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Abstract	

Founder	populations	are	ideally	suited	for	studies	on	the	clinical	effects	of	alleles	that	are	rare	in	

general	populations	but	occur	at	higher	frequencies	in	these	isolated	populations.	Whole	genome	

sequencing	 in	 98	 South	 Dakota	 Hutterites,	 a	 founder	 population	 of	 European	 descent,	 and	

subsequent	 imputation	 to	 the	 Hutterite	 pedigree	 revealed	 660,238	 single	 nucleotide	

polymorphisms	(SNPs;	98.9%	non-coding)	that	are	rare	(<1%)	or	absent	in	European	populations,	

but	occur	at	frequencies	greater	than	1%	in	the	Hutterites.	We	examined	the	effects	of	these	rare	

in	European	variants	on	plasma	levels	of	LDL	cholesterol	(LDL-C),	HDL	cholesterol	(HDL-C),	total	

cholesterol	and	triglycerides	(TG)	in	828	Hutterites	and	applied	a	Bayesian	hierarchical	framework	

to	prioritize	potentially	causal	variants	based	on	functional	annotations.	We	identified	two	novel	

non-coding	 rare	variants	associated	with	LDL-C	 (rs17242388	 in	LDLR)	and	HDL-C	 (rs189679427	

between	GOT2	and	APOOP5),	and	replicated	previous	associations	of	a	splice	variant	 in	APOC3	

(rs138326449)	with	TG	and	HDL-C.	All	three	variants	are	at	well-replicated	loci	in	genome	wide	

association	study	(GWAS)	but	are	independent	from	and	have	larger	effect	sizes	than	the	known	

common	variation	in	these	regions.	We	also	identified	variants	at	two	novel	loci	(rs191020975	in	

EPHA6	and	chr1:224811120	in	CNIH3)	at	suggestive	levels	of	significance	with	LDL-C.	Candidate	
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expression	quantitative	 loci	 (eQTL)	analyses	 in	 lymphoblastoid	cell	 lines	(LCLs)	 in	the	Hutterites	

suggest	that	these	rare	non-coding	variants	are	 likely	to	mediate	their	effects	on	 lipid	traits	by	

regulating	gene	expression.	Overall,	we	provide	insights	into	the	mechanisms	regulating	lipid	traits	

and	potentially	new	therapeutic	targets.	

	

Introduction	

Blood	lipid	traits	are	under	strong	genetic	control	and	are	modifiable	risk	factors	for	cardiovascular	

disease,	one	of	 the	 leading	 causes	of	death1.	 These	 traits	 include	plasma	 levels	of	 low-density	

lipoprotein	cholesterol	(LDL-C),	high-density	lipoprotein	cholesterol	(HDL-C),	total	cholesterol	and	

triglycerides	 (TG)	 and	 have	 estimated	 heritabilities	 of	 40-60%	 across	 populations2-4.	 Although	

genome-wide	 association	 studies	 (GWAS)	 of	 lipid	 traits	 have	 been	 successful	 in	 identifying	

hundreds	of	common	variants	with	robust	associations,	the	associated	variants	account	for	only	

about	 10-14%	 of	 the	 total	 phenotypic	 variance5,6.	While	 a	 portion	 of	 the	 unexplained	 genetic	

variance	may	result	from	overestimates	of	heritability	and	complex	genetic	architectures,	such	as	

those	 involving	 epistasis	 or	 gene-environment	 interactions7,	 the	 effect	 of	 rare	 loss-of-function	

variation	in	complex	traits	is	understudied	and	likely	contributes	to	the	heritability	of	blood	lipid	

traits	and	risk	for	cardiovascular	disease.	

In	fact,	sequencing	studies	in	families	or	patients	with	rare	monogenic	lipid	disorders	have	

uncovered	many	novel	genes	harboring	rare	coding	mutations	of	large	effect	and	revealed	critical	

pathways	for	lipid	metabolism8-10.	These	studies	have	supported	earlier	observations	suggesting	

that	rare	variants	in	the	general	population	contribute	significantly	to	lipid	traits	and	possibly	more	

generally	 to	 common,	 complex	 phenotypes.	 For	 example,	 a	 resequencing	 study	 of	 genes	 that	
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harbor	causal	mutations	in	monogenic	lipid	disorders	identified	an	enrichment	of	nonsynonymous	

variants	associated	with	lipid	levels	by	sequencing	unrelated	individuals	sampled	from	the	tails	of	

the	 HDL-C	 trait	 distribution11.	 This	 study	 demonstrated	 for	 the	 first	 time	 that	 rare	 variants	

contribute	to	population-level	variation	in	blood	lipids.		

While	providing	valuable	 insight	 into	the	mechanisms	regulating	 lipid	traits,	rare	variant	

studies	in	complex	traits	have	focused	on	coding	regions	of	the	genome,	largely	due	to	the	recent	

explosion	of	exome	sequencing	studies	and	the	relative	ease	in	interpreting	these	findings12.	As	a	

result,	 the	non-coding	portion	of	the	genome	has	been	 largely	unexplored.	Similar	to	common	

non-coding	 variants,	 rare	 non-coding	 variants	 may	 also	 impact	 gene	 expression	 and	 protein	

abundance,	but	the	sample	sizes	of	most	studies	of	gene	expression	are	underpowered	to	identify	

the	 independent	 effects	 of	 rare	 variants.	 A	 few	 studies	 have	 provided	 strong	 support	 for	 the	

aggregated	effect	of	multiple	rare	non-coding	variants	on	nearby	gene	expression,	and	identified	

enrichments	of	rare	non-coding	variation	for	individuals	showing	extreme	gene	expression	levels,	

as	compared	with	the	same	genes	in	non-outlier	individuals13-15,	and	shown	cis	eQTL	effect	sizes	

are	 significantly	 higher	 for	 SNPs	 with	 lower	 allele	 freuquencies16.	 Despite	 this	 evidence,	 the	

broader	questions	of	what	functional	features	characterize	rare	non-coding	variants	influencing	

gene	 expression	 and	 how	 different	 functional	 classes	 of	 rare	 non-coding	 variations	 influence	

disease	are	unknown.	

Founder	populations	offer	the	opportunity	to	study	the	effects	of	variants	that	are	rare	in	

general	populations	but	have	reached	higher	frequencies	in	these	isolated	populations	due	to	the	

effects	of	random	genetic	drift	in	the	early	generations	after	their	founding17-19.	In	addition,	their	

overall	 reduced	genetic	complexity	and	relatively	homogenous	environments	and	 lifestyles	can	
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enhance	 the	 effects	 of	 rare	 genetic	 variants	 on	 phenotypic	 traits	 and	 thereby	 facilitate	 the	

detection	of	susceptibility	loci	that	underlie	complex	disease,	as	elegantly	illustrated	in	studies	of	

the	Amish	and	Icelandic	populations20-22.	

In	this	study,	we	dissect	the	genetic	architecture	of	plasma	lipid	traits	in	members	of	the	

South	Dakota	Hutterites,	 a	 founder	 population	 of	 European	 descent.	 The	 828	 individuals	who	

participated	 in	 these	 studies	 are	 related	 to	 each	 other	 in	 a	 13-generation	 pedigree	 with	 64	

founders.	We	performed	GWAS	using	660,238	“rare	in	European	variants”	(REVs)	that	occur	at	

frequencies	 greater	 than	 1%	 in	 the	 Hutterites,	 and	 integrated	 functional	 and	 regulatory	

annotations	that	allowed	us	to	narrow	down	potential	candidate	variants	despite	the	long-range	

linkage	disequilibrium	present	 in	 the	population.	Our	 studies	 revealed	 rare	 variants	with	 large	

effects	 at	 two	 novel	 and	 three	 known	 blood	 lipid	 loci	 associated	 with	 LDL-C,	 HDL-C	 or	 TG,	

potentially	yielding	novel	insights	into	the	mechanisms	regulating	lipid	traits	and	new	therapeutic	

targets.	

	

Results	

Approximately	7	million	single	nucleotide	polymorphisms	(SNPs)	identified	through	whole	genome	

sequencing	in	98	Hutterite	individuals	were	imputed	using	the	known	identity	by	descent	(IBD)	

structure	 of	 the	Hutterite	 pedigree23	 to	 the	 828	 individual	 in	 our	 study.	We	 selected	 660,238	

variants	that	were	either	absent	or	rare	(<1%)	in	European	databases	(see	Methods)	and	occurred	

at	frequencies	greater	than	1%	in	the	Hutterites	(REVs)	for	association	testing	with	fasting	lipid	

measurements	 (plasma	LDL-C,	HDL-C,	 total	 cholesterol	and	TG	 levels).	Based	on	 their	RefSeq24	

annotations,	the	majority	of	these	REVs	were	intergenic	(54.2%)	or	intronic	(43.7%);	the	remaining	
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2.1%	were	exonic	(1%),	in	the	3’	or	5’	UTR	(1.1%)	or	predicted	to	affect	splicing	(6.4x10-5%;	Figure	

1).	

	

Single	Variant	GWAS	

For	each	lipid	trait,	we	performed	association	analyses	in	two	stages.	First,	we	performed	single	

variant	analyses	using	a	linear	mixed	model	(GEMMA25),	including	age	and	sex	as	fixed	effects	and	

kinship	as	a	random	effect.	Quantile-quantile	plots	showed	no	inflation	of	test	statistics	for	any	of	

the	lipid	traits	(Figure	S1);	the	most	significant	associations	at	each	loci	are	presented	in	Table	2	

(Manhattan	plots	for	all	GWAS	are	shown	in	Figure	S2).	We	detected	two	genome-wide	significant	

loci	 (p<5x10-8)	associated	with	either	 increased	LDL-C	or	with	reduced	TG	 levels	and	contained	

multiple	rare	variants	of	large	effect	in	regions	previously	associated	with	lipid	traits	in	GWAS5,6.	

These	two	loci	include	78	REVs	associated	with	increased	LDL-C	over	a	7.6	Mb	region	flanking	the	

LDL	receptor	gene	(LDLR)	on	chromosome	19,	and	39	REVs	associated	with	reduced	TG	levels	over	

a	 3.8	Mb	 region	 flanking	 the	 Apolipoprotein	 C3	 (APOC3)	gene	 on	 chromosome	 11.	 The	 latter	

includes	a	known	rare	splicing	variant	in	APOC3	(rs138326449)26,27.	No	genome-wide	significant	

associations	with	REVs	were	detected	for	HDL-C	or	total	cholesterol.		

	

Application	of	fgwas	to	lipid	traits	

In	 second	 stage	 analyses,	 we	 annotated	 all	 variants	 discovered	 in	 the	 Hutterites	 using	 25	

sequence-based	 annotations	 and	 332	 functional	 annotations	 (see	 Methods)	 and	 applied	 the	

functional	 GWAS	 (fgwas)28	 framework	 to	 further	 evaluate	 the	 GWAS	 results	 and	 prioritize	

candidate	 rare	variants	based	on	prior	 functional	 knowledge.	We	split	 the	genome	 into	blocks	
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averaging	 125Kb	 (~50	 REVs)	 and	 performed	 forward	 selection	 to	 build	models	 that	 combined	

effects	 from	multiple	annotations	 followed	by	a	cross	validation	step	to	avoid	overfitting	while	

maximizing	the	likelihood	of	each	model.	Figure	2	shows	the	maximum	likelihood	estimates	(MLE)	

and	95%	CI	of	the	enrichment	effects	for	the	selected	annotations	in	each	of	the	final	joint	models	

for	each	of	the	blood	lipid	traits.	Annotation	descriptions	and	the	respective	penalized	effects	used	

in	each	model	are	provided	in	Supplemental	Tables	1-4.	

The	joint	model	for	each	fgwas	estimated	both	the	probability	that	each	block	contains	a	

causal	variant	and	the	posterior	probability	that	a	variant	is	causal	conditional	on	the	presence	of	

one	causal	variant	in	the	region.	Variants	with	the	largest	posterior	probabilities	of	causality	will	

tend	 to	have	 the	most	 significant	 p-values	 and	 functional	 annotations	 that	 predict	 association	

genome-wide.	We	weighted	 our	GWAS	 results	 based	 on	 the	 fgwas	 joint	model	 and	 applied	 a	

regional	 prior	 probability	 of	 association	 (PPA)	 threshold	 of	 0.9.	 Overall,	 we	 identified	 63	

consecutive	blocks	associated	with	LDL-C	on	chromosome	19	and	20	blocks	on	chromosome	11	

associated	with	TG,	all	of	which	harbor	REVs	that	passed	genome-wide	significance	in	the	single	

variant	 GWAS	 (p<5x10-8),	 and	 additional	 blocks	 associated	 with	 HDL-C	 in	 a	 novel	 region	 on	

chromosome	 16	 and	 one	 on	 chromosome	 11.	 In	 addition,	 when	 we	 applied	 a	 slightly	 lower	

regional	threshold	of	PPA>0.75,	additional	blocks	associated	with	LDL-C	on	chromosomes	1	and	3	

were	identified.		We	present	all	variants	within	regions	with	PPA>0.75	and	SNP	PPA>0.5	in	Table	

S5	and	refer	to	these	as	candidate	variants.		

	

LDL-C.	The	GWAS	of	LDL-C	identified	78	genome-significant	REVs	associated	with	increased	levels	

of	LDL-C	on	a	haplotype	that	spans	7.6Mb	on	chromosome	19p13.2.	 	Despite	 the	high	LD	and	
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resulting	 long	 haplotype,	 we	were	 able	 to	 prioritize	 35	 candidate	 variants	 with	 SNP	 posterior	

probabilities	greater	than	0.75,	13	of	which	had	posterior	probabilities	equal	to	one	(PPA=1;	Table	

S5).	Among	these	13	variants,	one	satisfied	all	the	annotations	selected	in	the	model.	This	is	a	SNP	

located	in	the	first	intron	on	the	LDLR	(rs17242388;	logBF=28.02;	pgwas=3.85x10-15;	MAF=3%;	1000	

genomes	EUR	MAF=0.6%).	While	the	established	function	of	the	LDLR	in	lipid	metabolism	makes	

an	 intronic	LDLR	variant	an	obvious	candidate32,	a	novel	nonsynonymous	variant	 in	Zinc	Finger	

Protein	 439	 (ZNF439;	 chr19:11978399-T)	 was	 the	 fgwas	 candidate	 variant	 with	 the	 highest	

predictive	functional	score	(CADD33=16.65;	PPA=0.8;	logBF=20.95;	pgwas=5.55x10-12;	MAF=0.04).		

	 We	identified	two	additional	 loci	that	were	suggestively	associated	with	LDL-C	(regional	

PPA>0.75).	The	first	association	was	a	protective	variant	private	to	the	Hutterites	located	in	the	

first	 intron	of	 the	Cornichon	 Family	AMPA	Receptor	Auxiliary	 Protein	3	 gene	 (CNIH3)	 and	was	

associated	 with	 decreased	 LDL-C	 (chr1:224811120;	 logBF=5.26;	 PPA=0.76;	 pgwas=7.99x10-5;	

MAF=0.02).	The	second	variant	was	an	intronic	variant	on	chromosome	3	in	the	EPH	Receptor	A6	

gene	 (EPHA6;	 rs191020975)	 associated	 with	 increased	 LDL-C	 (logBF=6.46;	 PPA=0.52;	

pgwas=1.88x10-5;	MAF=0.02;	1000	genomes	EUR	MAF=0.001).	

	

Triglycerides.	Out	 of	 the	 39	 REVs	 on	 a	 3.8Mb	 haplotype	 associated	 with	 TG	 levels,	 14	 were	

potentially	causal	with	SNP	posterior	probabilities	of	association	greater	than	0.75.	The	SNP	with	

the	 highest	 posterior	 probability	 (rs149157643;	 PPA=1;	 logBF=22.49;	 pgwas=7.47x10-13;	

MAF=2.38%;	 1000	 genomes	 EUR	MAF=0.7%)	 is	 an	 intronic	 variant	within	 the	 non-coding	 RNA	

(ncRNA)	gene	Transmembrane	Protease	Serine	4	Antisense	RNA	1	 (TMPRSS4-AS1)	 and	 is	25Kb	

away	 from	 the	 most	 associated	 variant	 in	 the	 region	 (rs184333869;	 PPA=0.97;	 p=5.41x10-13;	
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MAF=2.40%;	1000	genomes	EUR	MAF=0.1%).	Chromosome	11q23	is	a	well	replicated	GWAS	locus	

for	multiple	lipid	traits5,34	(Figure	4)	with	several	implicated	rare	variants,	including	loss-of-function	

mutations	 in	APOC320,26,27	 associated	 with	 decreased	 TG	 levels.	 In	 fact,	 the	 candidate	 variant	

associated	with	TG	 in	 the	Hutterites	with	 the	highest	 functional	and	conservation	score	 in	 this	

region	(CADD=25.1;	GERP=4.89)	 is	a	previously	reported	splice	variant	 in	APOC3	 (rs138326449;	

MAF=2.23%;	 1000	 genomes	 MAF=0.3%)	 but	 had	 a	 slightly	 lower	 posterior	 probability	 of	

association	in	our	model	(PPA=0.86;	logBF=15.38;	pgwas=1.08x10-9)	compared	to	other	variants	in	

the	 region.	 To	 our	 knowledge,	 the	 role	 of	 this	 potential	 splice	 donor	 APOC3	 polymorphism	

(rs138326449)	in	regulation	of	plasma	lipids	has	not	been	characterized	thus	far.	Therefore,	while	

there	is	be	compelling	evidence	that	reduced	plasma	levels	of	APOC3	protein	results	in	lower	TG	

levels20,26,	there	may	be	multiple	rare	variants	within	an	extended	haplotype	influencing	TG	levels	

in	the	Hutterites.		

	

HDL.	 Although	 the	HDL-C	GWAS	did	not	 identify	 any	 genome-wide	 significant	REVs,	 the	 fgwas	

revealed	two	loci	associated	with	HDL-C	with	regional	PPA	greater	than	90%.	The	first	locus	was	

associated	with	increased	HDL-C	levels	and	tags	the	same	haplotype	on	chromosome	11q23.3	that	

is	associated	with	lower	TG	levels.	The	selected	variant	at	this	locus	with	the	highest	probability	

was	 also	 the	 most	 significant	 SNP	 in	 the	 HDL-C	 GWAS	 (rs184333869;	 logBF=9.03;	 PPA=0.86;	

pgwas=1.1x10-6;	 Figure	 5)	 and	 the	 most	 significant	 association	 in	 the	 TG	 GWAS.	 The	 second	

association	was	with	variants	in	a	3.8Mb	region	on	16q13	and	decreased	HDL-C	levels;	this	is	one	

of	 the	most	 replicated	 loci	 for	 HDL-C	 and	 cardiovascular	 disease	 risk5,35	 (rs3764261,	 a	 variant	

upstream	of	Cholesteryl	Ester	Transfer	Protein	 [CETP]).	 	The	variant	with	 the	highest	posterior	
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probability	of	association	was	rs189679427	(PPA=0.76;	 logBF=6.58;	pgwas=1.27x10-6;	MAF=5.2%;	

1000	genomes	EUR	MAF=0.2%;	Table	 S5),	 an	 intergenic	 variant	 located	143Kb	 from	Glutamic-

Oxaloacetic	Transaminase	2	(GOT2)	and	877Kb	from	Apolipoprotein	O	Pseudogene	5	(APOOP5).	

While	GOT2	has	not	been	directly	linked	to	HDL-C	levels,	its	characterized	function	as	a	membrane	

associated	fatty	acid	transporter	highly	expressed	in	the	liver,	the	primary	tissue	for	apolipoprotein	

metabolism22,36,37,	makes	it		an	interesting	candidate.	

	

Conditional	 analyses	 and	 candidate	 expression	 quantitative	 trait	 locus	 (eQTL)	 studies	 in	 the	

Hutterites	

We	 performed	 two	 sets	 of	 conditional	 analyses	 for	 each	 trait	 with	 one	 or	 more	 significant	

associations	(LDL-C,	TG	and	HDL-C),	including	all	variants	present	in	the	Hutterites	genomes	that	

resided	each	of	the	associated	regions	regardless	of	their	minor	allele	frequencies	in	Europeans.	

First,	we	conditioned	on	the	most	significant	rare	variant	in	our	analyses	to	assess	whether	other	

(rare	or	common)	variants	in	the	region	either	contribute	to	the	observed	association	signal	or	are	

independently	associated	with	the	trait	but	whose	effects	were	masked	by	the	larger	effect	of	the	

rare	 variant.	 Second,	 in	 regions	 with	 known	 associated	 variants	 from	 other	 GWAS,	 we	 also	

conditioned	 on	 the	 GWAS	 variant(s)	 to	 verify	 that	 the	 rare	 variant	 signal	 in	 our	 study	 is	

independent	of	known	associations	at	this	 locus	(Table	3).	We	then	evaluated	the	evidence	for	

regulatory	effects	of	the	candidate	variants	(Table	S5)	on	genes	within	250Kb	of	the	variants	using	

gene	expression	data	in	lymphoblastoid	cell	lines	(LCLs)	from	the	Hutterites38.	Although	LCLs	have	

known	limitations,	genetic	effects	on	gene	expression	are	often	shared	across	multiple	tissues15,39.	

Importantly,	 however,	 our	 focus	 here	 on	 private	 or	 rare	 variation	 in	 the	 Hutterites	 makes	 it	
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impossible	 to	utilize	publicly	available	eQTL	databases	 in	other	 tissues	 to	assess	our	candidate	

variants.	

Conditioning	on	 the	 lead	 rare	 variant	on	chromosome	19	 that	 is	 associated	with	 LDL-C	

(rs557778817)	 revealed	 a	 novel	 common	 variant	 in	 the	 third	 intron	 of	 Phosphodiesterase	 4A	

(PDE4A;	 rs513663)	 that	 reached	 suggestive	 significance	 after	 removing	 the	 effects	 of	 the	 rare	

variant	(pgwas=0.001;	pconditional=3.0x10-6;		Table	3	and	Figure	6A).	PDE4A	plays	a	key	role	in	many	

physiological	process	by	 regulating	 levels	of	 the	cAMP,	a	mediator	of	 response	 to	extracellular	

signals40,	but	to	our	knowledge	variation	with	this	variant	or	any	variants	in	LD	with	it	has	not	been	

previously	 linked	to	 lipid	traits.	Both	the	PDE4A	common	(rs513663)	and	the	LDLR	 rare	variant	

(rs1724388)	are	associated	with	higher	LDL-C	but	reside	on	different	haplotypes	in	the	Hutterites,	

with	independent	and	additive	effects	of	the	minor	alleles	both	on	lowering	LDLR	gene	expression	

(p=0.008)	 and	 increasing	 plasma	 levels	 of	 LDL-C	 (Figure	 6B;	 p=2.4x10-8).	 We	 also	 performed	

conditional	analysis	with	a	commonly	replicated	variant	in	the	LDLR	gene	that	is	associated	with	

decreased	 LDL-C	 levels	 and	 lower	 risk	 for	 coronary	 heart	 disease	 (CHD)5,6,41	 (rs6511720;	

pgwas=0.009	in	the	Hutterites)	and	confirmed	that	the	identified	rare	variants	in	the	Hutterites	have	

independent	and	opposite	effects	compared	to	the	common	GWAS	variant	at	this	locus	(Table	3).	

	 We	performed	eQTL	analyses	with	 the	53	LDL-C	candidate	variants	on	chromosome	19	

(SNP	 PPA>0.5)	 and	 found	 three	 out	 of	 245	 genes	 tested,	 Zinc	 Finger	 Protein	 440	 (ZNF440),	

Dihydrouridine	Synthase	3	Like	(DUS3L)	and	Hook	Microtubule	Tethering	Protein	2	(HOOK2),	had	

expression	levels	associated	with	at	least	one	candidate	variant	at	a	p<10-4	(Table	S5).	The	most	

significant	eQTL	in	this	region	was	a	private	nonsynonymous	variant	on	ZNF439	(chr19:11978399)	

and	decreased	levels	of	Zink	Finger	Protein	440	(ZNF440;	p=2x10-11).		
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Conditional	analyses	of	the	lead	rare	variant	on	chromosome	11	(rs184333869)	that	was	

associated	with	decreased	TG	levels	uncovered	associations	with	known	common	variation	in	the	

BUD13-APOC3	 locus,	 which	 is	 also	 associated	 with	 increased	 TG	 levels.	 The	 effects	 of	 these	

variants	were	masked	by	 the	opposite	 (and	 larger)	effects	of	 the	 rare	variant	 in	 the	Hutterites	

(pgwas=0.0002;	pconditional=9.50x10-9;	Table	3),	consistent	a	classic	epistatic	interaction	(Figure	S5).	

The	direct	effects	of	this	haplotype	on	the	expression	of	the	chromosome	11	apolipoprotein	genes	

could	 not	 be	 assessed	 because	 their	 expression	 is	 restricted	 to	 the	 liver	 and	 had	 nearly	

undetectable	levels	in	the	LCLs.	

Similarly,	 conditional	 analyses	 of	 the	 chromosomes	 11	 and	 16	 associations	with	HDL-C	

confirmed	that	the	rare	variant	associations	at	these	loci	have	independent	effects	from	known	

common	variants	associated	with	HDL-C	(Table	3).	Gene	expression	studies	of	chromosome	16	

variants	 revealed	 that	 the	 candidate	 intergenic	 variant	 located	 between	 GOT2	 and	 APOOP5	

associated	with	lower	HDL-C	levels	is	associated	with	higher	GOT2	expression	in	LCLs	(p=0.004;	

Figure	5C),	but	showed	no	effect	on	the	known	lipid	metabolism	gene	CETP.	Overall,	our	results	

provide	evidence	that	rare	variants	associated	with	lipid	traits	are	likely	to	mediate	their	effects	

by	 modulating	 changes	 in	 gene	 expression,	 and	 in	 general	 have	 larger	 effects	 on	 lipid	 traits	

compared	to	common	variants.		

	

Discussion	

We	performed	GWAS	with	~660k	rare	in	European	variants	that	occur	at	higher	frequencies	in	the	

Hutterites,	and	identified	four	novel	associations	with	plasma	lipid	traits	as	well	as	replicating	the	

effects	of	the	known	APOC3	splicing	variant26,27.	While	the	increased	frequencies	of	these	alleles	
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in	the	Hutterites	provided	sufficient	power	to	identify	these	loci	in	GWAS,	the	long	stretches	of	LD	

resulted	 in	associations	with	many	rare	variants	segregating	on	the	same	haplotype	and	posed	

challenges	 for	 pinpointing	 the	 causal	 variant.	 To	 increase	 resolution	 and	 prioritize	 candidate	

variants	based	on	 their	 likelihood	 to	 influence	each	 trait,	we	applied	a	 statistical	 fine	mapping	

approach	(fgwas28)	by	jointly	incorporating	functional	data	with	our	GWAS	results.	This	allowed	us	

to	narrow	the	subset	of	likely	causal	variants	at	each	locus.	

		 Three	of	the	five	rare	variants	identified	by	the	GWAS	in	our	study	reside	within	known	

lipid	loci	identified	by	GWAS.	However,	even	at	those	known	loci,	the	associated	rare	variants	in	

our	 study	were	 independent	of	 the	 known	associated	 common	variation	 in	 these	 regions.	 For	

example,	a	variant	in	the	first	intron	of	the	LDLR	gene	(rs17242388)	was	associated	with	increased	

LDL-C	levels	in	our	study.	Other	variants	in	the	first	intron	of	LDLR	have	been	previously	implicated	

in	 regulating	 LDL-C	 levels	 in	 two	 studies6,42,	 but	 in	 both	 studies	 the	 associations	 had	 opposite	

effects	on	LDL-C	levels	compared	to	the	rare	variant	in	our	study.	The	known	variants	in	this	intron	

include	a	predominantly	European	variant	that	 is	associated	with	 lower	non-HDL-C	levels	(total	

cholesterol	 –	 HDL-C)	 in	 the	 Icelandic	 population	 (rs17248748;	 MAF=3.4%;	 MAF	 =	 0%	 in	 the	

Hutterites)	and	a	common	variant	linked	to	multiple	blood	lipid	traits6,42	(rs6511720;	MAF=	15.3%;	

1000	genomes	EUR	MAF=11.0%;	p=0.009	 in	the	Hutterites).	The	LDLR	variant	 in	the	Hutterites	

occurs	at	a	frequency	five	times	higher	than	that	reported	in	1000	genomes	(Europeans),	and	is	

located	within	a	predicted	enhancer	region	in	a	number	of	digestive	tract	tissues,	including	liver,	

small	 intestine	and	stomach	mucosa.	Conditional	analyses	revealed	that	the	rare	rs17242388-A	

allele	 and	 the	 common	 rs513663-G	 occur	 on	 different	 haplotypes	 and	 have	 independent	 and	

additive	effects	on	both	lowering	expression	of	the	LDLR	gene	and	raising	plasma	LDL-C	levels.	
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	 A	second	association	with	a	novel	rare	variant	also	resides	within	a	known	lipid	trait	locus	

on	chromosome	16q13.	This	 is	an	 intergenic	variant	(rs189679427)	 located	between	the	GOT2	

gene	and	pseudogene	APOOP5	 that	 is	associated	with	 lower	 levels	of	HDL-C	 in	 the	Hutterites.	

While	 GOT2	 and	 APOOP5	 have	 not	 been	 directly	 linked	 to	 HDL-C	 levels,	 their	 characterized	

function	thus	far	makes	them	interesting	candidates.	GOT2	is	a	membrane	associated	fatty	acid	

transporter	 that	 is	 highly	 expressed	 in	 the	 liver	 and	 several	 apolipoprotein	 genes	 have	 been	

implicated	in	lipid	metabolism22,36,37.		Moreover,	rs189679427	is	located	1.9Mb	downstream	of	a	

well-established	GWAS	variant	upstream	of	CETP	(rs3764261;	LD	r2=0.04),	a	lipid	metabolism	gene	

encoding	a	plasma	protein	that	supports	the	transport	of	cholesteryl	esters	from	HDL-C	to	apoB-

containing	particles	 in	exchange	for	triglycerides43.	The	rs189679427	allele	was	associated	with	

lower	HDL-C	and	with	associated	higher	expression	of	GOT2,	but	not	with	CETP	even	though	it	was	

expressed	in	Hutterite	LCLs.	This	suggests	that	GOT2	may	be	directly	involved	in	regulation	of	HDL-

C	levels,	although	gene	expression	studies	in	more	relevant	tissues	are	required	to	confirm	this	

observation.	

The	suggestive	association	between	variants	at	3q11.2	and	higher	LDL-C	provide	support	

for	 a	 shared	 genetic	 architecture	 between	 Mendelian	 and	 complex	 traits.	 The	 associated	

haplotype	at	this	locus	is	centered	around	ARL6,	a	causative	gene	for	Bardet-Bield	syndrome44,	a	

highly	 penetrant	 oligogenic	 disorder	 that	 results	 in	 a	 number	 of	 clinical	 phenotypes,	 including	

childhood	obesity	and	hyperlipidemia	in	the	majority	of	cases45.		Many	genes	identified	by	GWAS	

of	 lipid	 traits	 also	harbor	 loss	of	 function	mutations	 that	underlie	Mendelian	disorders	of	 lipid	

metabolism37,46,47.	Mutations	within	these	genes	(coding	and	non-coding)	provide	complimentary	

viewpoints	to	the	disease	mechanisms	influencing	these	traits,	but	further	work	in	relevant	tissues	
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is	 necessary	 to	 understand	 the	molecular	 basis	 for	 these	 associations.	Overall,	 our	 results	 are	

consistent	 with	 previous	 findings	 that	 complex	 diseases	 are	 enriched	 for	 loci	 implicated	 in	

Mendelian	traits48.		

In	summary,	our	findings	further	demonstrate	the	advantages	of	population	isolates	in	the	

search	for	rare	variants	associated	with	complex	traits.	Importantly,	all	of	the	associated	variation	

revealed	in	our	study	is	within	non-coding	sequences	and	would	have	been	missed	had	we	focused	

just	 on	 exonic	 variation,	 and	 many	 were	 associated	 with	 gene	 expression,	 highlighting	 the	

importance	of	studying	the	effects	rare	non-coding	variation	on	gene	expression	as	well	as	their	

effects	on	common	disease	traits.	An	inherent	limitation	of	this	study,	and	most	studies	of	rare	

variants,	is	the	challenge	of	replicating	findings	due	to	the	very	low	frequency	of	the	alleles	under	

investigation	in	most	populations.	For	example,	the	rare	and	low-frequency	variants	surveyed	in	

the	Global	Blood	Lipids	Consortium	meta-analysis6	are	primarily	loss-of-function	coding	variation	

and	had	no	overlap	with	the	variants	in	our	study,	98.9%	of	which	were	non-coding.		Nonetheless,	

the	discoveries	revealed	in	this	study,	even	those	that	may	be	private	to	Hutterites,	uncovered	

potentially	novel	disease	genes,	and	highlight	new	clinically	relevant	pathways	that	could	point	

toward	 novel	 therapeutic	 targets	 for	 hyperlipidemias	 and	 lowering	 the	 risk	 for	 cardiovascular	

disease.		

	

Materials	and	Methods	

Study	sample	

Standard	fasting	plasma	lipid	measurements	were	collected	as	part	of	a	larger	study	of	complex	

traits	 in	 the	Hutterites	 (see	Cusanovich	et	al.	 (2016)38	 for	details).	Briefly,	blood	samples	were	
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collected	after	an	overnight	fast	from	828	Hutterites	(ages	14	to	85	years;	Table	1)	during	field	

trips	to	Hutterite	colonies	in	1996–1997,	and	2006-2009.	Plasma	levels	for	LDL-C,	HDL-C,	TG	and	

total	 cholesterol	 were	 measured.	 Subjects	 receiving	 anti-hypercholesterimia	 medication,	

hormone	replacement	therapy,	birth	control,	or	diagnosed	with	sitosterolemia49	were	excluded	

from	the	study.	For	subsequent	analyses,	we	applied	a	cubed	root	transformation	to	absolute	LDL-

C	and	HDL-C	levels,	a	natural	log	transformation	to	TG	and	total	cholesterol.			

	

Genotyping	

We	 used	 PRIMAL23,	 an	 in-house	 pedigree-based	 imputation	 algorithm,	 to	 phase	 and	 impute	

7,605,123	 variants	 discovered	 in	 98	 whole	 genome	 sequences	 to	 1,317	 Hutterites	 who	 were	

previously	genotyped	on	Affymetrix	arrays50-52.	The	genotype	accuracy	of	PRIMAL	in	the	Hutterites	

was	>99%,	and	the	average	genotype	call	rate	was	87.3%	due	to	the	variation	in	IBD	sharing	across	

the	 genome	 of	 individuals	 with	 the	 98	 sequenced	 Hutterites.	 	 Within	 individuals,	 genotype	

accuracy	was	uncorrelated	with	call	rates.	See	Livne	et	al.	(2015)23	for	additional	details.		

	

Single	variant	and	conditional	analyses	

	We	 focused	our	 studies	on	660,238	variants	 that	were	 rare	 (MAF<1%)	or	absent	 in	European	

populations	in	the	ExAC53,	the	ESP54	or	1000	genomes55	databases,	and	had	genotypes	called	in	at	

least	400	individuals	and	occurred	at	frequencies		>	1%	in	the	Hutterites	(Figure	1).	We	refer	to	

these	variants	as	REVs	throughout	the	text.	To	test	the	effect	of	REVs	on	each	of	the	plasma	lipid	

traits,	we	used	a	linear	mixed	model	as	implemented	in	GEMMA25	adjusting	for	age	and	sex	as	

adding	kinship	as	a	random	effect	to	correct	for	the	relatedness	between	the	individuals	in	our	
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sample.	Causal	variants	were	then	prioritized	based	on	functional	annotations	as	implemented	in	

fgwas28.		Follow-up	conditional	analyses	were	carried	out	in	GEMMA	for	6,781,373	variants	in	the	

Hutterites	called	 in	at	 least	400	 individuals	and	with	MAF>	1%.	The	datasets	generated	during	

and/or	analyzed	during	the	current	study	are	available	in	the	dbGaP	repository,	phs000185.	

	

Candidate	eQTL	analyses	in	LCLs	

Candidate	eQTL	analyses	in	LCLs	were	performed	in	GEMMA	and	included	gene	expression	for	441	

Hutterite	individuals	(317	of	which	are	in	our	lipid	studies)	that	was	collected	as	part	of	a	separate	

study38.	The	LCL	RNA-seq	data	was	processed	as	follows.	Reads	were	trimmed	for	adaptors	using	

Cutadapt	(with	reads	<5	bp	discarded)	and	remapped	to	hg19	using	STAR	indexed	with	gencode	

version	19	gene	annotations56,57.	To	remove	mapping	bias,	reads	were	processed	using	the	WASP	

mapping	pipeline58.	Gene	counts	were	collected	using	HTSeq-count59.	VerifyBamID	was	used	to	

identify	potential	sample	swaps60.	Genes	mapping	to	the	X	and	Y	chromosome	and	genes	with	a	

Counts	Per	Million	(CPM)	value	of	1	(expressed	with	less	than	20	counts	in	the	sample	with	lowest	

sequencing	 depth)	 were	 removed.	 Limma	 was	 used	 to	 normalize	 and	 convert	 counts	 to	 log	

transformed	CPM	values61.	Technical	covariates	that	showed	a	significant	association	with	any	of	

the	top	principal	components	were	regressed	out	(RNA	integrity	number	and	RNA	concentration).	

	

Variant	annotation	

We	obtained	 variant	 annotations	 from	dbSNP,	 ENSEMBL,	 LOFTEE,	 conservation	 and	 functional	

scores	 (e.g.	 CADD,	 GERP,	 PolyPhen,	 SIFT),	 and	 allele	 frequencies	 from	 European	 populations	

(ExAC53,	ESP54,	1000	genomes55)	using	Variant	Effect	Predictor	(VEP)62.	We	downloaded	promoter	
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and	 enhancer	 annotations	 created	 by	 the	 Epigenomics	 Roadmap	 Project	 (-log10(p)	 ³10;	

http://www.broadinstitute.org/~meuleman/reg2map/HoneyBadger2_release/)	for	127	cell	types	

or	tissues.	We	directly	annotated	variants	using	the	ClinVar	database	downloaded	on	08/07/2016	

and	selected	variants	 labelled	as	pathogenic	or	 likely	pathogenic.	Lastly,	we	used	53	functional	

categories	and	9	cell-type	specific	histone	marks	regions	obtained	from	Finucane	et	al.	(2015)30	

(https://data.broadinstitute.org/alkesgroup/LDSCORE/).	 Briefly,	 the	 annotations	 include	

annotations	 for	 RefSeq,	 digital	 genomic	 footprint	 and	 transcription	 factor	 binding	 sites	 from	

ENCODE63,	combined	chromHMM	and	Segway	annotations	for	six	cell	lines64,	processed	DHS	data	

from	ENCODE	and	Roadmap	Epigenomics	data	 and	 cell	 type	 specific	H3K4me1,	H3K4me3	and	

H3K9ac	 data	 from	 Roadmap	 Epigenomics29,	 H3K27ac	 from	 Roadmap	 Epigenomics	 and	 from	

Hnisz	et	al.	(2013)65,	super-enhancers	from	Hnisz	et	al.	(2013)65,	processed	conserved	regions	in	

mammals	 from	 Lindblad-Toh	et	 al.	 (2011)66,67	 and	 FANTOM5	enhancers68.	 For	 each	 functional	

Finucane	et	al.	(2015)30	annotation,	a	500-bp	window	was	added	as	an	additional	category.	For	

each	DHS,	H3K4me1,	H3K4me3,	and	H3K9ac	sites,	a	100-bp	window	around	the	ChIP-seq	peak	

was	added	as	an	additional	category.	

	

Fgwas	

Using	the	 fgwas	software28	and	the	genomic	annotations	described	above,	we	applied	a	single	

annotation	model	to	our	GWAS	results	to	investigate	enrichment	of	each	functional	categories.	

Similar	to	the	procedure	performed	by	Pickrell	(2014)28.	First,	we	divided	the	genome	into	~14,000	

blocks	of	approximately	120	Kb	each	(~50	variants/block)	and	applied	forward	selection	to	build	

step-wise	models	including	the	combined	effects	from	multiple	annotations.	Second,	we	followed	
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by	a	cross	validation	step	to	avoid	over	fitting	while	maximizing	the	likelihood	of	each	model.	We	

present	the	final	best	fitting	models	in	Figure	2.		

	

Description	of	Supplemental	Data	

Supplemental	Data	includes	six	figures	and	five	tables.	
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Table	1:	Sample	composition	and	clinical	descriptions.	

Lipid	trait	
Sample	size	

(Male/Female)	
Mean	age	
[95%	range]	

Mean	mg/dL	
[95%	range]	

Low	density	lipoprotein	cholesterol	(LDL-C)	 807	(367/440)	 36.04	
[16-65]	

125.1	
[48.86-201.34]	

High	density	lipoprotein	cholesterol	(HDL-C)	 828	(381/447)	 36.35	
[16-66]	

54.7	
[23.78-	85.62]	

Triglycerides	(TG)	 828	(382/446)	
36.31	

[16-65.65]	
121.5	

[0-299.91]	

Total	cholesterol	 828	(381/447)	
36.35	
[16-66]	

203.9	
[121.8-286]	

	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2017. ; https://doi.org/10.1101/141960doi: bioRxiv preprint 

https://doi.org/10.1101/141960
http://creativecommons.org/licenses/by/4.0/


	 26	

Table	2:	Genome-wide	significant	results	for	plasma	lipid	trait	GWAS	of	rare	in	European	
variants.	Variants	presented	are	the	most	significant	in	each	region.	
	
Trait	 rsID	

(chr:location)	
Minor/	
major	

MAF	 1000G	
EUR	AF	

p	 Beta	
(SE)	

Variant	type	
(gene)	

No.	of	
significant	REVs		

LDL-C	 rs557778817	
19:11305534	

T/C	 0.032	 0.003	 1.48x10-17	 1.30	
(0.15)	

intronic	
(KANK2)	

78	

TG	 rs184333869	
11:117947268	

T/C	 0.023	 0.001	 5.41x10-13	 -1.28	
(0.17)	

ncRNA	intronic	
(TMPRSS4-AS1)	

39	

rsID	was	annotated	with	dbSNP142.	Location	is	based	on	hg19.	Direction	of	effect	corresponds	to	the	minor	allele.	
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Table	3:	Summary	results	 for	conditional	analyses.	 (A)	Conditional	analysis	on	 lead	rare	variant	
identified	in	this	study.	For	each	candidate	loci,	the	listed	variant	represents	the	next	lead	variant	
in	the	region	(MAF>1%)	after	regressing	the	effect	of	the	lead	rare	variant	identified	each	GWAS.	
(B)	Conditional	analysis	on	previously	reported	common	GWAS	variants	in	the	region.		Candidate	
causal	 REVs	 in	GWAS	 loci	 remain	 significant	 after	 taking	 into	 account	 the	 effects	 from	 known	
common	variation.		

	
(A)	Conditional	analysis	on	lead	rare	variants	

Trait	
Conditioning	
REV	(pgwas)	

rsID	
(chr:location)	

Minor/	
major	

MAF	 pgwas	 pconditional	
Betaconditional	

(SE)	
Variant	type	

(gene)	

LDL-C	 rs557778817	
(p=1.48x10-17)	

rs513663	
(19:	10539537)	 G/A	 0.282	 0.001	 3.03	x10-6	 0.26	

(0.06)	
intronic	
(PDE4A)	

LCL-C	
chr1:	

224811120	
(p=7.99x10-5)	

chr1:224894756	 T/C	 0.03	 0.0002	 0.0003	
0.57	
(0.16)	

intronic	
(CNIH3)	

LDL-C	 rs191020975	
(p=1.88x10-5)	

rs538668869	
(3:96038119)	

T/C	 0.01	 0.02	 0.01	 0.50	
(0.20)	

intergenic	
(MTHFD2P1,	
MIR8060)	

TG	
rs184333869	
(p=5.41x10-13)	

rs11604424a	

(11:	116651115)	 C/T	 0.225	 0.0002	 9.50	x10-9	
0.36		
(0.06)	

downstream	
(ZPR1)	

HDL-C	 rs184333869	
(p=1.1x10-6)	

rs56107015	
	(11:121083121)	

G/A	 0.170	 3.74x10-5	 0.001	 0.28	
(0.06)	

Intergenic	
(TECTA,	SC5D)	

HDL-C	 rs189679427	
(p=1.27x10-6)	

rs4783961a	

(16:56994894)	
G/A	 0.468	 0.002	 1.66	x10-5	 -0.26	

(0.06)	
upstream	
(CETP)	

(B)	Conditional	analysis	on	previously	reported	GWAS	variants	

Trait	
Conditioning	
variant	(pgwas)	

Candidate	
variant	

Minor/	
major	

MAF	 pgwas	 pconditional	
Betaconditional	

(SE)	
Variant	type	

(gene)	

LDL-C	
rs6511720a	
(p=0.009)	

rs17242388	
(19:11206861)	 A/G	 0.03	 3.89x10-15	 1.31x10-15	

1.27	
(0.16)	

intronic	
(LDLR)	

TG	
rs964184a,b	

(p=3.13x10-9)	
rs138326449	

(11:116701354)	 A/G	 0.022	 1.08x10-9	 9.85	x10-9	
-1.05	
(0.18)	

splicing	
(APOC3)	

HDL-C	
rs964184a	
(p=0.2)	

rs184333869	
(11:117947268)	 T/C	 0.024	 1.10x10-6	 1.63	x10-6	

0.88	
(0.18)	

ncRNA	intronic	
(TMPRSS4-AS1)	

HDL-C	
rs17231506a	
(p=3.85x10-6)	

rs189679427	
(16:58911464)	 T/C	 0.052	 1.27x10-6	 5.93x10-5	

-0.54	
(0.13)	

intergenic	
(GOT2,	
APOOP5)	

rsID	 was	 annotated	 with	 dbSNP142.	 Direction	 of	 effect	 corresponds	 to	 minor	 allele.	 Superscripts	 on	 rsIDs	
correspond	to	study	where	variant	was	reported	as	significant.	aGlobal	Lipids	Genetics	Consortium	et	al.	Discovery	
and	 refinement	 of	 loci	 associated	with	 lipid	 levels.	Nat.	 Genet.	 45,	 1274–1283	 (2013).	 bTeslovich,	 T.	M.	 et	 al.	
Biological,	clinical	and	population	relevance	of	95	loci	for	blood	lipids.	Nature	466,	707–713	(2010).		
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Figure	 1:	 Allele	 frequencies	 of	 variants	 present	 in	 Hutterite	 genomes.	 (A)	 Bar	 plot	 of	 variants	
binned	by	maximum	reported	allele	frequency	in	European	databases,	stratified	by	European	minor	
allele	frequency	(MAF)	on	the	x-axis	and	shown	by	Hutterite	minor	allele	frequency	within	each	bar.	
Variants	 presented	 include	 ~7	 million	 variants	 discovered	 in	 98	 Hutterite	 whole	 genome	
sequences23.	Maximum	European	allele	frequencies	were	calculated	from	surveys	of	the	Exome	
Sequencing	Project	(ESP),	Exome	Aggregation	Consortium	(ExAC)	and	the	1000	genomes	project.	
Rare	in	European	variants	(REVs)	included	in	the	lipid	trait	association	studies	are	highlighted	with	
a	yellow	border	in	the	novel	and	rare	categories.	(B)	Boxplots	of	log(MAF)	by	annotation	category	
for	 the	660,238	REVs	 included	 in	 the	 lipid	 trait	association	studies.	Annotation	categories	were	
based	 on	 RefSeq24.	 Numbers	 in	 parenthesis	 correspond	 to	 the	 number	 of	 variants	 in	 each	
annotation	class.	Black	vertical	lines	correspond	to	the	median	and	whiskers	to	the	25th	and	75th	
percentiles.	
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Figure	2:	Joint	fgwas	models	for	blood	lipid	traits.	Models	were	fit	combining	multiple	annotations	
using	the	fgwas	hierarchical	methodology,	as	described	in	Pickrell	et	al.	(2014)28.	The	MLE	and	95%	
CI	of	 the	enrichment	effects	of	each	annotation	 in	 the	 final	model	 (modeling	performed	using	
penalized	likelihood)	are	shown.	
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Figure	 3:	 Rare	 variants	 on	 chromosome	 19	 are	 associated	with	 LDL-C.	 (A)	 Reweighted	 GWAS.	
GWAS	results	were	reweighted	using	the	joint	model	presented	in	Figure	2.	Each	point	represents	
a	region	of	the	genome	and	its	corresponding	posterior	probability	of	association	(PPA)	in	a	model	
with	and	without	enrichments.	Red	points	correspond	to	regions	in	the	bottom,	grey	points	in	the	
middle,	and	black	points	in	the	top	tertiles	of	gene	density.	The	dotted	red	line	represents	regional	
PPA	>	0.75	in	the	enriched	model.	(B)	Boxplot	of	association	between	LDL-C	(y-axis)	and	candidate	
LDLR	expression	 level	by	variant	rs17242388	(p=3.89x10-15)	 (x-axis).	Black	horizontal	 lines	show	
medians	and	whiskers	show	the	25th	and	75th	percentiles.	(C)	Locus	plot.	The	top	panel	shows	the	
p-values	of	association	with	LDL-C	for	all	variants	discovered	in	the	Hutterites	regardless	of	allele	
frequency	 in	 Europeans	 (y-axis).	 Symbols	 correspond	 to	 the	 maximum	 allele	 frequency	 in	
Europeans,	with	closed	circles	representing	REVs	(see	legend),	and	are	colored	based	on	their	LD	
r2	with	the	most	associated	variant	in	the	region	(rs557778817).	The	next	three	panels	show	tracks	
for	 the	 annotations	 selected	 in	 the	 fgwas	 joint	model,	 annotations	 of	 known	GWAS	 loci	 from	
NHGRI,	 and	 the	 estimated	 PPA	 of	 being	 causal	 for	 each	 variant	 in	 the	 reweighted	 fgwas.	 The	
bottom-most	panel	shows	the	genes	in	the	region.	
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Figure	4:	Rare	variants	on	chromosome	11	are	associated	with	TG	levels.	(A)	Reweighted	GWAS.	
GWAS	results	were	reweighted	using	the	joint	model	presented	in	Figure	2.	Each	point	represents	
a	region	of	the	genome	and	its	corresponding	posterior	probability	of	association	(PPA)	in	a	model	
with	and	without	enrichments.	Red	points	correspond	to	regions	 in	 the	bottom	tertile	of	gene	
density,	grey	points	the	middle	and	black	points	the	top.		Dotted	red	line	represents	regional	PPA	
>	0.75	in	the	enriched	model.	(B)	Boxplots	of	association	between	TG	(y-axis)	and	candidate	non-
coding	RNA	intronic	variant	in	TMPRSS4-AS1	(rs149157643;	p=7.47x10-13)	and	splicing	variant	in	
APOC3	(rs138326449;	p=1.08x10-9).	Black	horizontal	lines	show	medians	and	whiskers	show	the	
25th	and	75th	percentiles.	(C)	Locus	plot.	The	top	panel	shows	the	p-values	of	association	with	TG	
for	all	variants	discovered	in	the	Hutterites	regardless	of	allele	frequency	in	Europeans.	Symbols	
correspond	to	the	maximum	allele	frequency	in	Europeans,	with	closed	circles	representing	REVs	
(see	legend),	and	are	colored	based	on	their	LD	r2	with	the	most	associated	variant	in	the	region	
(rs184333869).	The	next	three	panels	show	tracks	for	the	annotations	selected	in	the	fgwas	joint	
model,	annotations	of	known	GWAS	loci	from	NHGRI,	and	the	estimated	PPA	of	being	causal	for	
each	variant	in	the	reweighted	fgwas.	The	bottom-most	panel	shows	the	genes	in	the	region.	
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Figure	5:	Rare	variants	on	chromosomes	16	are	associated	with	HDL-C.	(A)	Locus	plots.	The	top	
panel	shows	the	p-values	of	association	with	HDL-C	for	all	variants	discovered	in	the	Hutterites	
regardless	of	allele	frequency	in	Europeans.	Symbols	correspond	to	the	maximum	allele	frequency	
in	Europeans,	with	closed	circles	representing	REVs	(see	legend),	and	are	colored	based	on	their	
LD	r2	with	the	most	associated	variant	in	the	region	(rs189679427).	The	next	three	panels	show	
tracks	for	the	annotations	selected	in	the	fgwas	joint	model,	annotations	of	known	GWAS	loci	from	
NHGRI,	 and	 the	 estimated	 PPA	 of	 being	 causal	 for	 each	 variant	 in	 the	 reweighted	 fgwas.	 The	
bottom-most	panel	 shows	 the	genes	 in	 the	 region.	 (B)	Boxplots	of	association	between	HDL-C	
levels	(y-axis)	and	rs189679427	(intergenic	variant	between	GOT2	and	APOOP5;	p=1.27x10-6).	(C)	
Genotype	boxplots	of	rs189679427	eQTL	boxplots	for	GOT2	expression	in	LCLs	(p=0.004).	Numbers	
beneath	genotypes	correspond	to	the	number	of	individuals	in	each	class.	
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Figure	6:	LDL-C	conditional	analysis	on	top	rare	variant	(rs557778817).	(A)	Locus	plot.	Conditional	
analysis	on	rs557778817	identified	novel	common	variants	with	suggestive	significance.	The	next	
three	panels	show	annotations	of	known	GWAS	loci	from	NHGRI	and	genes	in	the	region.	(B)	LDLR	
and	PDE4A	variant	haplotype	boxplots	for	LDL-C	levels	and	LDLR	LCL	expression.	Phased	alleles	are	
the	 lead	 common	 signal	 in	 PDE4D	 identified	 in	 conditional	 analysis	 (rs513663;	 top)	 and	 the	
candidate	 LDLR	 rare	 intronic	 variant	 identified	 in	 the	 fgwas	 (rs17242388;	 bottom).	 The	 trends	
observed	 between	 each	 of	 five	 haplotype	 combinations	 present	 in	 our	 sample	 suggest	 these	
variants	have	additive	effects	that	lower	LDLR	expression	and	increase	LDL-C	levels.			
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