the LD in the groups of DH or inbred lines. A last scenario 296 

(seventh) was genomic prediction of single crosses under an average density of one SNP each cM. 297 

This lower density was obtained by random sampling of 100 SNPs per chromosome using a 298 

REALbreeding tool (sampler). To investigate the single cross prediction efficiency based on our 299 

model and on the models proposed by Massman et al. (2013) and Technow et al. (2012b), we used 300 

another REALbreeding tool (Incidence matrix) to generate the incidence matrices for the three 301 

models and for the two DH lines sampling processes. To assess the relevance of the SCA effects 302 

prediction on genomic prediction of single cross performance, we also fitted the additive model 303 

(including only the GCA effects). We also processed single cross prediction based on GBLUP and 304 

BLUP. 305 

Statistical analysis 306 

The methods used for prediction were ridge regression BLUP (RR-BLUP), GBLUP (with the 307 

observed additive and dominance relationship matrices) and BLUP (with the expected additive and 308 

dominance relationship matrices). For the analyses we used the rrBLUP package (Endelman 2011). 309 

The accuracies of single cross genotypic value prediction were obtained by the correlation between 310 

the true values of the non-assessed single crosses computed by REALbreeding and the values 311 

predicted by RR-BLUP, GBLUP, and BLUP. We also computed the efficiency of identification of 312 

the 300 non-assessed single crosses of higher genotypic value (coincidence index). The parametric 313 

average coincidence index was computed by ordering the average phenotypic values of the 4,900 314 

single crosses for each heritability and for each DH lines derivation process. Regarding grain yield, 315 

for heritability of 30% the coincidence index was 0.2533, 0.2833, and 0.2433 assuming one DH line 316 

per S0 plant, one to five DH lines per S0 plant, and one to five DH lines per S3 plant, respectively. 317 

The corresponding values for heritability of 60% were, respectively, 0.4800, 0.4900, and 0.4567. 318 

Concerning expansion volume, the corresponding values for heritabilities of 30 and 60% were, 319 
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respectively, 0.2600, 0.2833, and 0.2700, and 0.4733, 0.5100, and 0.4533. The assumed average 320 

parametric coefficient index was 0.26 and 0.48 for heritabilities of 30 and 60%, respectively, for 321 

both traits. For the population structure analysis we employed Structure (Falush et al. 2003) and 322 

fitted the no admixture model with independent allelic frequencies. The number of SNPs, sample 323 

size, burn-in period, and number of MCMC (Markov chain Monte Carlo) replications were 1,000 324 

(sampled at random), 140 (70 DH lines from each population), 10,000, and 40,000, respectively. 325 

The number of populations assumed (K) ranged from 1 to 4, and the most probable K value was 326 

determined based on the inferred plateau method (Viana et al. 2013). The LD analyses were 327 

performed with Haploview (Barrett et al. 2005). 328 

Data availability 329 

REALbreeding is available upon request. The data set is available at 330 

https://doi.org/10.6084/m9.figshare.5035130.v1. Data citation: 331 

Viana, José Marcelo Soriano; Pereira, Hélcio Duarte; Mundim, Gabriel Borges; Piepho, Hans-Peter; 332 

Fonseca e Silva, Fabyano (2017): Efficiency of genomic prediction of non-assessed single crosses. 333 

figshare.  https://doi.org/10.6084/m9.figshare.5035130.v1 334 

RESULTS 335 

The parametric mean and genotypic variance in the populations 1 and 2 were 108.5 and 87.3 336 

(g/plant) and 4.7680 and 6.2580 (g/plant)2. The DH lines derivation processes (one and one to five 337 

per S0 plant and one to five per S3 plant) provided, for each population, selected DH lines with 338 

similar mean (approximately 97 and 76 g/plant for populations 1 and 2), inbreeding depression 339 

(approximately 10 and 13% for populations 1 and 2), and genotypic variance (approximately 6 340 

and 7 (g/plant)2 for populations 1 and 2) and groups of single crosses also similar for mean 341 

(approximately 103 g/plant), heterosis (approximately 19%), and genotypic variance 342 

(approximately 4 (g/plant)2). Because we derived one to few DH lines from unrelated S0 and S3 343 

plants, the average level of relatedness between the selected DH lines was very low (zero and zero, 344 

0.0041 and 0.0041, and 0.0054 and 0.0074 assuming one DH line per S0, one to five DH lines per 345 
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S0, and one to five DH lines per S3, for populations 1 and 2, respectively). Concerning SNP data, 346 

the frequency distribution of the minor allele frequency (MAF) and the absolute value of the 347 

difference between a SNP allele frequency were also similar for both groups of selected DH lines, 348 

regardless of the DH line derivation process (Figure 1a, b, c). The average MAF was 0.33, 349 

regardless of the population and DH line derivation process. However, the evidence obtained by the 350 

population structure analysis was that the DH lines belong to two distinct subpopulations (suggested 351 

K equal to 2.4 by the inferred plateau method). The percentages of non-polymorphic SNPs were 352 

very low (0.1 to 0.4%). No differences between allelic frequencies were observed for only 1.7 to 353 

2.1% of the SNPs. For approximately 70% of the SNPs, the absolute difference between allelic 354 

frequencies ranged from 0.1 to 0.6. Regarding LD, for the groups of selected DH lines the evidence 355 

based on the analysis of chromosome 1 (no difference between chromosomes is expected) is that 356 

LD extents for up to 35 cM, regardless of the DH lines derivation process (Figure 1c, d). Ignoring 357 

the non-significant LD values (LOD score lower than 3), for 17 to 20% of the SNP pairs the r2 358 

values ranged from 0.2 to 0.5 (average of 0.16, regardless of the DH lines group and derivation 359 

process). 360 

Assuming our model, average SNP density of 0.1 cM, training set size of 30%, positive 361 

dominance (grain yield), additive-dominance model, and sampling of single crosses, the prediction 362 

accuracies of the non-assessed single crosses were greater than the accuracies of the assessed single 363 

crosses for low (up to 46% higher) and intermediate (up to 16% higher) heritabilities (Table 1; 364 

Figure 2a). As the prediction accuracy of assessed single crosses approaches 1.0, the accuracy of the 365 

non-assessed single crosses approaches approximately 0.9 (up to 11% lower). Sampling one to five 366 

DH lines per S3 plant was only slightly superior to the other DH lines derivation processes, 367 

regardless of the prediction accuracy of the assessed single crosses (up to 5% higher). Fitting the 368 

additive model provided essentially the same prediction accuracies since the maximum decrease 369 

was approximately 1%. No significant differences between the prediction accuracies of non-370 

assessed single crosses were also observed assuming bidirectional dominance (expansion volume). 371 
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The differences compared to positive dominance ranged from approximately 5 to 2%. However, a 372 

striking difference was observed between the sampling processes of single crosses for testing. 373 

Random sampling of single crosses provided much greater prediction accuracies of non-assessed 374 

single crosses, compared to sampling DH lines for a diallel. The increases in the accuracies by 375 

sampling single crosses ranged from approximately 38 to 77%, proportional to the heritability. 376 

Decreasing the average SNP density to 1 cM led to a slightly decrease in the prediction accuracy of 377 

non-assessed single crosses approximately 4%). Decreasing the training set size to 10% decreased 378 

the prediction accuracy of non-assessed single crosses in approximately 5 to 15%, inversely 379 

proportional to the heritability. To evidence that the prediction accuracy of non-assessed single 380 

crosses depends on the level of (overall) LD in the groups of selected DH or inbred lines, we 381 

derived DH lines from the same base populations after 10 generations of random crosses (to 382 

decrease the LD). The accuracies were also high, ranging from 0.83 to 0.95, proportional to the 383 

heritability. The prediction accuracies of non-assessed single crosses from DH lines of the same 384 

population were equivalent to the accuracies for single crosses derived from DH lines belonging to 385 

distinct heterotic groups, ranging from 0.83 to 0.91, also proportional to the heritability. Comparing 386 

our statistical model with the models proposed by Massman et al. (2013) and Technow et al. 387 

(2012a), we observed no differences for the prediction accuracies of non-assessed single crosses 388 

(maximum difference of 1%). Finally, no significant differences between the prediction accuracies 389 

for RR-BLUP, GBLUP, and BLUP occurred (maximum of 2%), excepting for one to five DH lines 390 

per S3 plant, where BLUP was 9 to 10% inferior, regardless of the heritability. 391 

Concerning the coincidence index, in general the inferences are the same established from the 392 

prediction accuracy analysis (Table 2; Figure 2b). There were no differences between the 393 

coincidence indexes regarding our model and the models proposed by Massman et al. (2013) and 394 

Technow et al. (2012a) (maximum difference of 3%), and between the RR-BLUP, GBLUP, and 395 

BLUP approaches, except for one to five DH lines per S3 plant, where BLUP was 19 to 27% 396 

inferior, proportional to the heritability. The coincidence indexes were also high for single crosses 397 
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derived from selected DH lines obtained from the base populations with lower LD (ranging from 398 

0.55 to 0.76, proportional to the heritability) and from selected DH lines of the same population 399 

(ranging from 0.61 to 0.76, also proportional to the heritability). Sampling single crosses for 400 

assessment also provided much greater coincidence index compared to sampling DH lines for a 401 

diallel (39 to 98% higher, proportional to the heritability). Decreasing the SNP density and the 402 

training set size decreased the coincidence index from 5 to 10% (proportional to the heritability) 403 

and from 17 to 26% (inversely proportional to the heritability), respectively. The maximum 404 

difference in the coincidence index by fitting the additive-dominant and the additive models was 405 

3%. Only for one DH line per S0 plant the coincidence indexes assuming bidirectional dominance 406 

were slightly greater than the values assuming positive dominance (9 to 14% greater). This 407 

sampling process of DH lines provided the higher values of coincidence index, compared to the 408 

other sampling processes (7 to 26% higher, inversely proportional to the heritability). Finally, the 409 

coincidence index of the non-assessed single crosses are greater than the parametric values for all 410 

assessed single crosses assuming low (up to 117% higher) and intermediate (up to 39% higher) 411 

heritabilities (Table 1). However, as the parametric coincidence of assessed single crosses 412 

approaches 1.0, the coincidence values of the non-assessed single crosses approach approximately 413 

0.60 to 0.74 (up to 26 to 40% lower), depending on the DH line sampling process. 414 

DISCUSSION 415 

It was twenty-three years ago today, Bernardo (1994) taught the breeders to use BLUP (more 416 

precisely, GBLUP) for predicting untested maize single cross performance. BLUP, as well known, 417 

is the Henderson's (1974) approach for genetic assessment. Based on the prediction accuracies 418 

obtained by Bernardo (1994, 1995, 1996a, 1996b, 1996c), for grain yield and other traits (distinct 419 

genetic controls), a breeder should realize that the performance of untested single crosses can be 420 

effectively predicted using relationship information from molecular or pedigree data, unbalanced 421 

and large data set, and diverse heterotic patterns. This general inference has been confirmed with 422 

maize (Zhao et al. 2015) and other important crops, as rice (Xu et al. 2014), wheat (Zhao et al. 423 
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2013b) and barley (Philipp et al. 2016), along the last 20 years. Why, then, we did not find 424 

published information that prediction of untested single crosses is of general use by breeders of 425 

worldwide seed companies? What the scientific investigation should additionally prove to make 426 

prediction of untested single crosses as successful as the Jenkins' (1934) method for predicting 427 

double crosses performance was? We believe that this paper offers the final proof. 428 

Our assessment on efficiency of prediction of untested single cross performance keeps some 429 

similarities with few earlier studies but sharp differences for most previous investigations. This 430 

study is based on simulated data set, as the study of Technow et al. (2012a), assuming 400 QTLs 431 

distributed along ten chromosomes. Thus, the prediction accuracies and coincidence indexes (a 432 

measure of untested single crosses selection efficiency) are for really non-assessed single crosses 433 

since the values were computed based on the true genotypic values of the non-assessed single 434 

crosses and not on a cross-validation procedure involving assessed single crosses. This not means 435 

that we consider simulated data better than field data or have any criticism on the cross-validation 436 

procedure. We know that simulated data, because the presuppositions, cannot integrally describe the 437 

complexity of populations and genetic determination of traits (Daetwyler et al. 2013). To highlight 438 

the relevance of (overall) LD, our study is based on scenarios not favorable to prediction of untested 439 

single cross performance: very low level of relationship between the DH lines, low and intermediate 440 

heritabilities for the assessed single crosses, and not higher heterotic pattern. In the studies of 441 

Massman et al. (2013) and Bernardo (1994, 1995, 1996a) the relationship among inbreds from the 442 

same heterotic group ranged from 0.11 to 0.58. Riedelsheimer et al. (2012) observed high 443 

relationships only within the non-Stiff Stalk inbreds. Technow et al. (2012a) assumed non-related 444 

inbreds. For most of the investigations on prediction of untested single crosses and testcrosses, the 445 

grain yield heritability ranged from 0.72 to 0.88. The common heterotic patterns in these previous 446 

studies are Stiff Stalk and non-Stiff Stalk, and Dent and Flint. The MAF in the groups of Dent and 447 

Flint inbreds were approximately 0.10 and 0.20, respectively, and approximately 20% of the SNPs 448 

showed a difference of allelic frequency of at least 0.6. 449 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2017. ; https://doi.org/10.1101/141440doi: bioRxiv preprint 

https://doi.org/10.1101/141440
http://creativecommons.org/licenses/by-nc-nd/4.0/


Concerning the prediction accuracy and the efficiency of identification of the superior 300 450 

non-assessed single crosses, our results prove that prediction of untested single crosses is a very 451 

efficient procedure (note that we are not saying genomic prediction), specially for low and 452 

intermediate heritabilities of the assessed single crosses. The prediction accuracy of the non-453 

assessed single crosses under low (0.55 to 0.71) and intermediate (0.74 to 0.87) accuracies of 454 

assessed single crosses achieved 0.85 and 0.89, respectively. It is important to highlight that these 455 

are not relative accuracies. Most important, the coincidence of the non-assessed single crosses 456 

under low (0.26 to 0.39) and intermediate (0.44 to 0.66) parametric coincidences of assessed single 457 

crosses achieved 0.59 and 0.64, respectively. For high heritability (80 to 95%; accuracies from 0.89 458 

to 0.97), as observed in most of the studies on prediction of untested single cross performance, we 459 

can state (based on values predicted by fitting a quadratic regression model) that the prediction 460 

accuracy of non-assessed single crosses is up to only 10% lower (0.87 to 0.92) and, most 461 

impressive, the coincidence index can range from 0.61 to 0.71 (parametric coincidences between 462 

0.72 to 0.93). Under maximum accuracy of assessed single crosses (1.0), the prediction accuracy 463 

and coincidence of non-assessed single crosses achieved 0.93 and 0.76. Thus, assuming high 464 

heritability, high density, and training set size of 30%, the accuracy can achieve 0.92 and the 465 

efficiency of identification of the best 9% of the non-assessed single crosses can achieve 0.71. It is 466 

important to highlight that this efficacy can be higher by using more related DH or inbred lines, 467 

under high LD. Thus, we strong recommend that maize breeders, as well as rice, wheat, and barley 468 

breeders, make widespread use of prediction of non-assessed single crosses, at least for preliminary 469 

screening or prior to field testing. 470 

To take advantage of genomic prediction, Kadam et al. (2016) recommend redesigning hybrid 471 

breeding programs. However, because breeders are unlikely to rely solely on genomic predictions 472 

when selecting superior untested hybrids, Technow et al. (2014) believe that genomic prediction 473 

will be combined with field testing of the most promising experimental hybrids. For grain yield, the 474 

prediction accuracies observed by Bernardo (1994, 1995, 1996a) ranged from 0.14 to 0.80, 475 
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proportional to the heritability (in the range 35-74%) and training set size. The non-relative 476 

accuracies (relative accuracy x root square of heritability) observed in the studies of Kadam et al. 477 

(2016), Technow et al. (2014), Massman et al. (2013), Technow et al. (2012a), and Riedelsheimer et 478 

al. (2012) ranged between 0.20 and 0.86, also proportional to the heritability (in the range 53-98%) 479 

and training set size. 480 

We hope that readers of this paper have realized the importance of (overall) LD for effective 481 

prediction of non-assessed single crosses, as well as genetic variability (see the parametric accuracy 482 

of genomic prediction). Although breeders do not have control on LD and relatedness between the 483 

DH or inbred lines, because selection they should always expect high level of overall LD in the 484 

groups of selected DH or inbred lines. Comparison of our LD assessment with the LD analyses 485 

from other studies is inadequate because we have distances in cM and not in base-pairs. But in 486 

general the level of LD was high (r2 of approximately 0.3) only for SNPs separated by up to 0.5 Mb 487 

(Technow et al. 2014; Massman et al. 2013; Technow et al. 2012a; Riedelsheimer et al. 2012). To 488 

maximize the prediction accuracy and the efficiency of identification of the best non-assessed single 489 

crosses it is necessary to adopt the random sampling of single crosses for testing instead of the 490 

random sampling of DH or inbred lines for a diallel. This is because sampling 30 or even 10% of 491 

the single crosses leads to single crosses for testing derived from all DH or inbred lines from each 492 

group. In our case, in every resampling assuming training set size of 30 and 10% we always get 493 

groups of assessed single crosses (1,470 and 490 single crosses, respectively) derived from the 70 494 

DH lines of each group. However, sampling DH lines for a diallel provided 1,440 and 484 single 495 

crosses for testing derived from 38 and 22 DH lines, respectively. Thus, the sampling of single 496 

crosses provides best prediction of the SNP average effects of substitution. Riedelsheimer et al. 497 

(2012) emphasized the need for large genetic variability to obtain high prediction accuracies. 498 

Further, their results indicated that pairs of closely related lines and population structuring only 499 

weakly contributed to the high prediction accuracies. Regarding dominance, because it can be a 500 

relevant genetic effect, breeders should always fit the additive-dominance model to maximize the 501 
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prediction accuracy and the efficiency of identification of the best non-assessed single crosses. 502 

Interestingly, in most of the studies on prediction of non-assessed single crosses the prediction 503 

accuracy did not significantly increase when modeling SCA in addition to GCA effects (Zhao et al. 504 

2015). 505 

Concerning SNP density and training set size, factors related with the costs of genotyping and 506 

phenotyping, breeders should find a balance between efficiency and expenses, since maximizing 507 

SNP density and training set size maximizes the efficiency of untested single cross prediction. 508 

Based on our results, because the decreases in the prediction accuracy (approximately 4%) and 509 

coincidence index (5 to 10%) by decreasing the average SNP density from 0.1 to 1 cM are of 510 

reduced magnitude, we consider sufficient to employ custom genotyping to provide an average SNP 511 

density of 1 cM. Decreasing the training set size from 30 to 10% of the single crosses does not 512 

significantly affect the prediction accuracy under intermediate to high heritability (decrease of up to 513 

9%), but the coincidence index can be reduced in up to 21%. However, considering that the 514 

coincidence index will be kept in the range 0.48 to 0.61, proportional to the heritability, and that the 515 

maximum values are in the range 0.48 to 0.61, we also consider sufficient to assess at least 10% of 516 

the possible single crosses. As highlighted by Zhao et al. (2015), marker density only marginally 517 

affects the prediction accuracy of untested single crosses. For biparental populations, a plateau for 518 

the accuracy is reached with a few hundred markers. Technow et al. (2014) did not improved 519 

prediction accuracies by using higher SNP density. Additionally, the increase in the training set size 520 

led to a relative small increase in the prediction accuracy. However, the prediction accuracies 521 

obtained by Riedelsheimer et al. (2012) under high density (38,019 SNPs) were substantially 522 

greater than those reached with a low-density marker panel (1,152 SNPs). In the study of Technow 523 

et al. (2012a), the prediction accuracies increased with SNP density and number of parents tested in 524 

hybrid combination. 525 

The DH lines sampling process, the heterotic pattern, and the statistical approach should not 526 

be worries for breeders. However, under high heritability notice that sampling more than one DH 527 
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line per S0 or S3 plant provided the higher coincidence values and high prediction accuracy in our 528 

study. For rice, wheat, and barley breeders our message is: high prediction accuracy and high 529 

efficiency of identification of superior non-assessed single crosses does not depend on heterotic 530 

groups but on the (overall) LD in the group or in each group of DH or inbred lines. In other words, 531 

the efficiency of prediction of non-assessed single crosses derived from DH or inbred lines from the 532 

same population can be as high as the efficiency of prediction of untested single crosses derived 533 

from DH or inbred lines from distinct heterotic groups. This is not confirmed comparing the relative 534 

prediction accuracies for grain yield of maize untested single crosses (from approximately 0.50 to 535 

0.95, for most studies) with those obtained with rice, wheat, and barley untested hybrids (0.50 to 536 

0.60, approximately) (Philipp et al. 2016; Xu et al. 2014; Zhao et al. 2013b). However, the lower 537 

relative prediction accuracies for untested rice, wheat, and barley hybrids should be due to lower 538 

LD level. Regarding the statistical approach, our model did not provide an increase in the efficiency 539 

of non-assessed single cross prediction, compared to the models proposed by Massman et al. (2013) 540 

and Technow et al. (2012a). It is important to highlight that our results showed that these two 541 

models are really identical (data no shown). Thus, because the simplified definition of the incidence 542 

matrices for these two previous models, it is quite safe to use any of them. Finally, the choice 543 

between the statistical approaches RR-BLUP (prediction of genotypic values of non-assessed single 544 

crosses based on prediction of SNP average effects of substitution), GBLUP (prediction of 545 

genotypic values of non-assessed single crosses based on additive and dominance genomic 546 

matrices), and BLUP (prediction of genotypic values of non-assessed single crosses based on 547 

additive and dominance matrices from pedigree records) is not a serious worry for breeders too. Our 548 

evidence is that there is no significant difference between RR-BLUP and GBLUP regarding 549 

prediction accuracy and efficiency of identification of the best untested single crosses. Further, even 550 

when the level of relatedness between the DH or inbred lines in each group is low, in general BLUP 551 

is as efficient as genomic prediction, excepting when the DH lines are derived from inbred 552 

population. Thus, DNA polymorphism is not essential for an efficient prediction of non-assessed 553 
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single cross performance. In his review on genomic selection in hybrid breeding, Zhao et al. (2015) 554 

state that the choice of the biometrical model has no substantial impact on the prediction accuracy 555 

of untested single crosses. Technow et al. (2014) observed that prediction methods GBLUP and 556 

BayesB resulted in very similar prediction accuracies. In the study of Massman et al. (2013), BLUP 557 

and RR-BLUP models did not lead to prediction accuracies that differed significantly. Comparing 558 

GBLUP and BayesB, Technow et al. (2012a) concluded that the latter method produced 559 

significantly higher accuracies for the additive-dominance models. 560 
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Table 1 Average prediction accuracies of non-assessed single crosses and its standard deviation, 653 

assuming single crosses from selected DH lines, 30 and 10% of assessed single crosses, two traits 654 

(grain yield - GY, g/plant, and expansion volume - EV, mL/g), two sampling processes of single 655 

crosses, four statistical models, three DH lines sampling processes, two genetic models, and three 656 

accuracies of assessed single crosses 657 

Trait Samp. Statistical DH Gen.  Accuracy of assessed single crosses 
 proc. model lines mod.  0.55 0.77 1.00 
GY SCs Viana et al. 1/S0 AD  0.7790 ± 0.0124 0.8447 ± 0.0066 0.8859 ± 0.0018 
    A  0.7688 ± 0.0132 0.8380 ± 0.0067 0.8821 ± 0.0019 
   1-5/S0 AD  0.7947 ± 0.0125 0.8525 ± 0.0072 0.8896 ± 0.0025 
    A  0.7895 ± 0.0126 0.8465 ± 0.0077 0.8858 ± 0.0027 
   1-5/S3 AD  0.8010 ± 0.0145 0.8678 ± 0.0054 0.9276 ± 0.0025 
    A  0.7954 ± 0.0145 0.8627 ± 0.0056 0.9238 ± 0.0026 
   1-5/S3 ADa  0.7718 ± 0.0161 0.8371 ± 0.0079 0.8888 ± 0.0043 
   1-5/S3 ADb  0.6836 ± 0.0277 0.7885 ± 0.0139 0.8817 ± 0.0049 
   1/S0 ADc  0.8293 ± 0.0131 0.8944 ± 0.0049 0.9479 ± 0.0017 
   1-5/S3 ADd  0.8267 ± 0.0082 0.8928 ± 0.0043 0.9083 ± 0.0023 
  Massman et. al. 1/S0 AD  0.7874 ± 0.0118 0.8519 ± 0.0053 0.8924 ± 0.0026 
   1-5/S0 AD  0.7982 ± 0.0140 0.8622 ± 0.0055 0.8973 ± 0.0025 
   1-5/S3 AD  0.8074 ± 0.0112 0.8753 ± 0.0056 0.9314 ± 0.0026 
  GBLUP 1/S0 AD  0.7841 ± 0.0122 0.8477 ± 0.0064 0.8906 ± 0.0019 
   1-5/S0 AD  0.7973 ± 0.0124 0.8574 ± 0.0070 0.8978 ± 0.0019 
   1-5/S3 AD  0.7911 ± 0.0146 0.8639 ± 0.0056 0.9319 ± 0.0023 
  BLUP 1/S0 AD  0.7855 ± 0.0129 0.8541 ± 0.0059 0.8899 ± 0.0019 
   1-5/S0 AD  0.7803 ± 0.0143 0.8435 ± 0.0074 0.8830 ± 0.0024 
   1-5/S3 AD  0.7227 ± 0.0203 0.7915 ± 0.0077 0.8373 ± 0.0048 
 DHs Viana et al. 1/S0 AD  0.5012 ± 0.0416 0.5117 ± 0.0467 0.5343 ± 0.0467 
   1-5/S0 AD  0.4827 ± 0.0423 0.5000 ± 0.0420 0.5036 ± 0.0465 
   1-5/S3 AD  0.5799 ± 0.0437 0.6106 ± 0.0413 0.6357 ± 0.0429 
EV SCs Viana et al. 1/S0 AD  0.7779 ± 0.0157 0.8458 ± 0.0069 0.8820 ± 0.0024 
   1-5/S0 AD  0.8019 ± 0.0155 0.8656 ± 0.0050 0.9055 ± 0.0020 
   1-5/S3 AD  0.7589 ± 0.0143 0.8424 ± 0.0058 0.9165 ± 0.0027 
adensity of 1 cM; btraining set of 490 single crosses (10%); cafter 10 generations of random crosses;dsingle 
crosses from DH lines of the same population. 
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Table 2 Average coincidence of the best 300 predicted single crosses and its standard deviation, 658 

assuming single crosses from selected DH lines, 30 and 10% of assessed single crosses, two traits 659 

(grain yield - GY, g/plant, and expansion volume - EV, mL/g), two sampling processes of single 660 

crosses, four statistical models, three DH lines sampling processes, two genetic models, and three 661 

parametric coincidence of assessed single crosses 662 

Trait Samp. Statistical DH Gen.  Coincidence of assessed single crosses 
 proc. model lines mod.  0.26 0.48 1.00 
GY SCs Viana et al. 1/S0 AD  0.4523 ± 0.0334 0.5525 ± 0.0190 0.6037 ± 0.0170 
    A  0.4396 ± 0.0346 0.5449 ± 0.0176 0.5976 ± 0.0172 
   1-5/S0 AD  0.5686 ± 0.0273 0.6369 ± 0.0221 0.6842 ± 0.0140 
    A  0.5640 ± 0.0283 0.6299 ± 0.0221 0.6816 ± 0.0152 
   1-5/S3 AD  0.5129 ± 0.0235 0.6044 ± 0.0200 0.7363 ± 0.0183 
    A  0.5063 ± 0.0225 0.5993 ± 0.0193 0.7305 ± 0.0190 
   1-5/S3 ADa  0.4881 ± 0.0278 0.5691 ± 0.0229 0.6620 ± 0.0215 
   1-5/S3 ADb  0.3805 ± 0.0511 0.4797 ± 0.0354 0.6087 ± 0.0233 
   1/S0 ADc  0.5528 ± 0.0298 0.6489 ± 0.0203 0.7571 ± 0.0162 
   1-5/S3 ADd  0.6116 ± 0.0214 0.7156 ± 0.0150 0.7581 ± 0.0166 
  Massman et. al. 1/S0 AD  0.4670 ± 0.0346 0.5663 ± 0.0174 0.6157 ± 0.0157 
   1-5/S0 AD  0.5651 ± 0.0310 0.6431 ± 0.0164 0.6955 ± 0.0144 
   1-5/S3 AD  0.5279 ± 0.0291 0.6139 ± 0.0204 0.7423 ± 0.0172 
  GBLUP 1/S0 AD  0.4622 ± 0.0308 0.5660 ± 0.0190 0.6092 ± 0.0163 
   1-5/S0 AD  0.5650 ± 0.0280 0.6384 ± 0.0204 0.6849 ± 0.0137 
   1-5/S3 AD  0.5010 ± 0.0245 0.5937 ± 0.0216 0.7294 ± 0.0168 
  BLUP 1/S0 AD  0.4641 ± 0.0331 0.5709 ± 0.0176 0.6081 ± 0.0127 
   1-5/S0 AD  0.5531 ± 0.0323 0.6272 ± 0.0194 0.6699 ± 0.0130 
   1-5/S3 AD  0.4172 ± 0.0258 0.4731 ± 0.0211 0.5377 ± 0.0196 
 DHs Viana et al. 1/S0 AD  0.2753 ± 0.0374 0.3056 ± 0.0445 0.3169 ± 0.0401 
   1-5/S0 AD  0.3268 ± 0.0642 0.3400 ± 0.0691 0.3461 ± 0.0728 
   1-5/S3 AD  0.3699 ± 0.0583 0.3931 ± 0.0579 0.4300 ± 0.0633 
EV SCs Viana et al. 1/S0 AD  0.5156 ± 0.0331 0.6081 ± 0.0159 0.6599 ± 0.0146 
   1-5/S0 AD  0.5506 ± 0.0285 0.6337 ± 0.0203 0.6944 ± 0.0141 
   1-5/S3 AD  0.4746 ± 0.0294 0.5843 ± 0.0174 0.7141 ± 0.0171 
adensity of 1 cM; btraining set of 490 single crosses (10%); cafter 10 generations of random crosses;dsingle 
crosses from DH lines of the same population. 
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Figure 1 Frequency distribution of the MAF in the groups of selected DH lines (a and b) and the absolute value of the difference between a SNP allele 663 

frequency (c), and LD (r2) in relation to distance (cM) in the two groups of selected DH lines (d and e), regarding SNPs in chromosome 1 separated by 664 

zero to 35 cM, assuming one DH line per S0 plant. 665 
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(a) (b) 
Figure 2 Predicted accuracies (a) and coincidence indexes (b) for untested single crosses (square: 1/S0; triangle: 1-5/S0; circle: 1-5/S3), and parametric 666 

accuracies and coincidence indexes for tested single crosses (continuous line), assuming our model, average SNP density of 0.1 cM, training set size of 667 

30%, positive dominance (grain yield), additive-dominance model, and sampling of single crosses. 668 
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