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ABSTRACT  22 

The metazoan genome is compartmentalized in megabase-scale areas of highly interacting 23 

chromatin known as topologically associating domains (TADs), typically identified by 24 

computational analyses of Hi-C sequencing data. TADs are demarcated by boundaries that 25 

are largely conserved across cell types and even across species, although, increasing 26 

evidence suggests that the seemingly invariant TAD boundaries may exhibit plasticity and 27 

their insulating strength can vary. However, a genome-wide characterization of TAD boundary 28 

strength in mammals is still lacking. A systematic classification and characterization of TAD 29 

boundaries may generate new insights into their function. In this study, we use fused two-30 

dimensional lasso as a machine-learning method to first improve Hi-C contact matrix 31 

reproducibility, and, subsequently, categorize TAD boundaries based on their strength. We 32 

demonstrate that increased boundary strength is associated with elevated CTCF levels and 33 

that TAD boundary insulation scores may differ across cell types. Intriguingly, we observed 34 

that super-enhancer elements are preferentially insulated by strong boundaries. Furthermore, 35 

a pan-cancer analysis revealed that strong TAD boundaries and super-enhancer elements are 36 

frequently co-duplicated. Taken together, our findings suggest that super-enhancers insulated 37 

by strong TAD boundaries may be exploited, as a functional unit, by cancer cells to promote 38 

oncogenesis.   39 

 40 

INTRODUCTION 41 

The advent of proximity-based ligation assays has allowed us to probe the three-dimensional 42 

chromatin organization at an unprecedented resolution [1, 2]. Hi-C, a high-throughput 43 

chromosome conformation variant, has enabled genome-wide identification of chromatin-44 

chromatin interactions [3]. Hi-C has revealed that the metazoan genome is organized in areas 45 

of active and inactive chromatin known as A and B compartments respectively [3]. These are 46 

further compartmentalized in super-TADs [4], topologically associating domains (TADs) [5–7] 47 

and sub-TADs [8], as well as gene neighbourhoods [9]. Several algorithms have been already 48 

developed to reveal this hierarchical chromatin organization, including Directionality Index (DI) 49 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 30, 2017. ; https://doi.org/10.1101/141481doi: bioRxiv preprint 

https://doi.org/10.1101/141481


[5], Armatus [10], TADtree [11], Insulation Index (Crane) [12], IC-Finder [13] and others. 50 

However, none of these studies has systematically explored the properties of the hierarchical 51 

organization of TADs. Additionally, although TADs are seemingly invariant, mounting evidence 52 

suggests that TAD boundaries can vary in strength, ranging from permissive TAD boundaries 53 

that allow more inter-TAD interactions to more rigid (strong) boundaries that clearly demarcate 54 

adjacent TADs [14]. Recent studies have shown that in Drosophila, exposure to heat-shock 55 

caused local changes in certain TAD boundaries resulting in TAD merging [15]. A recent study 56 

showed that during motor neuron (MN) differentiation in mammals, TAD and sub-TAD 57 

boundaries in the Hox cluster are not rigid and their plasticity is linked to changes in gene 58 

expression during differentiation [16]. It has also been demonstrated that boundary strength 59 

is positively associated with the occupancy of structural proteins including CCCTC-binding 60 

factor (CTCF) [5]. Despite the fact that there is a handful of studies demonstrating that TAD 61 

boundaries can vary in strength in organisms like Drosophila, no study has yet addressed the 62 

issue of boundary strength in mammals and how it may be related to potential boundary 63 

disruptions and aberrant gene activation in cancer. Here we introduce a new method based 64 

on fused two-dimensional lasso [17] in order to: (a) robustly estimate Hi-C contact matrices, 65 

(b) categorize TAD boundaries based on their insulating strength, (c) characterize TAD 66 

boundaries in terms of CTCF binding and other functional elements, and (d) investigate 67 

potential genetic alterations of TAD boundaries in cancer. We anticipate that our study will 68 

help generate new insights into the significance of TAD boundaries.  69 

 70 

MATERIALS AND METHODS 71 

Comprehensive re-analysis of published high-resolution Hi-C datasets 72 

In order to develop a method that successfully handles variation in Hi-C data and improves 73 

reproducibility, we carefully selected our Hi-C datasets to represent technical variation due to 74 

the execution of the experiments by different laboratories and/or the usage of different 75 

restriction enzymes. We identified publicly available human Hi-C datasets that fulfilled the 76 

following criteria: (i) availability of two biological replicates and (ii) sufficient sequencing depth 77 
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to robustly identify topologically-associating domains (TADs) as described in our TAD calling 78 

benchmark study [18]. Specifically, we ensured that our datasets included samples with at 79 

least ~40 million intra-chromosomal read pairs and that the Hi-C experiment was performed 80 

in biological replicates, either by using one restriction enzyme (HindIII or MboI) (H1 cells and 81 

their derivatives [19], K562, KBM7 and NHEK cells [20] and in-house generated CUTLL-1), or 82 

two enzymes (HindIII or MboI) (GM12878 [20], IMR90 [5, 21]), in order to examine the 83 

consistency of predicted Hi-C interactions across different enzymes. All datasets were then 84 

comprehensively re-analysed using our HiC-bench platform [18]. Quality assessment analysis 85 

revealed that the samples varied considerably in terms of total numbers of reads, ranging from 86 

~150 million reads to more than 1.3 billion (Supplementary Figure 1a). Mappable reads were 87 

over 96% in all samples. The percentages of total accepted reads corresponding to cis (ds-88 

accepted-intra, dark green) and trans (ds-accepted-inter, light green) (Supplementary Figure 89 

1b) also varied widely, ranging from ~17% to ~56%. Duplicate read pairs (ds-duplicate-intra 90 

and ds-duplicate-inter; red and pink respectively), non-uniquely mappable (multihit; light blue), 91 

single-end mappable (single-sided; dark blue) and unmapped reads (unmapped; dark purple) 92 

were discarded. Self-ligation products (ds-same-fragment; orange) and reads mapping too far 93 

(ds-too-far; light purple) from restriction sites or too close to one another (ds-too-close; orange) 94 

were also discarded. Only double-sided uniquely mappable cis (ds-accepted-intra; dark green) 95 

and trans (ds-accepted-inter; light green) read pairs were used for downstream analysis. 96 

Despite the differences in sequencing depth and in the percentages of useful reads across 97 

samples, all samples had enough useful reads for TAD. However, due to the wide differences 98 

in sequencing depth, and to ensure fair comparisons of Hi-C matrices in this study, all datasets 99 

were down-sampled such that the number of usable intra-chromosomal reads pairs was ~40 100 

million for each replicate. Finally, to study the effect of sequencing depth, we also resampled 101 

at ~80 and ~120 million read pairs, by limiting our evaluation to those samples that had 102 

adequate sequencing depth.  103 

 104 

 105 
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Scaled Hi-C contact matrices 106 

Hi-C contact matrices were scaled by: (a) the total number of (usable) intra-chromosomal read 107 

pairs, and (b) the “effective length” of the corresponding pair of interacting bins [22]. More 108 

specifically, the scaled Hi-C count corresponding to interactions between the Hi-C matrix bins 109 

i,j  (yij) is defined by the formula:  110 

𝑦𝑖𝑗 =
𝑥𝑖𝑗

𝑒𝑓𝑓𝑖 ∙ 𝑒𝑓𝑓𝑗 ∙ 𝑁
 111 

where xij is the original number of interactions between the bins i and j, effi the effective length 112 

for the bin i, effj the effective length for the bin j, and N is the total number of read pairs.  113 

 114 

Distance-normalized Hi-C contact matrices 115 

Genomic loci that are further apart in terms of linear distance on DNA tend to give fewer 116 

interactions in Hi-C maps than loci that are closer. For intra-chromosomal interactions, this 117 

effect of genomic distance should be taken into account. Consequently, the interactions were 118 

distance-normalized using a z-score that was calculated taking into account the mean Hi-C 119 

counts for all interactions at a given distance d and the corresponding standard deviation. 120 

Thus, the z-score for the interaction between the Hi-C contact matrix bins i and j (zij) is given 121 

the following equation: 122 

𝑧𝑖𝑗 =
𝑦𝑖𝑗 − 𝜇(𝑑)

𝜎(𝑑)  123 

where yij corresponds to the number of interactions between the bins i and j, μ(d) to the mean 124 

(expected) number of interactions for distance d=|j-i| and σ(d) is the corresponding standard 125 

deviation of the mean.  126 

Fused two-dimensional lasso 127 

While our naïve scaling approach successfully increased the cross-enzyme and same-128 

enzyme correlation of Hi-C matrices, we sought to improve the correlation even further. We 129 

used two-dimensional lasso, an optimization machine learning technique widely used to 130 

analyse noisy datasets, especially images [17]. This technique is very-well suited for 131 
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identifying topological domains based on contact maps generated by Hi-C sequencing 132 

experiments for two reasons: (a) Hi-C datasets are inherently noisy, and (b) topological 133 

domains are continuous DNA segments of highly interacting loci that would represent solid 134 

squares along the diagonal of Hi-C contact matrices. Topological domains map to squares of 135 

different length along the diagonal of the Hi-C contact matrix, but they are not solid as they 136 

contain several gaps, i.e. scattered regions on those squares that show little or no interaction. 137 

Two-dimensional fused lasso [23] addresses the issue by penalizing differences between 138 

neighbouring elements in the contact matrix. This is achieved by the penalty parameter λ 139 

(lambda), as described in the equation:  140 

�̂� = argmin
𝛽∈ℝ𝑛

1
2
∑ (𝑦𝑖 − 𝛽𝑖)2𝑛
𝑖=1 + 𝜆 ∑ |𝛽𝑖 − 𝛽𝑗|(𝑖,𝑗)∈𝐸  , 141 

where y is the original (i.e. observed) contact matrix, and �̂� is the estimated contact matrix 142 

such that the objective function described above in minimized. In the interest of computational 143 

efficiency, we also applied one-dimensional lasso on the Hi-C contact matrices in order to 144 

estimate the matrices for high values of λ (λ >> 1) and obtain the full hierarchy of TAD 145 

boundaries. Using one-dimensional lasso instead of the two-dimensional version had no 146 

negative impact on the correlations of Hi-C contact matrices between replicates 147 

(Supplementary Figure 2).  148 

 149 

Calculation of same-enzyme and cross-enzyme correlations 150 

We calculated two types of correlation for Hi-C matrices, to evaluate the performance of our 151 

method: (a) same-enzyme correlation which corresponds to all the Hi-C replicates prepared 152 

with the same restriction enzyme, (b) cross-enzyme correlation which corresponds to all the 153 

sample pairs where the same Hi-C sample was prepared with two different enzymes (e.g 154 

HindIII/MboI). Pearson correlation coefficients were calculated either on the filtered, ICE-155 

corrected [24] or scaled Hi-C contact matrices (Pearson) or the distance-normalized ones 156 

(Pearson/z-score).   157 

 158 
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TAD boundary “ratio” insulation score 159 

Given a potential TAD boundary, we denote the “upstream” TAD to the left of the boundary as 160 

L, and the “downstream” TAD to the right as R. The cross-TAD interactions between L and R 161 

are denoted as X. The “ratio” insulation score is defined as follows: 162 

ratio = intramax/inter 163 

where: 164 

intramax = max(mean(L), mean(R)) 165 

inter = mean(X) 166 

For more details, see [18].  167 

 168 

Classification of boundaries based on fused two-dimensional lasso 169 

We applied two-dimensional fused lasso to categorize TAD boundaries based on their strength. 170 

The rationale behind this categorization is that topological domains separated by more 171 

“permissive” (i.e. weaker) boundaries [25] will tend to fuse into larger domains when lasso is 172 

applied, compared to TADs separated by well-defined, stronger boundaries. We indeed 173 

applied this strategy and categorized boundaries into multiple groups ranging from the most 174 

permissive to the strongest boundaries. The boundaries that were lost when λ value was 175 

increased from 0 to 0.25, fall in the first category (λ=0), the ones lost when λ was increased to 176 

0.5, in the second (λ=0.2) etc.  177 

 178 

Association of CTCF levels with boundary strength 179 

We obtained CTCF ChIP-sequencing data for the cell lines utilized in this study (with the 180 

exception of KBM7 for which no publicly available dataset was available) and we uniformly re-181 

processed all data using HiC-bench [18]. Total CTCF levels (i.e. aggregated peak intensities 182 

from potentially multiple CTCF peaks) at each TAD boundary were calculated and their 183 

normalized distributions for each boundary category (weak to strong) were plotted in boxplots 184 

in order to demonstrate the association of increased boundary strength with increased levels 185 

of CTCF binding. We performed this analysis separately for TSS-only and non-TSS CTCF 186 
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binding sites. The rationale behind this separate analysis was based on the observation that 187 

several TAD boundaries, especially strong boundaries, contain TSSs.  188 

 189 

Association of boundary strength with super-enhancers 190 

Super-enhancers were called using H3K27ac ChIP-seq data from GEO, ENCODE and in-191 

house generated data. Reads were first aligned with Bowtie2 v2.3.1 [26] and then HOMER 192 

v4.6 [27] was used to call super-enhancers, all with standard parameters. For each super-193 

enhancer in each sample, we identified the corresponding TAD and its TAD boundaries. We 194 

then calculated (per sample) the percentage of super-enhancers that are surrounded by 195 

boundaries belonging in each boundary category, demonstrating that most super-enhancers 196 

are insulated by strong boundaries.   197 

 198 

RESULTS 199 

Analysis workflow 200 

The overall workflow, including our benchmark strategy and downstream analysis, is 201 

summarized in Figure 1a. Our analysis starts with unprocessed Hi-C contact matrices 202 

(“filtered” matrices). We then generate processed Hi-C matrices using both ICE “correction” 203 

and our naïve “scaling” approach. Then, fused two-dimensional lasso is applied either on the 204 

actual matrices or, alternatively, on the distance-normalized matrices. Matrix reproducibility 205 

between biological replicates is assessed across samples for a variety of parameters, for 206 

example, resolution, distance between interacting loci, sequencing depth, etc. Finally, 207 

downstream analysis, involves the characterization of TAD boundaries based on their 208 

insulating strength, the enrichment in CTCF binding, proximity to repeat elements and super-209 

enhancers, and, finally, their genetic alterations in cancer.  210 

 211 

Assessment of same-enzyme and cross-enzyme reproducibility of Hi-C contact 212 

matrices 213 
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Hi-C is prone to biases and multiple algorithms have been developed for Hi-C bias correction, 214 

including probabilistic modelling methods [22], Poisson or negative binomial normalization [28] 215 

and the widely popular Iterative Correction and Eigenvalue decomposition method (ICE) [24], 216 

which assumes “equal visibility” of genomic loci. A similar iterative method named Sequential 217 

Component Normalization was introduced by Cournac et al. [29]. Additional efficient correction 218 

methods have been developed to handle high-resolution Hi-C datasets [30]. However, 219 

estimating highly reproducible Hi-C contact maps remains a challenging task [31], especially 220 

at high resolutions, as we also demonstrate below. Specifically, we focused on multiple factors 221 

that may play an important role on reproducibility: first, we separately considered biological 222 

replicates of Hi-C libraries generated with the same or different restriction enzymes; second, 223 

we studied the impact of Hi-C matrix resolution (i.e. bin size); third, we assessed reproducibility 224 

as a function of the distance of interacting loci pairs. Pearson correlation coefficients were 225 

calculated for each pair of replicates (same- or cross-enzyme) on Hi-C contact matrices 226 

estimated by three methods: (i) naïve filtering (i.e. matrix generation by simply using double-227 

sided accepted intra-chromosomal read pairs from Supplementary Figure 1a), (ii) iterative 228 

correction (ICE) which has already been demonstrated to improve cross-enzyme correlation, 229 

and (iii) our own “naïve” scaling method that only corrects for effective length bias (see 230 

Methods for details). Importantly, correlations were computed both on the actual matrices, but 231 

also on the distance-normalized matrices (see Methods for details), as Hi-C interactions are 232 

typically concentrated around the diagonal of the Hi-C contact matrix, and values are dropping 233 

exponentially as the distance between the interacting pairs is increasing (Supplementary 234 

Figure 1c). Distance-normalized matrices account for the expected Hi-C read count as a 235 

function of distance and may therefore reveal real distal interactions. The results of our 236 

benchmark analysis are summarized in Figure 1b: the left panel summarizes the correlations 237 

between replicates generated by the same restriction enzyme, whereas the right panel the 238 

correlations between replicates generated by a different restriction enzymes. In both scenarios, 239 

as expected, correlations drop quickly as finer resolutions (from 100kb to 20kb) are considered, 240 

especially in the distance-normalized matrices. The same conclusion applies for increasing 241 
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distance (from 2Mb to 10Mb) between interacting loci, demonstrating that long-range 242 

interactions require ultra-deep sequencing (beyond what is currently available in most of the 243 

datasets in this study) in order to be detected reliably. To elaborate on this point, we repeated 244 

the analysis after retaining only those samples with two replicates of at least 70 million or 110 245 

million usable intra-chromosomal reads and resampling them down to 80 million or 120 million 246 

per replicate (Supplementary Figure 3 and Supplementary Figure 4 respectively). Both 247 

conclusions hold true with the new sequencing depth and are independent of the Hi-C contact 248 

matrix estimation method. Finally, bias-correction methods (ICE and our scaling approach) 249 

indeed improved cross-enzyme correlation over the naïve filtering method (Figure 1b). 250 

Interestingly, this improvement came at the expense of lower correlations in the same-enzyme 251 

case. More specifically, we observed that the largest the gain in cross-enzyme correlations, 252 

the greater the loss in same-enzyme correlations (ICE method) (Figure 1b).  253 

 254 

Fused lasso improves same-enzyme and cross-enzyme correlations of Hi-C contact 255 

matrices 256 

Motivated by the poor performance of all methods at fine resolutions and by the observation 257 

of a surprising trade-off between cross-enzyme and same-enzyme correlations when 258 

correcting for enzyme-related biases, we applied fused two-dimensional lasso [23], to obtain 259 

improved estimates of Hi-C contact matrices. Briefly, two-dimensional fused lasso introduces 260 

a parameter λ which penalizes differences between neighboring values in the Hi-C contact 261 

matrix (see Methods for details). The effect of parameter λ is demonstrated in Figure 2a where 262 

we show an example of the application of fused two-dimensional lasso on a Hi-C contact 263 

matrix focused on an 8Mb locus on chromosome 8 for different values of parameter λ. To 264 

evaluate the performance of fused lasso, we calculated same-enzyme and cross-enzyme 265 

Pearson correlations between Hi-C contact matrices generated from different replicates. 266 

Pearson correlation coefficients were calculated either for iteratively-corrected (ICE) or scaled 267 

Hi-C contact matrices (at different λ values) and compared to the naïve filtering approach. The 268 

results are summarized in Figure 2b. Increasing λ improves correlation independent of 269 
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resolution, restriction enzyme and bias-correction method, demonstrating the robustness of 270 

our approach. Similarly, fused two-dimensional lasso improves the reproducibility of distance-271 

normalized matrices as demonstrated in Figure 2c. In all cases, as the value of λ increases, 272 

the relative improvements in correlation are diminished. This observation can guide the 273 

selection of λ, however a minimum of two replicates per sample are necessary to compute the 274 

correlation and implement this strategy. Instead, we propose the use of degrees of freedom 275 

as described in [23]. As demonstrated in Supplementary Figure 2b, the degrees of freedom 276 

are rapidly decreasing for small values of λ, and quickly reaching a plateau with a moderate 277 

increase in λ.  278 

 279 

Fused lasso reveals a TAD hierarchy linked to TAD boundary strength 280 

After demonstrating that parameter λ improves reproducibility of Hi-C contact matrices 281 

independent of the bias-correction method, we hypothesized that increased values of λ may 282 

also define distinct classes of TADs with different properties. For this reason, we now allowed 283 

λ to range from 0 to 5 (after a finite value of λ, λ>>5, the entire Hi-C matrix attains a constant 284 

value independent of the value of λ). For efficient computation, we used a one-dimensional 285 

approximation of the two-dimensional lasso solution (see Methods for details and 286 

Supplementary Figure 2). We then identified TADs at multiple λ values using HiC-bench, 287 

and we observed that the number of TADs is monotonically decreasing with the value of λ 288 

(Figure 3a), suggesting that by increasing λ, we are effectively identifying larger TADs 289 

encompassing smaller TADs detected at lower λ values. Equivalently, certain TAD boundaries 290 

“disappear” as λ is increased. Therefore, we hypothesized that TAD boundaries that disappear 291 

at lower values of λ are weaker (i.e. lower insulation score), whereas boundaries that 292 

disappear at higher values of λ are stronger (i.e. higher insulation score). To test this 293 

hypothesis, we identified the TAD boundaries that are “lost” at each value of λ, and generated 294 

the distributions of the insulation scores for each λ. As insulation score, we used the Hi-C 295 

“ratio” score (see Methods), which was shown to outperform other TAD calling methods [18]. 296 

Indeed, as hypothesized, TAD boundaries lost at higher values of parameter λ are associated 297 
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with higher TAD insulation scores (Figure 3b). We then stratified TAD boundaries into five 298 

classes (numbers 1 through 5 in Figure 3b; zero corresponds to lack of boundary) according 299 

to their strength, independently in each Hi-C dataset used in this study. A heatmap 300 

representation including all TAD boundaries and their associated class across all samples is 301 

depicted in Figure 3c. Unbiased hierarchical clustering correctly grouped replicates and 302 

related cell types independent of enzyme biases or batch effects related to the lab that 303 

generated the Hi-C libraries, suggesting that TAD boundary strength can be used to 304 

distinguish cell types. Equivalently, this finding suggests that, although TAD boundaries have 305 

been shown to be largely invariant across cell types, a certain subset of TAD boundaries may 306 

exhibit varying degrees of strength in different cell types. As expected, TAD boundary strength 307 

was found to be positively associated with CTCF levels, suggesting that stronger CTCF 308 

binding confers stronger insulation. Since we noticed that several TAD boundaries contain 309 

TSSs, this analysis was done separately for all CTCF peaks (data not shown) and TSS-only 310 

CTCF peaks (Figure 3d). Both approaches revealed the same trend, with the exception of the 311 

class of strongest boundaries, where CTCF levels in TSS regions were significantly higher 312 

compared to non-TSS regions, suggesting that the strongest boundaries are formed by CTCF-313 

mediated loops at gene promoters. SINE elements have also been shown to be enriched at 314 

TAD boundaries [5], and besides confirming this finding, we now demonstrate that Alu 315 

elements (the most abundant type of SINE elements) are enriched at stronger TAD boundaries 316 

(Supplementary Figure 5, top-left panel). A comprehensive analysis of all major repetitive 317 

element subtypes can be found in Supplementary Figure 5.  318 

 319 

Super-enhancers are preferentially localized within TADs demarcated by at least one 320 

strong boundary 321 

We then explored what type of functional elements are localized within TADs demarcated by 322 

strong TAD boundaries. Specifically, we tested super-enhancers identified in matched 323 

samples (see Methods for details). Super-enhancers are key regulatory elements thought to 324 

be defining cell identity [9, 32], and are usually found near the center of TADs [33]. Our 325 
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analysis determined that they are significantly more frequently localized within TADs insulated 326 

by at least one strong TAD boundary (Figure 3e). Further analysis revealed that, in many 327 

cases, super-enhancers are insulated by strong boundaries both in the upstream and 328 

downstream directions (~3 times more likely compared to a strong/weak boundary 329 

combination). We then mined the tissue-based map of the human proteome [34], a collection 330 

of ubiquitously expressed genes as well as genes of variable tissue-specificity. Remarkably, 331 

our analysis revealed that the genes closest to strong boundaries are significantly enriched in 332 

the class of ubiquitously expressed genes (Supplementary Figure 6a). However, and 333 

consistent with previous findings, tissue-specific genes are more enriched further away from 334 

the TAD boundaries, in the vicinity of super-enhancers. Taken together, our findings suggest 335 

that, because of their significance in gene regulation, super-enhancers should only target 336 

genes confined in the “correct” TAD or neighborhood, while remaining strongly insulated from 337 

genes in adjacent TADs. This is conceivably achieved by the strong TAD boundaries we have 338 

identified in this study. At the same time, ubiquitously expressed genes are insulated from 339 

enhancer elements in adjacent TADs by the same strong TAD boundaries in order to maintain 340 

proper expression levels, unaffected by regulation from enhancer elements in adjacent TADs.  341 

 342 

Strong TAD boundaries are co-duplicated with super-enhancers and oncogenes in 343 

cancer 344 

To further investigate the importance of variable boundary strength, we asked whether TAD 345 

boundaries are prone to genetic alterations in cancer. To this end, we mined structural variants 346 

released by the International Cancer Genome Consortium (ICGC) [35]. A summary of the 347 

reported variant types across all cancer types available on ICGC, is presented in 348 

Supplementary Figure 6b. First, for each focal (up to 1Mb) deletion event, we identified the 349 

TAD boundaries closest to the breakpoints, and calculated the frequency of deletions by 350 

boundary strength. We observed that the frequency of deletions monotonically decreased with 351 

increasing boundary strength (Figure 4a). This suggests that strong TAD boundaries are less 352 

frequently lost in cancer, as they may “safeguard” functional elements that are necessary for 353 
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proliferation. By contrast, the frequency of tandem duplications (up to 1Mb) increased with 354 

increasing boundary strength (Figure 4b). Both results were robust to various cutoffs on the 355 

sizes of the structural variants, within the usual range of TAD sizes (from 250kb to 2.5Mb). 356 

Then, to further clarify the connection between super-enhancers, strong TAD boundaries and 357 

cancer, we studied tandem duplication events where super-enhancers (obtained from the 358 

largest available collection of super-enhancers [36]) are co-duplicated with adjacent strong 359 

boundaries. As demonstrated in Figure 4c, super-enhancers are indeed co-duplicated with 360 

strong TAD boundaries. This suggests that, in cancer, not only are strong boundaries 361 

protected from deletions, but they are also co-duplicated with super-enhancer elements. 362 

Intriguingly, this observation raises the possibility that pairs of super-enhancers and 363 

oncogenes represent functional entities encapsulated by strong boundaries, that are 364 

frequently duplicated or perhaps amplified in malignancies. Such an example of an oncogene 365 

is shown in Figure 4d:  MYC, a well-known oncogene that is typically overexpressed in cancer, 366 

is localized next to a strong TAD boundary and is co-duplicated with the boundary as well as 367 

with several proximal super-enhancers. Taken together, these observations highlight the 368 

importance of strong TAD boundaries in the context of cancer.  369 

 370 

DISCUSSION 371 

Multiple recent studies have revealed that the metazoan genome is compartmentalized in 372 

boundary-demarcated functional units known as topologically associating domains (TADs). 373 

TADs are highly conserved across species and cell types. A few studies, however, provide 374 

compelling evidence that specific TADs, despite the fact that they are largely invariant, exhibit 375 

some plasticity. Given that TAD boundary disruption has been recently linked to aberrant gene 376 

activation and multiple disorders including developmental defects and cancer, categorization 377 

of boundaries based on their strength and identification of their unique features becomes of 378 

particular importance. In this study, we developed a method based on fused two-dimensional 379 

lasso in order to categorize TAD boundaries based on their strength. We demonstrated that 380 

our method: (a) improves the correlation of Hi-C contact matrices irrespective of the Hi-C bias 381 
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correction method used, (b) reveals multiple levels of chromatin organization and (c) 382 

successfully identifies boundaries of variable strength and that strong predicted boundaries 383 

exhibit certain expected features, such as elevated CTCF levels and increased insulating 384 

capacity. By performing an integrative analysis of estimated boundary strength with super-385 

enhancers in matched samples, we observed that super-enhancers are preferentially 386 

insulated by strong boundaries, suggesting that super-enhancers and strong boundaries may 387 

represent a biologically relevant entity. Motivated by this observation, we examined the 388 

frequency of structural alterations involving strong boundaries and super-enhancers. We 389 

found that not only strong boundaries are “protected” from deletions, but, more importantly, 390 

they are co-duplicated together with super-enhancers. Recently, it has been shown that 391 

genetic or epigenetic alterations near enhancers may lead to aberrant activation of oncogenes 392 

[37–40]. Our results, expand on these studies and highlight a synergistic role of super-393 

enhancers and TAD boundaries in cancer.  394 
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 419 

TABLE AND FIGURES LEGENDS 420 

Figure 1. (a) Overall workflow and benchmark strategy, (b) Comparison of Hi-C contact 421 

matrices between biological replicates generated from Hi-C library using the same or different 422 

restriction enzyme; Hi-C matrices were estimated using three methods (naïve filtering, iterative 423 

correction and simple scaling); assessment was performed using Pearson correlation on the 424 

actual or distance-normalized Hi-C matrices at resolutions ranging from 100kb to 20kb and 425 

maximum distances of 2Mb, 6Mb and 10Mb between interacting pairs 426 

 427 

Figure 2. Fused two-dimensional lasso improves reproducibility of Hi-C contact 428 

matrices. (a) Example of application of fused two-dimensional lasso on a Hi-C contact matrix 429 

focused on a 8Mb locus on chromosome 8 for different values of parameter λ (top 430 

panel=original matrix; bottom panel=distance-normalized matrix), (b) Hi-C contact matrix 431 

correlations are improved by increasing the value of fused lasso parameter λ both for matrices 432 

estimated by ICE as well as by our simple scaling method. (c) Hi-C contact matrix correlations 433 

of distance-normalized matrices. Correlations of Hi-C contact matrices generated by the naïve 434 

filtering method are marked by the red line in each panel. 435 
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 436 

Figure 3. Classification and characterization of TAD boundaries according to insulation 437 

score. (a) Number of TADs for λ values ranging from 0 to 5, (b) TAD boundaries lost at higher 438 

values of parameter λ are associated with higher TAD insulation scores, (c) Heatmap 439 

representation of TAD boundary insulation strength across samples; hierarchical clustering 440 

correctly groups replicates and related cell types independent of enzyme biases or batch 441 

effects related to the lab that generated the Hi-C libraries, (d) TAD boundary strength is 442 

associated with CTCF levels, (e) Fraction of super-enhancer elements in the vicinity of 443 

boundaries of variable strength. The gradient of blue corresponds to λ values with darker blue 444 

denoting higher λ value.  445 

 446 

Figure 4. Pan-cancer analysis of strong vs weak TAD boundaries. (a) Schematic of pan-447 

cancer analysis (left panel) and classification of focally deleted boundaries in cancer according 448 

to their strength (right panel), (b) Schematic of pan-cancer analysis (left panel) and 449 

classification of focally duplicated boundaries in cancer according to their strength (right panel), 450 

(c) Schematic of pan-cancer analysis (left panel) and co-duplications of TAD boundaries with 451 

super-enhancers in cancer (right panel), (d) Snapshot of the MYC locus: a strong boundary 452 

(black bar) is frequently co-duplicated with MYC and potential super-enhancers in cancer 453 

patients (highlighted area). IGV tracks from top to bottom: boundary score (gray), strong 454 

boundaries (black bars), super-enhancer track from SEA (blue bars), RefSeq genes, 455 

duplication frequency (red graph) and ICGC patient tandem duplications (red bars). 456 

 457 

Supplementary Figure 1. Quality assessment of Hi-C datasets. (a) Counts of Hi-C read 458 

pairs in various read categories: dark and light green indicate read pairs that were not 459 

designated as artifacts and can be used in downstream analyses, (b) Percentages of Hi-C 460 

reads in each category, (c) Average scaled Hi-C read pair count as a function of distance 461 

between interacting loci.  462 

 463 
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Supplementary Figure 2. Fused one-dimensional lasso improves reproducibility of 464 

distance-normalized Hi-C contact matrices. (a) distance-normalized Hi-C contact matrix 465 

correlations are improved by increasing the value of fused lasso parameter λ both for matrices 466 

estimated by ICE as well as by our simple scaling method; correlations of distance-normalized 467 

Hi-C contact matrices generated by the naïve filtering method are marked by the red line in 468 

each panel. The gradient of blue corresponds to λ values with darker blue denoting higher λ 469 

value, (b) degrees of freedom as a function of λ.  470 

 471 

Supplementary Figure 3. Comparison of Hi-C contact matrices between biological 472 

replicates generated from Hi-C library using the same restriction enzyme. Three 473 

methods (naïve filtering, iterative correction and simple scaling) were used for estimation. 474 

Assessment was performed using Pearson correlation on the actual or distance-normalized 475 

Hi-C matrices at resolutions ranging from 100kb to 20kb and maximum distances of 2Mb, 6Mb 476 

and 10Mb between interacting pairs. Only samples with approximately 80 million usable intra-477 

chromosomal reads were considered. 478 

 479 

Supplementary Figure 4. Comparison of Hi-C contact matrices between biological 480 

replicates generated from Hi-C library using the same restriction enzyme. Three 481 

methods (naïve filtering, iterative correction and simple scaling) were used for estimation. 482 

Assessment was performed using Pearson correlation on the actual or distance-normalized 483 

Hi-C matrices at resolutions ranging from 100kb to 20kb and maximum distances of 2Mb, 6Mb 484 

and 10Mb between interacting pairs. Only samples with approximately 120 million usable intra-485 

chromosomal reads were considered. 486 

 487 

Supplementary Figure 5. Normalized numbers of repeat elements in proximity to boundaries 488 

of certain boundary strength. Darker blue in the blue colour gradient denotes higher boundary 489 

strength. 490 

 491 
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Supplementary Figure 6. (a) Fraction of ubiquitous genes as well as genes of increasing 492 

tissue-specificity in the vicinity of boundaries of variable strength, (b) Distribution of somatic 493 

structural alterations in the ICGC database. 494 

 495 

 496 
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Supplementary Figure 1
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Supplementary Figure 2
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Supplementary Figure 3
Sequencing depth = 80 million read pairs
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Supplementary Figure 4
Sequencing depth = 120 million read pairs
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Supplementary Figure 5
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