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Abstract

In the resting-state, extended regions of the human cortex engage in electrical oscillations within the
alpha-frequency band (7-14 Hz) that can be measured outside the head by magnetoencephalography
(MEG). Given the accumulating evidence that alpha oscillations play a fundamental role in attentional
processing and working memory, it becomes increasingly important to characterize their cortical or-
ganization. Event-related studies have demonstrated that attentional allocation can modulate alpha
power selectively within the visual, auditory, and somatosensory cortices, as well as in higher-level
regions. Such studies demonstrate the existence of multiple generators by exploiting experimental
contrasts and trial-averaging. The identification of alpha generators from resting-state data alone has
proven much harder and, consequently, relatively little is known about their organization: Apart from
the classical visual, somatosensory, and auditory rhythms, it is unclear how many more generators can
be observed with MEG and how they are organized into functional networks. Such knowledge, how-
ever, possibly enables to delineate separate cognitive, perceptual, and motor processes that co-occur
in the resting-state and is therefore important. In this study we use the resting-state MEG data-set
provided by the Human Connectome Project to identify cortical alpha generators and to characterize
their organization into functional networks. The large number of subjects (N = 94), multiple scans
per subject, and state-of-the-art surface-based cortical registration enable a detailed characterization
of alpha in human cortex. By applying non-negative matrix factorization to source-projected power
fluctuations, we identify 16 reliable cortical generators in each hemisphere. These include the classical
sensory alpha rhythms as well as several additional ones in the lateral occipital and temporal lobes
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and in inferior parietal cortex. We show that the generators are coordinated across hemispheres and
hence form resting-state networks (RSNs), two of which are the default mode network (DMN) and the
ventral attention network (VAN). Our study hence provides a further subdivision of RSNs within the
alpha frequency band and shows that these RSNs are supported by alpha generators. As such, it links
the classical literature on human alpha with more recent research into electrophysiological RNSs.
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1 Introduction

Human alpha (7-14 Hz) oscillations were first observed using scalp electroencephalography (EEG)
almost a century ago [5] and their physiological origin was confirmed in the late sixties using magne-
toencephalography (MEG) [12]. It was not until about a decade ago that their involvement in selective
attention has been firmly established. Alpha oscillations reflect fluctuations in cortical excitability
[61] through deployment of selective attention [36, 34, 33]. For instance, allocating attention to one
hemifield, leads to a decrease in alpha power in the contralateral visual cortex and to enhancement
in the ipsilateral visual cortex [35]. This modulatory role of alpha has been established in the visual
[74, 35, 60, 66], somatosensory [15, 24], and auditory [4, 70, 54, 71, 28, 73] domains as well as across
domains [19, 67] and has been shown to have perceptual (and hence, behavioral) consequences. In
these and related studies, alpha power is modulated in an repeatable way by controlled manipulation of
selective attention. An interesting question that cannot be addressed by such experimental designs is
how alpha is organized in the absence of such controlled manipulation, that is, during the resting-state.
More specifically, which cortical regions spontaneously generate alpha and how are these generators
coordinated? In controlled experiments such as those cited above, the existence of alpha generators is
inferred by contrasting conditions and trial-averaging. For instance, in a spatially cued visual detection
task, the existence of two independent generators within the visual system (dorsal and ventral) was
inferred in such a way [9]. The existence of alpha generators in the resting brain cannot be inferred
by using these techniques and this makes the above question particularly challenging to address.

The preclusion of using experimental contrasts and trial-averaging is one of the reasons that rela-
tively little is known about the organization of spontaneous alpha in human cortex. Early EEG and
MEG dipole studies have demonstrated that visual and primary somatosensory cortices spontaneously
generate alpha oscillations. These oscillations have become known as the visual alpha rhythm and
the somatosensory mu rhythm, respectively [27, 10, 46]. Although referred to as rhythms, visual and
somatosensory alpha constitute a multitude of independent oscillatory generators. This is inferred
from the observation that MEG dipoles typically form two clusters; one located within the Calcarine
sulcus and another within the parieto-occipital fissure [62, 27, 10, 46, 42, 22]. A difference between
visual alpha and somatosensory mu seems to be that the latter is confined to the hand area of the
primary somatosensory cortex [27], while visual alpha is more widespread. The reason and functional
relevance for this difference is unknown. Besides visual alpha and somatosensory mu, there have been
reports of a more lateral rhythm within the somatosensory cortex, originating from the upper lip of
the Sylvian fissure [64, 56, 42], where the secondary somatosensory cortex is located. This rhythm,
which is referred to as the sigma rhythm, is not found in all subjects, presumably due to signal can-
cellation within the parietal operculum, but the available evidence is inconclusive. The organization
of spontaneous alpha in the temporal lobe is incompletely understood as well, but the temporal lobe
seems to house at least two functionally distinct rhythms. One of these is the auditory tau rhythm,
which is generated in the posterior/middle section of the superior temporal gyrus [68, 41]. It is still
controversial if the auditory tau rhythm can be observed in resting-state MEG recordings [42]. Besides
the tau rhythm, the temporal lobe generates at least one other alpha rhythm, known as the breach
rhythm or the third rhythm [11, 57]. It is located over the midsection of the middle/inferior temporal
gyrus and in contrast to the tau rhythm, is not modulated by auditory stimuli [68, 42, 70]. Due
to its relatively low frequency (6-9 Hz) some studies have classified it as theta (4-8 Hz) [22, 31]. It
is unclear how the breach rhythm relates to the auditory tau rhythm and if the two are actually distinct.

The contours of the organization of spontaneous alpha in the human cortex has been obtained by
piecing together observations of different data-sets and recording techniques (MEG/EEG/ECoG).
Outstanding questions are if the known alpha rhythms are present in the majority of people, how
large their intra- and inter-subject variability is, how many more generators exist in the resting human
cortex, and how the generators are coordinated to form resting-state networks (RSNs). We address
these questions using the unique MEG data-set provided by the Human Connectome Project (HCP)
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(MEG2 Data Release) [39, 69]. This data-set contains three resting-state sessions from a large number
of (healthy young) participants (N = 94) and have employed state-of-the-art surface-based cortical
registration techniques developed by the HCP [20].

In Section 2.1 we analyze the cortical distribution of power, spectral, and temporal features of al-
pha and conduct a test-retest reliability analysis. We find that power maps are reliable to the extent
that they can be used to identify individual subjects from the population. Frequency maps, on the
other hand, are found to be more sensitive to momentary (i.e. within-scan) cortical state and might
therefore explain some of the inter-scan variability in cognitive, perceptual, and emotional variables.
In Section 2.2.1 we describe how non-negative matrix factorization (NMF) can be used to delineate
cortical generators. In Section 2.2.2 we apply NMF to spontaneous power fluctuations and identify 16
reliable generators in each hemisphere, which include the classical alpha rhythms in visual, somatosen-
sory, and auditory cortices, as well as additional ones in the ventral occipital and medial temporal
lobes, inferior parietal lobule, and the parieto-temporal junction. We also found a second generator
within the primary somatosensory cortex, located more ventrally w.r.t. the classical mu rhythm. No
generators were found in the frontal cortex. In Section 2.2.3 we show that in addition to the generator
locations, their relative strengths are also reliable, that is, reproducible across scans. In Section 2.2.4
we show that the generators’ power fluctuations are coordinated across hemispheres and hence form
resting-state networks (RSNs). Our study thus demonstrates that cortical alpha is organized into a
multitude of homologue RSNs and, as such, provides the most comprehensive characterization to date
of the organization of alpha in the resting human cortex.

2 Results

2.1 General features of resting-state cortical alpha

2.1.1 Power and frequency maps

In this section we investigate the cortical distribution of power and oscillatory frequency. For each
subject and run, we averaged the power matrix over epochs, obtaining a single vector (or map) that
contains the average power for all cortical vertices (see Materials and Methods). The power maps where
subsequently divided by their sum to obtain subject- and run-specific power-density maps. This was
done to remove global power differences between subjects that might dominate the analysis. Subject-
and run-specific frequency maps were also obtained (see Materials and Methods). Global intra-subject
(inter-run) and inter-subject were removed by subtracting the subject- and run-average frequency from
each frequency map. This hence yielded subject- and run-specific relative frequency maps.

Figure 1A shows the subject- and run-averaged power-density map. Alpha power is particularly high
in the occipital and temporal lobes, and to a lesser extent in parietal lobes, extents into the central
sulcus, and is particularly low in the frontal cortex. Roughly the same distribution has been reported
in [31], using a different MEG scanner and a different source projection method. Figure 1B shows the
subject- and run-averaged relative frequencies. Although the frequency range is rather narrow (±0.35
Hz), the frequency difference between posterior and frontal regions in individual subjects can be much
larger (up to 2 Hz). Particularly high frequencies can be observed in occipital and parietal midline
regions, where the classical posterior alpha rhythm is located [27, 10, 46] as well as on the post-central
gyrus, where the classical somatosensory (mu) rhythm is located [27, 64, 63, 46]. Note also that the
frequency is particularly low in (medial) frontal cortex. Because the frequencies were calculated not as
peak-frequencies but as the center frequencies using a weighted average over frequency bins within the
alpha-band (see Materials and Methods), these low frequencies are due to the absence of alpha power
in frontal cortex (see Figure 1A), and therefore predominantly reflect frontal theta activity, which is
known to be generated here [32, 65].
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2.1.2 Test-retest reliability

To compare intra- and inter-subject variability of the power and frequency maps, we calculated the
distributions of the intra- and inter-subject spatial correlations. The intra-subject distribution was
obtained by calculating, for each subject, the spatial correlation between the power maps of the three
unordered pairs of runs and pooling the correlations from all subjects. Spatial correlations were cal-
culated as the cosine of the angle between the respective maps. The inter-subject distribution was
obtained by calculating, for each run, the spatial correlation between all ordered pairs of subjects and
pooling to correlations from all runs. The resulting intra- and inter-subject distributions of the (Fisher
transformed) power-density correlations are shown in Figure 1C. The fact that almost all intra-subject
correlations are higher than all inter-subject correlations implies that these maps can be used as func-
tional fingerprints in that they allow a given subject to be identified from the group of all 82 subjects
if its power-density map on one of the runs is given. This is in analogy with resting-state BOLD-fMRI
functional connectivity matrices, which have recently shown to posses this property [18]. In contrast,
the frequency maps cannot be used as functional fingerprints mostly because of their relatively high
intra-subject variability (in the sense of low spatial correlations) as can be seen from Figure 1D.

Figure 2A shows the power-density maps of two subjects (with HCP identification numbers 112920
and 990366) for each of the three runs and displayed on their native cortical meshes. For both subjects,
the power-density maps are rather similar across runs (low intra-subject variability) and are relatively
different between the two subjects (high inter-subject variability). It is the combination of these two
properties that enables identification of individual subjects. In this example, the first subject (ID
112920) has a relatively strong posterior alpha rhythm while the second subject (ID 990366) has a rel-
atively strong somatosensory rhythm in the left hemisphere and a strong rhythm in the supramarginal
gyrus in the right hemisphere. Figure 2B shows the relative frequency maps for the same two subjects.
These maps are clearly more variable between runs as compared to the power maps. In particular, the
relative frequency of the posterior alpha rhythm in the first subject is higher in run 2 as compared to
run 1 and still higher in run 3. An interesting observation is that while the power maps of the first
subject do not clearly show the presence of the somatosensory rhythm, the frequency maps show a
locally increased relative frequency around the post-central sulcus, particularly in the first two runs.
The mu rhythm of the first subject is hence definitively present, but very weak, which makes it hard
to discern it in the power map. In Section 2.2 we show that such weak generators can still be detected
by an appropriate decomposition of the power matrices.

2.1.3 Temporal dynamics

To characterize the temporal dynamics of spontaneous low-frequency (< 0.5 Hz) power fluctuations
within the alpha-frequency band, we calculated, for each cortical vertex and run, the subject-averaged
spectral densities. To have a shared frequency resolution across subjects, we used the lowest number of
epochs in the entire data-set (110), which corresponds to a fundamental frequency of 0.0045 Hz. The
highest observable (Nyquist) frequency is determined by the sampling frequency (0.5 Hz) and equals
0.25 Hz. To characterize the power densities, we calculated their Hurst exponents. For a spectral
density of the form 1/fα, the Hurst exponent α measures the slope of the log-transformed spectral
density and hence characterizes the power-law scaling of the amplitude fluctuations [43]. Vertex-wise
Hurst exponents were calculated by fitting first-order polynomials to the log-transformed spectral
densities. An overall Hurst exponent was also calculated by fitting a polynomial to the vertex- and
run-averaged power spectral densities. This yielded a Hurst exponent of 0.32. Figure 3A shows the
overall power spectral density, together with the fitted log-linear polynomial. It shows that the power
spectral density is well-modeled by a power-law and hence is scale-free, at least over the range of
observable frequencies (two orders of magnitude). The Hurst exponents obtained from the run-specific
spectral densities (so before averaging over runs) were equal to 0.30, 0.32, and 0.35, for run 1, 2, and
3, respectively. Moreover, the average spatial correlation of the Hurst maps over the three ordered
run-pairs equals 0.83. These observations shows that the Hurst exponent is a robust and reproducible
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feature of resting-state cortical dynamics within the alpha frequency-band, at least on the time-scale of
the experiments (several hours). Figure 3B shows the overall cortical Hurst map. Note the relatively
low exponent in (medial) frontal cortex. Thus, besides power and frequency, frontal alpha-band activity
seems to behave differently from other cortical regions also with respect to its temporal dynamics.

2.2 Generators of resting-state cortical alpha

In the next section, we use non-negative matrix factorization (NMF) [6] of the low-frequency (< 0.5 Hz)
power fluctuations to decompose them into a number of generators (Section 2.2.1). NMF decomposes
the power matrices into a small number of non-negative spatial and temporal components that together
account for the spatiotemporal structure present in the fluctuations, and, as such, uncovers latent
structure in their spatiotemporal dynamics. We subsequently compare the generators with known
generators from classical MEG dipole studies (Section 2.2.2), consider their contribution to cortical
power (Section 2.2.3), and characterize their organization into resting-state networks (Section 2.2.4).

2.2.1 Delineation using non-negative matrix factorization

To break down the spontaneous low-frequency (< 0.5 Hz) alpha-band power fluctuations into gener-
ators, we used non-negative matrix factorization, also known as parallel factor analysis (PARAFAC)
[6]. For each subject s (s = 1, · · · , 82) and run r (r = 1, 2, 3), the n×ms,r-dimensional power matrix
Ps,r was calculated, where n denotes the number of cortical vertices (n = 8004) and ms,r denotes
the number of epochs of subject s and run r (see Materials and Methods for the calculation of the
power matrices). Subsequently, the n×mr-dimensional matrix Pr is constructed by horizontally con-
catenating the matrices P1,r, · · · , P82,r, where mr denotes the total number of epochs on run r. To

be sensitive to weak generators, we factorized the power-density matrix P̃r, which is obtained from
Pr by normalizing its columns by the sum of their entries. A factorization of P̃r, however, induces a
factorization of Pr, with the same spatial components, but with scaled time-courses (see Materials and
Methods). The power-density matrix P̃1 of run 1 is shown in Figure 4.

We applied the factorization separately to the left and right hemispheres. This was done because
when factoring both hemispheres simultaneously, the algorithm yields both lateralized and homogolue
components, which complicates subsequent analysis. Our strategy is to first break down the power
fluctuations into elementary generators, and subsequently assess their organization into functional
networks. Factorization of the left- and right-hemispheric power matrices PLr and PRr of run r yields
approximations

PLr ≈ ALrXL
r , (1)

and
PRr ≈ ARr XR

r , (2)

where ALr and ARr are n/2 × k-dimensional non-negative matrices that contain the left- and right-
hemispheric spatial components (generators) in their columns, XL

r and XR
r are k × mr-dimensional

non-negative matrices that contain the respective time-courses in their rows, and k denotes the number
of components. To break down the spontaneous power fluctuations into elementary generators, the
number of components k was set to a large value. Principal component analysis (PCA) of the left- and
right-hemispheric power-density matrices showed that k = 18 will be sufficient. Crucially, we factor-
ized Pr separately for r = 1, 2, 3 and selected only the reliable generators for further analysis, where
reliability was defined as a spatial correlation > 0.8. This yielded 17 generators in each hemisphere
(and for each of the three runs).

One of the generators had a rather diffuse spatial profile and was confined to the frontal cortex. Given
the relatively low oscillation frequencies in frontal cortex (Figure 1B), this generator likely captures the
high-frequency end of the frontal theta rhythm and we will not further consider it in this study. The
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remaining 16 left- and right-hemispheric generators were paired by using the inter-hemispheric spatial
correlation matrix of the run-averaged components: Each left-hemispheric generator was paired with
that right-hemispheric generator with which it was maximally correlated. The (reliable and paired)
run-averaged generators are shown in figure 5.

2.2.2 Relation to the classical alpha rhythms

In this section we link the identified generators to the cortical sources of alpha oscillations as reported
in classical MEG dipole studies. Six of the 16 generators are located within the visual cortex. They are
numbered 1 to 6 in Figure 5. Generators 1 and 2 are located in striate cortex, around the tip of the Cal-
carine sulcus, generators 3 and 4 are located in ventral visual cortex, and generators 5 and 6 are located
in dorsal visual cortex, with generator 6 extending into medial parietal regions. The striate and dorsal
generators cover the area where the classical posterior alpha rhythm has been localized in early MEG
studies using equivalent current dipoles (ECDs), that is, around the tip of the Calcarine sulcus and
around the parieto-occipital fissure [27, 10, 46]. In addition to these classical generators of the posterior
alpha rhythm, the ventral generators have less frequently been reported [45]. The factorization thus
has broken down the classical posterior alpha rhythm into several localized generators with partially
independent time-courses. This is reminiscent of the results of these classic studies, which reported a
multitude of independent ECDs, scattered throughout the Calcarine sulcus and the parieto-occipital
fissure [27, 10, 46]. Our observations hence corroborate these findings and reinforce the notion that
the posterior alpha rhythm is not a unitary rhythm, but a spatially extended system of oscillations [72].

Three of the 16 generators are located within the somatosensory cortex. They are numbered 12
to 14 in Figure 5. Generator 13 is located on the post-central gyrus and corresponds to the somatosen-
sory mu rhythm, which originates from the hand representation area of SI [64, 63, 46]. The weaker
coverage of the pre-central gyrus is due to the inability of the source projection method to accurately
reconstruct sources located of the fundi and walls of sulci (surface bias). The true location of generator
13 hence most likely is on the post-central wall. Generator 12 is also located on the post-central gyrus,
but more laterally. This generator might correspond as well to the mu rhythm, reflecting inter-subject
differences in the location and spatial extent of the hand representation area. The existence of more
than one mu generator suggests that like visual alpha, the mu rhythm is a spatially extended and
heterogeneous phenomena, in line with earlier MEG dipole studies [46]. We will refer to generator 13
and 12 as dorsal and ventral mu, respectively. Generator 14 seems to originate from the secondary
somatosensory cortex (SII) and hence corresponds to the sigma rhythm [64, 56, 42]. We suspect that
this is the same generator as observed in [42], which was localized close to the mouth area of SI.

Five out of the 16 generators are located within the temporal lobe. They are numbered 7 to 11
in Figure 5. Generator 7 covers the middle section of the superior temporal sulcus and generator 8 and
10 cover the anterior section of the middle and inferior temporal gyrus (but not the temporal pole).
Given their locations, and the relatively low frequency of alpha in these regions (see Figure 1B), we
suspect these generators to correspond to the classical breach rhythm [11] also called the third rhythm
[57], which has been recorded with epidural electrodes [11, 57]. Generator 9 covers the posterior sec-
tion of the superior temporal sulcus and can hence be identified with the classical auditory tau rhythm
[68, 41]. Generator 11 covers the posterior section of the middle temporal gyrus and as far as we know,
there are no reports on spontaneous MEG/EEG alpha-band oscillations originating from this region.

Two of the 16 generators are located within the inferior parietal cortex. They are numbered 15
and 16 in Figure 5. Generator 15 covers the supramarginal gyrus. Observe, however, that in the left
hemisphere, generator 15 also covers medials parts of the occipital lobe. We suspect that this generator
can be broken down further into more elementary generators. Generator 16 covers the angular gyrus.
We are not aware of any reports of alpha generators in these regions from resting-state MEG (or EEG)
data.
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2.2.3 Relative contributions

In this section we consider the generators’ relative contributions to the total cortical power. We illus-
trate this by using the ventral mu rhythm (see Figure 5) but similar observations can be made for the
other generators. For each of the 16 generators, we calculated their subject- and run-specific relative
contributions cLr,s(i) and cRr,s(i) to the power-density, where i indexes the generators. Thus, cLr,s(i) and

cRr,s(i) range between zero and one and their sum over i equals one. As an example, Figure 6A shows
the population profiles of the relative contributions of the left-hemispheric ventral mu rhythm (gener-
ator 12) for all subjects and all three runs. The relative contributions of the ventral mu rhythm vary
considerably between subjects, but are reproducible over scans. The same holds for the other genera-
tors. We quantified the reproducibility of the relative contribution of a given generator by calculating,
for each of the three ordered run-pairs, the average correlation between the population profiles and
compared that with the respective correlation values obtained by first randomly permuting the subject
numbers. For all generators and both hemispheres, none of the 104 null-values exceeded the respective
observed values, which yielded a p-value of p < 0.0032, after correcting for multiple (2 × 16 = 32)
comparisons. This shows that the high test-retest reliability of the cortical power maps (see Section
2.1.2) is inherited from the high reliability (together with their high variability over subjects) of the
relative contributions of the underlying generators.

The indices cLr,s(i) and cRr,s(i) measure the relative contributions of the i-th generator over the entire
run, and as such, do not provide information on their within-run temporal fluctuations. Information on
the latter can be obtained by calculating the instantaneous (that is, epoch-wise) relative contributions
(see Materials and Methods). Figure 6 shows the instantaneous relative contribution of the ventral
mu rhythm in two subjects. Subject 32 (ID 189349) and subject 44 (ID 223929) have a relatively
large and small average relative contribution of the power-density (see Figure 6A). This is reflected
in their (average) power maps, which are shown in Figure 6C (left column). As is clear from Figure
6B, in both subjects, the instantaneous relative contribution of the ventral mu rhythm is far from
being constant. While in subject 32 the ventral mu rhythm is dominant on average, there are several
epochs during which its (instantaneous) contribution is close to zero. The reverse is true for subject
44: Although its average contribution is low, there are epochs during which the ventral mu rhythm
is relatively dominant. This is illustrated in Figure 6C (right panel), which shows the instantaneous
power maps of these two subjects, taken at epoch numbers 44 and 30, as designated by the red dots
in Figure 6B. Similar observations can be made for the other generators.

2.2.4 Organization into functional networks

To assess the inter-hemispheric correlation structure of the identified generators, we correlated the
generators’ time-courses with the low-frequency power fluctuations of each cortical vertex in the
contra-lateral hemisphere. This yielded an inter-hemispheric correlation map for each of the left-
and right-hemispheric generators and for each of the three runs, which were subsequently rectified to
retain only the non-negative correlations (see Materials and Methods for details). The run-averaged
rectified correlation maps are shown in Figure 7. The run-specific correlation maps were reproducible
over runs: their spatial correlation, averaged over each of the three combinations of ordered run-pairs
and over generators, was 0.91.

For each generator, the highest correlations are found roughly at the respective homologue corti-
cal regions and this holds for both the left- and right-hemispheric generators. This means that the
generators’ spontaneous power fluctuations are coordinated across hemispheres and the generators thus
are organized into homologue functional networks. Note that for most generators, the correlation maps
are less localized than the corresponding spatial components (Figure 5), which shows that functional
correlations are relatively sensitive to magnetic field spread. The lack of localization is particularly
severe in cortical regions that have weak MEG leadfields like the insular cortex, the temporal pole, and
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medial regions. This sensitivity to magnetic field spread can be alleviated by using covariances instead
of correlations [25]. This is shown in Figure 8. The reason why the covariance structure is more local-
ized than the correlation structure is that covariances incorporate the amplitudes of the time-courses
and amplitudes are less susceptible to magnetic field spread in the case of MEG or volume-conduction
in the case of EEG [29]. A potential drawback of using covariances over correlations, however, is that
functional coupling of a generator to a low-amplitude region can be overlooked. This is the case for
the ventral attention network (VAN) and the default mode network (DMN) as we will see below.

The networks of most generators are simple, in the sense of comprising a single region in the contra-
lateral hemisphere. Exceptions, however, are the networks formed by generators 9 and 16 (Figure
7). Generator 9, which we earlier identified with the tau rhythm of the temporal lobe, is functionally
connected to inferior frontal cortex, which is particularly clear for the right hemisphere. We suspect
this generator to be part of the VAN, which comprises inferior frontal cortex and the temporal-parietal
junction, is known to be right-lateralized [14], and is part of the task-positive network, which is known
to operate within the alpha-frequency band [37]. Because frontal regions have relatively low alpha-
power (Figure 1A), functional connectivity with frontal regions is suppressed when using covariances
instead of correlations, although still observable (Figure 8). The same holds for generator 16, which
is located on the supramarginal gyrus and is functionally connected to medial prefrontal cortex (Fig-
ure 7). These regions form, respectively, the parietal and frontal nodes of the DMN, which has been
observed before within the alpha-frequency band [37]. Frontal connectivity is suppressed when using
covariances (Figure 8), although the connectivity to the temporal node of the DMN is better visible
due to relatively strong alpha oscillations within the temporal lobe (Figure 1A). Generally, therefore,
the most complete picture of the functional organization of cortical generator is obtained by using
both correlation and covariance maps.
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3 Discussion

Main findings

In this study we have used the resting-state MEG data-set provided by the Human Connectome Project
(HCP) [39], which comprises a large number of subjects (N = 94) and three scans per subject, to
assess the functional organization of human resting-state cortical activity within the alpha frequency
band (7-14 Hz). We have used a non-negative spatiotemporal factorization [6] of source-projected
power fluctuations to identify reliable population-level alpha generators. We found 16 generators in
each hemisphere which include the well-known alpha rhythms in visual, somatosensory, and auditory
cortices [68, 64, 41, 56, 46, 42], as well as additional generators in temporal and inferior parietal cortices,
which, to the best of our knowledge, have not been reported in previous studies. No generators were
found in the frontal cortex. By correlating their power fluctuations with those at all cortical locations,
we found that the generators are coordinated across hemispheres, thus forming resting-state networks
(RSNs). Our study hence uncovered a multitude of RSNs within the alpha band, including visual,
somatosensory, and auditory subnetworks, the default mode network (DMN) and the ventral attention
network (VAN) and demonstrated that these networks are supported by the classical alpha rhythms.
These findings provide a more complete and detailed picture of the organization of resting-state cortical
alpha and illustrate the power of the HCP MEG data-set.

General features of cortical alpha

Cortical alpha power was strong throughout most of the post-central cortex and particularly in visual,
somatosensory, and temporal regions, where the classical alpha rhythms reside [27, 10, 46]. Frontal (i.e.
pre-central) regions had relatively low power. Strikingly similar power maps have been reported before,
using a different MEG scanner and a processing pipeline [31], which demonstrates their robustness.
Our findings and those of [31] indicate that the frontal cortex doesn’t generate alpha. Although frontal
alpha has frequently been reported in EEG and MEG studies, peak-frequencies are typically lower than
those of more posterior regions [1, 31]. This is clearly illustrated in Figure 1B. Combined with the
fact that we found only one frontal generator - which was diffuse and therefore likely reflects a deep
generator - frontal alpha might perhaps be better classified as theta, which is known to be generated
within the (medial) frontal cortex and whose frequency range overlaps with that of alpha [32]. An
additional argument for the conflation of frontal alpha and theta is that we extracted alpha oscillations
based on subject-specific alpha peak- frequencies: Had we used a standard frequency band, which is
common in EEG and MEG studies, perhaps we would have identified more frontal generators (and
classified them as alpha). We therefore suspect that the frontal generator observed in this study, reflects
the high-frequency end of the frontal theta rhythm. A similar consideration might apply to the anterior
part of the temporal lobe [57, 68, 41] and refining our taxonomy of resting-state cortical alpha/theta
will be an important step in further understanding their functional organization. Concerning temporal
features of cortical alpha, we found the source-projected power fluctuations within the alpha frequency
band obey power-law scaling over two-orders of magnitude (from 0.01 to 0.25 Hz) with Hurst exponents
displaying a posterior-anterior gradient. These findings essentially reproduce earlier ones in sensor-
level MEG data [43, 53] and indicate that local cortical circuits involved in the generation of alpha
operate in the vicinity of a second-order phase transition [43].

Test-retest reliability

Cortical power maps were highly reproducible across scans and differed substantially between subjects.
Such a combination of low intra-subject (i.e. inter-scan) and high inter-subject variability allows these
maps to be used as functional fingerprints to identify single subjects from a population. This finding
is not new, as several studies have demonstrated that scalp EEG power maps are reliable over even
longer periods [38, 17]. In contrast, the test-retest reliability - which is quantified by the ratio of
intra-subject and inter-subject variability - of cortical frequency maps was lower and this could be
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almost entirely contributed to a higher intra-subject variability. Although this implies that frequency
maps are less useful for subject identification, albeit only marginally as shown before for EEG [55], it
is precisely the high intra-subject variability that enables their use as a marker for momentary (i.e.
within-scan) cortical state. Inter-trial variability of a variable usually reflects statistical noise and
is therefore of no interest. In the case of oscillatory frequency estimated from five minutes of data,
statistical noise is practically absent, and hence the intra-subject variability in frequency maps reflects
actual variability. This makes frequency maps sensitive to momentary cortical state and might explain
some of the intra-subject variability in behavioral, cognitive, perceptual, or emotional state [16]. Note
that intra-scan variability in psychological variables cannot be explained by cortical power maps, as
they are practically identical across scans. Low test-retest reliability, together with the absence of
statistical noise, thus opens up an interesting way to study intra-subject variability in mental state
and again illustrates the (potential) power of the HCP MEG data-set.

Cortical alpha generators

Early MEG dipole studies have shown that the visual, somatosensory, and auditory cortices generate
alpha oscillations in the resting-state [27, 10, 46]. Although there has been some MEG evidence for
the existence of additional generators in higher-order sensory cortices [56, 42], they have not been
observed in all studies and it remains controversial if they are observable with MEG. In stark contrast,
a multitude of generators has been inferred from MEG data by using task-related designs and trial-
averaging. These and related studies have established the existence (and functional relevance) of
multiple generators in early and higher-order sensory cortices as well as in associative cortex [74, 66,
24, 70, 50, 67]. By only using resting-state MEG data, our findings can be thought of as providing
more direct evidence for their existence. They also demonstrate that most (know) alpha generators
are observable with MEG without using experimental contrasts or trial-averaging, something which
is considerably more challenging from a signal-processing point of view. To delineate the generators,
we used a combination of source projection and matrix factorization. Although inverse modeling
yields cortical power maps, which show that alpha is widespread throughout the post-central cortex
(see Figure 1A and [31]), by themselves, such maps do not allow to delineate different generators.
Likewise, although factorization of sensor-level MEG data allows for the identification of generators,
without source projection, their locations cannot be inferred. Our results hence illustrate the strength
of combining source projection and matrix factorization in elucidating the functional organization of
resting-state cortical activity [47, 44].

Relation to resting-state networks

Resting-state networks in early visual, somatosensory, and auditory cortices in the alpha frequency
band have been observed before with MEG [30]. In [30] and several other studies ([7, 13], for example),
networks were identified by seed-based correlation maps, which are relatively sensitive to magnetic
field spread. As a consequence, the localization of these networks is relatively rough. For instance,
placing a seed in the (early) somatosensory cortex, yields correlation maps that cover both the pre-
and post-central gyrus over most of their lateral extent. Although magnetic field spread can be
mitigated to some extent by using covariances instead of correlations (see Figure 8 and [25]), the
factorization approach taken in our study seems to yield even higher accuracy, although the high-
quality surface-based cortical registration employed by the HCP might also play a part in this [20].
Another advantage of the factorization approach is that it allows for decomposition of the sensory
networks into subnetworks, thereby revealing some of their internal structure. In the visual network,
for instance, it allows delineation of early, dorsal, and ventral subnetworks and the same holds for
the other sensory modalities. A similar approach identified visual subnetworks from resting-state
MEG data, although with lower spatial resolution [3]. By delineating generators prior to a correlation
analysis, we have demonstrated that the sensory RSNs in the alpha frequency band are supported by
(classical) alpha rhythms and the same holds for the DMN and VAN.
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Functional interpretation

There is causal evidence that resting-state alpha power reflects the excitability of cortical tissue,
at least within the visual system [61]. By now, it is established that alpha power is regulated by
selective attention and that this has perceptual consequences. This has been shown for the visual
[74, 35, 60, 66], somatosensory [15, 24], and auditory [4, 70, 54, 71, 28, 73] modalities as well as
across modalities [19, 67]. Viewed in this context, the multitude of alpha generators observed in
our study are likely to reflect ongoing fluctuations in the allocation of sensory attention [34, 33]. In
addition to sensory generators, we found two generators within the inferior parietal cortex (angular and
supramarginal gyrus). Alpha power in these regions has been shown to be modulated during auditory
working memory [50] and audiospatial attentional tasks [2]. We observed that the relative strength of
the different generators fluctuates during the scanning session. For example, at one particular moment
during the scanning session, alpha within the left somatosensory cortex might dominate, while at a
subsequent moment, alpha in the right primary cortex dominates. During the resting-state, there thus
appears to be a dynamic switching of attentional focus both within and across sensory modalities. In
future studies, the delineation of the power fluctuations of individual alpha generator, as enabled by
the factorization approach, might proof useful in disentangling separate attentional processes and in
characterizing their interactions.

New applications of the methodology

The methodology proposed in this study, namely, non-negative factorization of source-projected power
fluctuations, might be used to address outstanding questions. One of these concerns the electrophysi-
ological signature of cortical generators and the ensuing RNSs. In this study we focused on generators
within the alpha frequency band. Previous research has shown, however, that electrophysiological
RNSs are generally not confined to a single frequency band [48]. An interesting approach would there-
fore be to apply such a factorization to the three-way tensor formed by space, time, and frequency
triples. This generalization has already been proven useful in identifying separate cognitive processes
from scalp EEG recordings [51] and might be equally useful in providing a more general characteriza-
tion of resting-state cortical generators and RNSs. Another possible application concerns the relation
between resting-state EEG alpha powerand BOLD-fMRI. There is currently no general consensus on
how BOLD-fMRI relates to cortical alpha [21, 40, 23, 49, 52] and one of the complicating factors is
the multitude of cortical alpha generators. In these and related studies, a single generator is usually
isolated by selecting a single EEG electrode or an independent component. By applying non-negative
matrix factorization to source-projected EEG data, the hemodynamic correlates of separate alpha
generators might more easily be disentangled.
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4 Materials and Methods

4.1 Data acquisition

We used the MEG data-set provided by the Human Connectome project (HCP) [69] (MEG2 Data
Release) which comprises three six-minute resting-state scanning runs from 94 young healthy partic-
ipants using the whole-head MAGNUS 3600 (4D Neuroimaging, San Diego, CA) system, housed in
a magnetically shielded room. The participants were instructed to remain still (supine position), to
relax with eyes open, and to fixate on a projected cross-hair on a dark background. The recorded data
were segmented into two-second epochs and pre-processed using a dedicated pipeline that included
detection of bad channels and segments, ICA-based artifact rejection (see [39] for details).

4.2 Data pre-processing

Prior to source modeling, we discarded the data of those subjects for which alpha-band oscillations
could not be detected in one or more of the three runs and subsequently bandpass-filtered the data
of the remaining subjects (N = 82) about subject-specific alpha-band frequencies. To detect the
presence of alpha-band oscillations in the data of subject s and run r, we first calculated the power-
spectra (using the FFT) for each sensor and epoch, averaged the spectra over epochs and sensors, and
subsequently searched for a (local) peak in the within the range 6− 13 Hz. If such a peak was absent
in any of the three runs, the subjects’ data were discarded. The sensor time-series of the remaining
subjects were subsequently bandpass filtered ±3 Hz about the weighted-frequency f̄s,r

f̄ =
1

pn

n∑
i=1

pifi (3)

within the alpha-band (6-13 Hz), where f1, · · · , fn denote the frequency bins within the alpha-band,
p1, · · · , pn the respective power values, and p = p1 + · · ·+pn denotes the total power within the alpha-
band. The filtering was done by a fourth-order zero-phase Butterworth bandpass filter. We used
f̄ instead of the alpha peak-frequency because the power spectra of many of the subjects contained
multiple peaks within the alpha-band. We visually inspected the broadband and bandpass filtered
power spectra of all subjects and runs and found the above procedure to well isolate the alpha peaks.
After bandpass-filtering, the time-series were down-sampled by a factor of four (from 508.6275 to
127.1569 Hz).

4.3 Source modeling

Leadfield matrices were computed in Fieldtrip [58] using realistic single-shell headmodels provided
by the HCP. As source spaces we used co-registered individual cortical meshes (4002 vertices per
hemisphere) provided by the HCP. A detailed description of the anatomical processing pipeline can be
found in [20]. This yielded subject-specific leadfield matrices Gs,r of dimension ms,r × 3n, where ms,r

denotes the number of non-bad MEG channels of subject s and run r and where n = 8004 is the total
number of cortical vertices. The columns of the subject- and run-specific leadfield matrix Gs,r thus
contain the vertex-wise leadfield vectors for each of the three Euclidean orientations. Suppressing the
dependence on subject s and run r from the notation, the m× t-dimensional data matrix B (where t
denotes the number of temporal samples) is projected to source space using Harmony [59], which is a
smoothed version of the classical minimum-norm estimate (MNE) designed to reduce surface-bias in
the source reconstructions. Specifically, the 3n× t-dimensional source-activity matrix Ĵ is obtained by
applying the Harmony inverse operator G]λ to B:

Ĵ = G]λB, (4)

where
G]λ = Σx

(
GΣxG

T + λIm
)−1

, (5)
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where λ ≥ 0 denotes the regularization parameter, the 3n-dimensional matrix Σx the a priori source
covariance matrix, Im the m-dimensional identity matrix, and where T denotes matrix transpose.
Harmony models Σx as

Σx = AΣyA
T , (6)

where A denotes the 3n × 6(lmax + 1)2-dimensional Harmonic transformation matrix, which contains
the spherical harmonics (of both hemispheres) up to and including degree lmax = 20. The 6(lmax +1)2-
dimensional matrix Σy denotes the a priori source covariance matrix expressed in the Harmonic basis
and is modeled as a diagonal matrix with diagonal entries equal to 1/(1 + lpmax), where p = 0.5 is a
controls the suppression of high-degree Harmonics and therefore the level of spatial smoothing of the
source reconstructions [59].

4.4 Noise regularization

The regularization parameter λ in Eq. (3) prevents overfitting and choosing an appropriate value is
therefore important in obtaining high-quality source reconstructions. For each subject and run, the
appropriate level of regularization was determined by applying the L-tangent norm criterion [8] to a
randomly chosen sample from each epoch and subsequent averaging. The L-tangent norm criterion
selects that value for λ that minimizes the derivative (i.e. speed) along the (logarithm of the) L-curve.
Specifically, let

L(λ) =
(
||Ĵ ||, ||B −GĴ ||

)
(7)

be the L-curve [26], then λ is chosen as follows:

λ∗ = argmin
d

dλ
log 10 (L(λ)) , (8)

which was obtained by calculating the L-curve on the (logarithm of the) interval [−12,−6] in steps
of 0.25 and by approximating d/dλ in these points by finite differences. All obtained values λ∗ fell
well inside the chosen range of λ. Since the samples used for computing the regularization levels were
randomly chosen, we repeated their calculation for several subjects to confirm that the same values
were obtained. Furthermore, the resulting source-power distributions of all subjects and runs were
visually inspected for the presence of over- and under-regularization.

4.5 Oscillation frequencies

The a given subject s, run r, and epoch e, and cortical vertex v, we calculated the power spectra of
the time-series of each cortical vertex (using the DFT), averaged the spectra over all epochs, yielding
an epoch-averaged power vector p and a frequency vector f . The oscillation frequency fα was then
calculated by weighing the frequency vector by the power:

fs,r,e =
1

N

∑
k

pkfk, (9)

where N =
∑
k pk is a normalization factor. Note the fα is not the peak-frequency but corresponds to

the center-of-mass of the spectral density p.

4.6 Power-matrices

For a given cortical vertex, the epoch-wise source-power was obtained from the vector-valued time-
course j(t) = (jx(t), jy(t), jz(t)) by calculating its squared Euclidean norm:

||j(t)||2 = jx(t)2 + jy(t)2 + jz(t)
2, (10)
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centering its norm to zero by bandpass filtering it ±6 Hz about 2f̄s,r, and subsequently averaging
the squared samples over the epoch. Centering of ||j(t)|| removed the (artifactual) low-frequency
fluctuations in ||j(t)|| that resulted from rectifying negative values of j by taking its norm. Thus, each
subject s and run r yielded a n× ns,r-dimensional matrix Ps,r of epoch-wise source power, where ns,r
denotes the number of epochs of subject s on run r and n = 8004 is the number of cortical vertices.

4.7 Non-negative matrix factorization

Parallel factor analysis (PARAFAC) [6] was applied to the subject-concatenated power-density ma-
trices. To compute the power-density matrices, we first constructed the n × mr-dimensional power
matrix Pr by horizontally concatenating the power matrices P1,r, · · · , P82,r, where mr denotes the
total number of epochs on run r:

Pr = P1,r ⊕h · · · ⊕h P82,r, (11)

where ⊕h denotes horizontal concatenation. Subsequently, the power matrix Pr was converted to a
power-density matrix P̃r. Thus, let Λr be the mr-dimensional diagonal matrix with i-th diagonal entry
equal to the sum of the entries of the i-th column of Pr, then P̃r is calculated as

P̃r = PrΛ
−1
r . (12)

Each row of P̃r now is a density, that is, its entries sum to 1. PARAFAC is now applied to the left-
and right-hemispheric power-density matrices separately. Thus, writing

P̃r = P̃Lr ⊕v P̃Rr , (13)

where ⊕v denotes vertical concatenation, we factorize P̃Lr and P̃Rr separately, yielding (approximate)
factorizations

P̃Lr ≈ ÃLr X̃L
r , (14)

and
P̃Rr ≈ ÃLr X̃R

r , (15)

of P̃Lr and P̃Rr into k components, where ÃLr and ÃRr are n/2 × k-dimensional matrices that contain
the spatial components of the left- and right-hemispheric factorizations, respectively, in their columns
and X̃L

r and X̃R
r are k ×mr-dimensional matrices that contain the temporal components of the left-

and right-hemispheric factorizations, respectively, in their rows. Since P̃Lr and P̃Rr are non-negative
matrices, we require the matrices ÃLr , ÃRr , X̃L

r , and X̃R
r to be non-negative as well. The factorizations

were computed by using the Matlab N-way Toolbox [6].

4.8 Inter-hemispheric functional connectivity

To assess the inter-hemispheric functional organization of the identified generators, we proceed as
follows. Note first that the generator time-courses X̃L

r and X̃R
r of the left- and right-hemispheres of

run r can be written as
X̃L
r = X̃L

1,r ⊕h · · · ⊕h X̃L
s,r, (16)

and
X̃R
r = X̃R

1,r ⊕h · · · ⊕h X̃R
s,r, (17)

where X̃L
s,r and X̃L

s,r contain the left- and right-hemispheric generator time-courses of subject s. For a
given left-hemispheric generator, and for each subject s and run r, we calculate the Pearson correlation
coefficients between its time-course, which corresponds to one of the rows of X̃L

s,r, and the power

fluctuations of all right-hemispheric cortical vertices, which correspond to the columns of PRs,r. This

yields an n/2-dimensional column vector ρRs,r of inter-hemispheric correlation coefficients. By repeating
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the same calculation for the corresponding generator in the right hemisphere, we obtain a similar
correlation vector ρLs,r, which can subsequently be combined into the n-dimensional correlation vector

ρs,r = ρLs,r ⊕v ρRs,r. (18)

Thus, the v-th entry of ρs,r contains the Pearson correlation coefficient between the power-fluctuations
of subject s and run r at vertex v and the contra-lateral time-course of the selected generator. Run-
specific population-level correlation vectors ρr are now obtained by averaging the Fisher-transformed
subject-specific correlation vectors over subjects:

ρr = F−1
(
〈F (ρs,r)〉s

)
, (19)

where F and F−1 denote the Fisher and inverse Fisher transformations, respectively, and <>s denote
averaging over s (subjects). Although in correlating the generator time-courses with the low-frequency
power fluctuations, the (absolute) power matrices Pr are used, the generator time-courses themselves
were obtained by factorizing the power-density matrices P̃r, which leads to uninformative negative
correlations in ρr. Therefore, the negative entries in ρr were set to zero, yielding rectified correlation
vectors ρ+r .
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Figure legends

Figure 1: Cortical power and frequency maps. A. Color-coded power-density map, averaged over runs
and subjects. The values are non-negative and sum to one. B. Color-coded relative frequency maps, av-
eraged over runs and subjects. The colorbar ranges from -0.2 Hz to 0.2 Hz. C. Intra- and inter-subject
distributions (blue and red, resp.) of the Fisher-transformed spatial correlations between the relative
power maps. D. Intra- and inter-subject distributions (blue and red, resp.) of the Fisher-transformed
spatial correlations between the frequency power maps.

Figure 2: Power and frequency maps in two subjects. A. Power-density maps for two HCP subjects
(ID 112920 and ID 990366) for each of the three resting-state runs. The colors are scaled independently
for each subject and run (maximal range). B. Relative frequency maps for the same subjects. For
subjects 112920 and 990366, the colorbar ranges between ±0.5 Hz and ±0.4 Hz, respectively.

Figure 3: Temporal dynamics of low-frequency power fluctuations. A. Overall power spectral density
of epoch-wise source power, obtained by averaging the vertex- and run-wise spectral power densities
(black line). The red line corresponds to the fitted log-linear polynomial and has a Hurst exponent of
32. B. Cortical Hurst map obtained by averaging the subject-averaged Hurst exponents over runs and
cortical vertices. The exponents range from 0.15 to 0.40.

Figure 4: Power-density matrix. Shown is the n×m1-dimensional power-density matrix P̃1 of run 1,
which is obtained by concatenating the subject-specific power-density matrices P̃s,1 for s = 1, · · · , 82
of run 1. n denotes the number of cortical vertices (n = 8004) and m1 denotes the total number of
epochs on run 1. Subjects are separated by vertical black lines.

Figure 5: Cortical generators of resting-state MEG power fluctuations within the alpha frequency
band. Shown are the run-averaged generators that were reliable, that is, present in all three runs (spa-
tial correlation > 0.8). In each hemisphere, 16 reliable generators were identified, and in this figure
they have been grouped based on maximal inter-hemispheric spatial correlation. The generators are
ordered according to anatomical/functional location. Colormaps have been scaled to their maximal
range.

Figure 6: Relative contributions of the ventral mu rhythm. A. Relative contributions of the left-
hemispheric ventral mu rhythm (generator 12) for all subjects and all three runs. B. Instantaneous
(epoch-wise) relative contributions of the ventral mu rhythm for two subjects Top and bottom panels
correspond to subject 32 (ID 189349) and subject 44 (ID 223929), respectively. C. Power maps (left
column) and instantaneous power maps (right columns) of the same two subjects. The instantaneous
power maps of subject 32 and 44 were taken at epoch numbers 44 and 30, respectively, which are
designated by the red dots in B.

Figure 7: Resting-state functional networks within the alpha frequency band extracted using cor-
relations. Shown are the run-averaged rectified inter-hemispheric correlation maps of the 16 identified
generators. Their ordering is identical to that of Figure 5. Colormaps have been scaled to their maxi-
mal range.

Figure 8: Resting-state functional networks within the alpha frequency band extracted using co-
variances. Shown are the run-averaged rectified inter-hemispheric covariance maps of the 16 identified
generators. Their ordering is identical to that of Figure 5. Colormaps have been scaled to their
maximal range.

18

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2017. ; https://doi.org/10.1101/142091doi: bioRxiv preprint 

https://doi.org/10.1101/142091
http://creativecommons.org/licenses/by-nc/4.0/


References

[1] L. I. Aftanas and S. A. Golocheikine. Human anterior and frontal midline theta and lower alpha
reflect emotionally positive state and internalized attention: High-resolution EEG investigation
of meditation. Neurosci. Lett., 310(1):57–60, 2001.

[2] J. Ahveninen. The long reach of the gene. Psychologist, 26(3):194–198, 2013.

[3] A. P. Baker, M. J. Brookes, I. A. Rezek, S. M. Smith, T. Behrens, P. J. P. Smith, and M. Woolrich.
Fast transient networks in spontaneous human brain activity. Elife, 2014(3):1–18, 2014.
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