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Abstract 

Single cell RNA-seq (scRNA-seq) experiments can provide a wealth of information about 

heterogeneous, multi-cellular systems.  However, this information has to be inferred 

computationally from sequencing reads which constitute a sparse and noisy sub-sampling of the 

actual cellular transcriptomes. Here we present UNCURL, a unified framework for scRNA-seq 

data visualization, cell type identification and lineage estimation that explicitly accounts for the 

sequencing process. The main algorithmic novelty is a non-negative matrix factorization method 

that uses knowledge of the distribution resulting from the sequencing process to more 

accurately model the underlying cell state matrix.  We also develop a systematic way for 

incorporating prior biological information such as bulk RNA expression profiles into the cell state 

matrix. We find that UNCURL dramatically improves performance over state-of-the-art methods 

both in the absence and presence of prior knowledge. Finally we demonstrate that using 

UNCURL as a data preprocessing tool significantly improves the performance of existing 

scRNA-seq analysis algorithms.  

Introduction 

High-throughput scRNA-seq technologies1–4 can provide biological insights such as revealing 

cell type composition5,6, cell lineage relationships7–11 or even spatial relationships12,13 between 

cells in heterogeneous multi-cellular systems. Enabling such insights are two key advantages of 

single cell transcriptomic datasets. First, having information about individual cells helps avoid 

aggregation and conflation of traits from disjoint groups of cells within a mixed sample14. 

Second, scRNA-seq provides very large sample size, both in terms of the number of cells and 

genes that can be assayed, compared to other methods with single-cell resolutions. However, 

advanced computational methods are required to extract latent biological information from the 

raw read-counts which provide only a heavily sampled version of the full cellular 

transcriptome15,16.  

 

Most commonly used computational tools for cell type identification10,17, lineage estimation7–11  

and similar applications rely on an initial dimensionality reduction step using methods such as 

PCA18 or tSNE19. However, these algorithms assume that the underlying data is drawn from a 

Gaussian or a t-distribution, an assumption that does not hold for scRNA-seq data20. The 
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discrepancy between the assumed and actual distribution fundamentally limits the accuracy of 

the resulting predictions. Moreover, existing methods rely almost exclusively on unsupervised 

learning and do not incorporate useful and commonly available prior information such as bulk 

gene expression data or cell type specific marker genes to guide the analysis process. While 

there is a simple way to utilize prior knowledge with existing algorithms by using the known gene 

expression vectors for initialization, the variability in data type and quality severely restricts the 

utility of such initialization. 

 

Here, we introduce UNCURL, a unified computational framework for scRNA-seq data 

processing and learning that addresses these shortcomings. Moreover, unlike prior methods, 

UNCURL jointly tackles all major unsupervised learning tasks commonly used in the context of 

scRNA-seq data. An overview of the algorithmic workflow of UNCURL can be seen in Figure 1 

A. The main technical contribution of UNCURL is a generalized non-negative matrix factorization 

(NMF) that explicitly accounts for the Poissonian or negative binomial sampling distribution. Our 

algorithm exploits the low-dimensional nature of the true biological state matrix, i.e. it assumes 

that each cell is in a convex combination of a few archetypal cell-states. Under this assumption, 

the true state matrix can be expressed as a product of an archetypal main state matrix, 

comprising of gene-expression in the archetypal states, and a matrix of mixing coefficients. 

UNCURL’s downstream algorithms exploit these lower-dimensional matrices for unsupervised 

tasks such as visualization, clustering and lineage estimation. Working with the estimated (and 

factorized) true state matrix considerably improves performance compared to state-of-the-art 

methods for the same applications that operate directly on the sequencing data. 

 

Additionally, UNCURL allows for the integration of prior information which leads to large 

improvements in accuracy. To enable semi-supervised learning, UNCURL’s toolbox contains a 

method (qualitative normalization, qualNorm) for standardizing any prior biological information 

including bulk RNA-seq data, microarray data or even information about individual marker gene 

expression to a form compatible with scRNA-Seq data. We demonstrate that initialization using 

prior knowledge in an appropriately standardized manner dramatically improves performance 

compared to unsupervised learning.  

 

Finally, UNCURL has a pre-processing mode, where it takes in the gene-expression matrix and 

any prior biological information and outputs the estimated state matrix. This estimated state 

matrix can be utilized as input (in lieu of the observed gene-expression matrix) by any existing 

unsupervised learning algorithm. With the rapid growth of algorithms designed for each of the 

specialized tasks of clustering, visualization, lineage reconstruction as well spatial estimation, 

UNCURL preprocessing can enable these specialized algorithms to benefit from the detailed 

modeling of the sequencing process, as well as considerable prior information and the 

regularization afforded by the convex mixture assumption in UNCURL. We demonstrate that 

UNCURL pre-processing significantly improves the performance of these downstream 

algorithms on these learning tasks. 

Results 

Estimated transcriptomic states 
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An implicit assumption shared by many scRNA-seq data analysis tools is that any biological 

sample contains a limited number of cell types and that any individual cell can be considered a 

“mixture” of these cells. Here, we make this “convex mixture model” explicit which allows us to 

apply NMF to the estimated cell state matrix. While NMF is well studied when the entries have 

Gaussian noise21, in scRNA-seq, the sequencing process produces noise approximately 

following a Poisson or Negative Binomial distribution (potentially with zero-inflation22). While the 

sampling distribution is carefully modeled in differential expression studies23, the most commonly 

used algorithms for visualization, cell-type identification as well as lineage tracing do not account 

for this model. Thus, while factoring the matrix, we need to account for the sampling distribution 

in order to estimate the true cell-state matrix as well as the mixing coefficients accurately from 

the observed gene expression matrix. 

 

The sampled matrix factorization algorithm in UNCURL (Figure 1 B) takes the gene expression 

matrix as input and and alternatively estimates the two-matrices using the likelihood score under 

the known sampling model, a generalization of the popular Lee-Seung algorithm21. Each step is 

convex and can be solved using a regular gradient-descent based solver24. This factorization is 

exploited by all the downstream steps in UNCURL. Since alternating optimization algorithms are 

guaranteed to achieve only local minima, a good initialization is paramount in achieving good 

performance25. We initialize our algorithm using a Poisson version of the K-means++ algorithm 

(see Online Methods for details). 

 

Dimensionality reduction with UNCURL 

 

A typical first-step in scRNA datasets is to reduce the dimension of the data, from tens-of-

thousands (i.e. the number of genes) to 2 or 3, in order to aid visualization. UNCURLs 

dimensionality reduction approach takes advantage of matrix factorization (as seen in Figure 2 

A) by first projecting only the archetypal state matrix to the reduced dimension (using the multi-

dimensional scaling or MDS algorithm). Because the number of archetypal states is typically 

several orders of magnitude smaller than the number of individual cells, the projection is more 

robust and computationally simpler.  In a second step, low dimensional cell states are generated 

for all cells simply by taking the appropriate convex combination of low-dimensional 

representation of archetypal states. We hypothesize that the principled modeling of the data by 

the sampled matrix factorization should result in a better dimensionality reduction than existing 

methods.  

 

To test the accuracy of our dimensionality reduction approach, we created a synthetic, 

standardized dataset using bulk data from mouse embryonic stem cells and differentiated 

fibroblasts26. We first simulated intermediate true transcriptomic states by generating hundred 

equally spaced points at convex combinations between these two ‘main states’. The cells are 

divided into 4 intermediate stages depending on the distance between the two extreme points. 

We simulate the observed “RNA-seq data” by Poisson sampling the true (synthetic) data as 

explained in Supplementary Methods.  

 

In order to quantify the accuracy of different dimensionality reduction algorithms, we observe 

that good dimensionality algorithms should place similar cell-types together. Therefore, we 

define an error metric: the probability that a cell and its closest neighbor do not belong to the 

same cell type. We then use UNCURL to reduce the dimensionality assuming both Poisson and 
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Gaussian sampling distributions as seen in Figure 2 B.  While both approaches lead to 

qualitatively good visualizations and lower error scores compared to off-the-shelf approaches 

such as tSNE and PCA, using the correct sampling distribution leads to the lowest error rate 

(mean error values over multiple runs are calculated for each algorithm). We furthermore note 

that UNCURL representations lie on a straight line, since there are only two archetypical states 

and UNCURL estimates all other states as convex combinations of such states. 

 

Next we tested our dimensionality reduction approach on an actual RNA-seq dataset comprising 

of mouse embryonic stem cell and differentiated fibroblast cells collected two days apart and 

sequenced together27. As expected, the different cells lie on a continuum in all dimensionality 

reduction methods as seen in Figure 2 C. As pointed out earlier, UNCURL places all points in a 

line since there are two states, consistent with the biological interpretation that cells are ordered 

along the differentiation trajectory.  Again, UNCURL has the lowest error score.   

 

Having demonstrated UNCURL’s effectiveness on a simple dataset comprising of two cell types, 

we next tested our approach on a more complex dataset collected from mouse brain and 

comprising of several different labeled cell types5. Considering the main non-pyramidal cell 

types leaves us with five distinct cell types namely oligodendrocytes, astrocytes, interneurons, 

microglia and endothelial cells. Unlike the previous example, these cell types are distinct mature 

cell types and we might expect clearly distinct clusters upon dimensionality reduction. Upon 

comparing the visualization for this dataset with different approaches we see that UNCURL has 

the best error-score. Both UNCURL and tSNE lead to clear separation of cell types in the low 

dimensional representation while PCA results in overlapping clusters (Figure 2 D).  

 

Finally, we consider a dataset consisting of four cell types corresponding to different stages of 

olfactory neurogenesis28. This dataset has properties of both previous datasets in that there are 

more than two states but they are on a continuum. Consistent with the underlying data, all 

methods lead to overlapping low dimensional representations for the different cell types (Figure 

2 E). While UNCURL cannot fully separate all cell types for this dataset, it correctly orders the 

clusters according to their degree of differentiation. Comparing the last two datasets, tSNE does 

well in the former but not in the latter. We observe that tSNE preserves local distances while 

deemphasizing farther distances, and this approach works well when the data has segregated 

clusters (former dataset), but fails when the data lie along a continuum (latter dataset). In 

comparison, UNCURL is designed with the convex mixtures assumption that makes it more 

universally applicable.  

 

Prior knowledge improves UNCURL 

 

While UNCURL is able to achieve very low error rates in the first two datasets, the error rate in 

the last dataset leaves room for improvement. This opens up a more general question: can one 

exploit prior knowledge of cell types to improve the state estimation in UNCURL? In principle, 

incorporating prior information about cell states should improve the performance but a major 

issue in using such information is the incompatibility between different data types (e.g. FISH 

images or microarray data with RNAseq data) and variability between experiments using the 

same technique (e.g. bulk RNA-seq batch effects). Because of this concerns, there presently 

exists no general framework to utilize information available in these different forms for the 

purposes of semi-supervision.  
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Here we develop such a framework called ’qualitative-normalization (qualNorm)’ (Figure 3 A), 

which can be used to convert prior cell type-specific information into a form that is compatible 

with UNCURL and other algorithms. This information is expected to be in the form of gene 

expression data and can come from a variety of sources such as bulk RNA-seq, microarrays, or 

can even be qualitative prior knowledge about marker genes expressed in the form of a binary 

matrix. The basic premise of the qualNorm framework is the following:  although the measured 

gene expression might vary between data sources due to biases, the qualitative information 

being conveyed should be preserved between assays and experiments.   

 

Therefore, qualNorm proceeds through two main steps. First, the original data regardless of type 

and origin is converted into binary matrix form for a subset of high-confidence genes (i.e. a given 

gene is either “ON” or “OFF”). These high-confidence genes can be found, for example, through 

a differential expression analysis on the original data-type. This binary information cannot be 

directly imported into UNCURL; therefore in the second step, we convert these qualtitiative 

scores back into quantitative data using information in the observed scRNA-seq gene 

expression data.  

 

For each gene of interest, qualNorm clusters the gene expression values in the observed 

scRNA-seq dataset into two clusters. These clusters correspond to the high and low expression 

clusters for the gene of interest. The cluster centers of the ‘high’ and ‘low’ clusters can then be 

seen as the expected ON/OFF value for this marker gene. Hence, our output matrix replaces the 

binary values with the corresponding high/low value for each gene. Thus the output of the 

qualNorm framework is a partial archetype matrix with some subset of genes and cell-types 

filled out with numerical values. This information is then used as an initialization to seed the 

sampled matrix factorization algorithm in UNCURL. A detailed illustration of this method can be 

seen in Supplementary Figure 3.  

 

To demonstrate the utility of semi-supervision, we revisit the dimensionality reduction problem. 

Specifically, we focus on the data set of Hanchate et al., where all dimensionality reduction 

algorithms had relatively poor cluster separation. An upper bound on the performance with semi-

supervision information is obtained when we feed the aggregate means of the true clusters 

(inferred from ground-truth labels) as the initialization. In order to test the validity of our 

qualNorm framework, we compare the performance with aggregate-mean initialization to the 

performance obtained when we process these aggregate means through the qualNorm 

framework. In Figure 3 B, the two algorithms are compared, and it is seen that semi-supervision 

even when qualitative has a significant impact on performance. Moreover, the visualization 

obtained using the qualitative means is strikingly similar to those obtained using aggregate 

means. This demonstrates the potential of our qualNorm framework, and we perform tests with 

more realistic supervision information in the next section on clustering.   

 

Improving clustering with UNCURL 

 

Clustering can be seen as a special case of state estimation with the additional constraint that 

cells have to belong to only one cell type and cannot be a mixture of different cell types. It is 

easy to see that solving the sampled matrix factorization problem with this additional constraint 

is equivalent to performing the Poisson or Negative Binomial equivalents of k-means algorithm. 
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Furthermore, since sampled matrix factorization already provides us with a set of archetypal 

states, these can now be used as the initial centers for our clustering algorithm.   

 

To test the efficacy of this clustering approach with and without semi-supervision, we compare 

the average cluster purity obtained by our approach and several other commonly used 

clustering approaches (namely, k-means clustering, dimensionality reduction with PCA followed 

by k-means and dimensionality reduction with tSNE followed by k-means) on two different 

datasets as seen in Figure 3 C. When using semi-supervision, we compared three distinct 

modes namely bulk “semi-supervision” where the bulk RNA-Seq data is used directly as the 

initial estimate; “qualitative means” where the bulk RNA-Seq is subject to qualNorm framework 

and “aggregate means” where the means of scRNA-seq data of true clusters are used for 

initialization (this information is not available in real data and is used as an indicator of potential 

performance). 

 

It can be seen that UNCURL outperforms other methods significantly already on the 

unsupervised version of the clustering problem. On the Zeisel dataset, UNCURL achieves 91% 

purity compared to the 75% purity for the second best algorithm, tSNE followed by Kmeans. 

QualNorm semi-supervision performs quite close to the aggregate-means bound for UNCURL, 

and can lead to near-perfect purity on both datasets. In contrast, initialization directly with bulk 

gene-expression values does not offer a consistent performance improvement, sometimes, even 

leading to worse performance. Finally, other algorithms are unable to fully utilize the semi-

supervision information even when fed with aggregate-means data. This is because these 

algorithms are not tuned to the true sampling distributions; in comparison, UNCURL obtains 

exactly 100% purity on both datasets with this information. 

 

To understand the impact of having only partial information, we consider the clustering problem 

described in the previous paragraph but vary the number of known cell types that are provided. 

We then generate the centers corresponding to the missing or unknown cell types using our 

version of the k-means++ algorithm. We observe that increasing the number of known cell types 

leads to monotonic improvement in accuracy over the unsupervised case (Figure 3D). These 

results highlight both the flexibility of our algorithm as well as the performance gain afforded by 

knowing a fraction of cell types.  Furthermore we tested various subset sizes for the qualitative 

prior information and observed that even a small subset of genes is sufficient to get excellent 

performance when using qualNorm (Supplementary Figure 5). 

 

Our approach for semi-supervision can also be extended to other similar tasks, such as inferring 

the spatial location of cells12,13. In the supplementary methods, we have demonstrated how a 

slightly modified version of our clustering algorithm along with qualNorm is able to reliable 

estimate the location of cells in the zebrafish embryo12.  

 

Lineage estimation 

 

We developed a novel lineage estimation algorithm utilizing the detailed factorization information 

obtained with UNCURL as seen in Figure 4 A. The key idea behind UNCURL lineage 

estimation is to first exploit dimensionality reduction and construct a tree such that most cells lie 

close to it in that lower dimensional space. UNCURL approaches this problem in a bottom-up 

manner by first clustering the cells into K groups, with each cell being allotted to the nearest 
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archetype (here K is the number of archetypes). Inside of each group, UNCURL fits a smooth 

curve in order to minimize the deviation between the curve and the the points in the group; this 

smooth curve serves an estimate for a particular lineage. Having obtained a smooth lineage for 

each branch, a global lineage tree is generated by connecting each branch to its closest 

neighbor.    

 

To test the accuracy of lineage estimation using UNCURL, we compared against Monocle7 and 

SLICER9, two commonly used lineage estimation tools. We applied all three tools (with 

UNCURL in unsupervised mode) to a human embryonic stem cell differentiation dataset7. This 

dataset is known to comprise of three main cell types, namely embryonic stem cells, interstitial 

cells and differentiated myoblasts. We initiated all algorithms with the correct number of 

estimated states for the dataset and obtained estimated lineages, as seen in Figures 4 B-D. All 

three estimated lineages look qualitatively similar with a dense concentration of day 0 cells at 

the beginning of the trajectory. However, by looking at the markers of interstitial and myoblast 

cell types, we can qualitatively tell whether the estimated lineages match prior biological 

knowledge.  

 

A further validation of the estimated lineages can be found by looking at the relative expression 

of the cell type specific markers of interstitial mesenchymal and myoblast cells, namely 

PDGFRA and MYOG7. Here we see that both UNCURL and Monocle have PDGFRA expressed 

at high levels at intermediate stages of the trajectory while MYOG is highly expressed only at 

the end of the trajectory. This is consistent with existing knowledge about this differentiation 

process. Moreover, upon estimating the gene expression patterns using the pseudotime ordered 

cells, we see qualitatively similar expression patterns compared to those estimated with the 

orderings inferred from Monocle (Supplementary Figure 7). This provides further support to the 

lineage estimated using UNCURL.  

 

To quantify the accuracy of the estimated lineages, we tested on the synthetic dataset that we 

used for visualization which simulates mouse embryonic stem cell differentiation. We compared 

the performance of the three algorithms (UNCURL, Monocle and SLICER) on the synthetic data 

and found UNCURL to have the highest accuracy, measured by rank correlation with the true 

ordering (Supplementary Figure 6 and Supplementary Methods).  Moreover, even with the 

information about the number of expected ‘main branches’, Monocle was seen to estimate a 

noisy trajectory with many spurious branches. While SLICER did not have this problem, its 

ordering accuracy was seen to be slightly inferior to UNCURL.  

 

We generated another dataset with a tree structured lineage containing three branches, to 

further probe UNCURL’s prediction accuracy for branched trajectories. This can be viewed as 

one cell type differentiating into two distinct lineages at the branching point.  We then ran all 

three lineage-estimation algorithms on this dataset and visually inspected the resulting 

trajectories. Again UNCURL is seen to result in the most faithful reconstruction of the original 

trajectory (as seen in Supplementary Figure 7). Not only is UNCURL’s estimated trajectory 

less noisy than those estimated by the other algorithms, but very few cells are assigned to 

incorrect branches.  

 

Estimated states improve performance of prior unsupervised learning algorithms 
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The first key algorithmic step used in UNCURL is its ability to account for the sampling 

distribution and estimate the true cellular transcript levels. UNCURL’s downstream algorithms 

then exploit a factorized representation of this estimated state matrix to deliver superior 

performance. We hypothesized that the sampled matrix factorization of UNCURL is an important 

contributor to its performance, and therefore other algorithms should be able to benefit from this 

step. To test this hypothesis, we utilized the estimated state matrix output by UNCURL instead 

of the true gene expression matrix as an input to the other algorithms. As scRNA-seq continues 

to grow in popularity, the newer algorithms developed for inference can potentially exploit 

UNCURL-preprocessing to account for sampling distribution as well as prior biological 

knowledge.    

 

We outline a general purpose workflow for using UNCURL as a data pre-processing tool for 

existing and future analysis tools in Figure 5 A. The unprocessed data which comprises of both 

SCS data and potentially raw prior information, is first passed through the state estimation 

pipeline of UNCURL to obtain a new estimated state matrix. This estimated state matrix is then 

compatible with any unsupervised learning algorithm that takes a gene-expression matrix as 

input, such as PCA, tSNE, or Monocle. A crucial added benefit of using UNCURL as a pre-

processing tool is the ability to use prior information with otherwise unsupervised learning 

algorithms.  

 

To test the utility of UNCURL as a pre-processing tool, we compared the result of unsupervised 

learning with and without pre-processing on several different datasets for different learning 

tasks. To evaluate improvement in clustering accuracy, we compared the cluster purity for 

common clustering algorithms before and after UNCURL pre-processing. Additionally we 

performed the same clustering after semi-supervised UNCURL pre-processing. As seen in 

Figure 5 B, pre-processing using UNCURL improves the accuracy of all clustering algorithms, 

both with and without semi-supervision. Furthermore, many algorithms show an additional 

improvement in accuracy when using semi-supervised pre-processing.  

 

We then evaluated the improvement in dimensionality reduction possible through the use of 

UNCURL, by visually comparing the low dimensional representation of the dataset from Zeisel 

et al. 5 using PCA and tSNE, with unprocessed and processed data. It can be seen in Figure 5 

C, that dimensionality reduction after pre-processing leads to better separation of the known cell 

types for both algorithms. While PCA shows a remarkable improvement in separation of cell 

types, tSNE (which was already quite good at separating cell types) also shows an incremental 

improvement in performance.   

 

To test the improvement due to pre-processing on lineage estimation, we used our synthetic 

embryonic stem cell differentiation dataset for which we know the true ordering (Figure 5 D). We 

then compared the inferred ordering using Monocle with and without pre-processing.  We 

observe that the inferred lineage using Monocle has a sharp improvement in both accuracy of 

ordering as well reduction in spurious branches when pre-processed using UNCURL.  

Discussion 
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In this manuscript, we introduced a unified framework for data dimensionality reduction, 

clustering and lineage estimation with SCS datasets. Our framework, UNCURL, takes 

advantage of prior knowledge about the sampling distribution of SCS data and uses this 

information together with a convex mixture model assumption to estimate a true state matrix 

from observed SCS data. UNCURL further includes a computational toolbox, qualNorm, which 

can be used to incorporate prior biological knowledge from various sources into an improved 

estimate of the true state matrix. 

 

By comparing against several benchmarking datasets, we demonstrated that UNCURL leads to 

superior separation of cell types in reduced dimensions as well as higher cluster purity for 

clustering tasks compared to prior tools. Moreover, we demonstrate that UNCURL estimates 

qualitatively similar trajectories on real datasets and is quantifiably better on synthetic data than 

existing lineage estimation algorithms. We further showed that semi-supervision using different 

types of prior information can lead to further improvement in accuracy of the learning tasks. We 

also highlight the utility of UNCURL as a data pre-processing tool by demonstrating the 

improvement in performance when it is used in conjunction with common unsupervised 

algorithms for clustering, dimensionality reduction and lineage estimation. 

 

While UNCURL is demonstrated to be an efficient unified framework for several both 

unsupervised and semi-supervised learning tasks, it still has some limitations. While our method 

accounts for the sampling effect on the data, we do not take into account other sources of 

variability such as cell cycle effects and biological noise29. Moreover, presently the semi-

supervision framework can only process prior information that can be binarized. While this still 

leads to improvement in accuracy, not all genes have binary states. Future work will be aimed at 

developing a learning framework that account for these other sources of variability and a more 

inclusive semi-supervision framework. 
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Online Methods 

Initialization with Poisson K-means++ 

K-means++30 is a widely used seeding method for the k-means algorithm, which tries to 

identify k points in the data which have the highest mutual separation. However, the standard 

version of K-means++ is built on an implicit assumption of Gaussian noise, which justifies the 

Euclidean distance metric utilized. To use a similar approach to our problem, we define a 

notion of distance between points arising from Poisson sampled data. A distance measure d is 

called a semi-metric if it satisfies the following properties: 

 

𝑑(𝑥, 𝑥) = 0 

𝑑(𝑥, 𝑦) ≥ 0, 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑛𝑙𝑦 𝑤ℎ𝑒𝑛 𝑥 = 𝑦 

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

 

When the data follows a Poisson distribution, the most intuitive distance measure would be the 

Poisson log-likelihood (𝑙𝑙𝑝(𝑦|𝑥)) with the assumption that one of the data points is the mean 

(say x) and the other is the point being considered (say y). However, this distance will not 

satisfy any of the aforementioned. To overcome this, we then design a normalized version of 

this distance measure which satisfies all of these properties: 

 

𝑑(𝑥, 𝑦) =  𝑙𝑙𝑝(𝑥|𝑥) +  𝑙𝑙𝑝(𝑦|𝑦) − (𝑙𝑙𝑝(𝑥|𝑦) +  𝑙𝑙𝑝(𝑦|𝑥)) 

              = (𝑥 − 𝑦) log (
𝑥

𝑦
) 

 

This distance is based on the observation that value of 𝑙𝑙𝑝(𝑥|𝑥) is maximum when x = y. Thus, 

the 𝑑(𝑥, 𝑦) quantity measures the distance from the maximum value log-likelihood value for 

both x and y (for the sake of symmetry). This distance then replaces the Euclidean distance 

used in the standard implementation of K-means++ and is used to obtain initial seeds for our 

state estimation. A similar method isn’t possible for the negative binomial distribution, since it 

is not a single parameter distribution.  

 

QualNorm semi-supervision framework 

 

Here we describe a method to convert qualitative cell type specific information to efficient 

initializations for various unsupervised learning algorithms. The inputs to the framework are 

the following: 1) a binary matrix of dimension B ∈ Rn0×k0, where n0 is the number of genes for 

which the information is provided and k0 is the number of cell types for which the information is 

provided, 2) A single cell sequenced data matrix X ∈ Rn×d, where n is the number of genes and 

d is the number of cells and 3) the number of cell types expected in the data, k. In the case 

where bulk information is available about the cell types, the data has been binarized by 
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thresholding around the central value for each differentially expressed gene (this step is left to 

the users’ discretion).   

We first seek to find the expected quantitative states for each gene in the subset of the 

genes/cell types for which we have prior information available. We then run the Poisson k-

means algorithm with k = 2 for each gene and obtain the values of the medians [𝑚1, 𝑚2] of the 

two predicted clusters. Having done this, a new matrix of predicted means 𝑀 is then compiled 

in the following way: 

 

[𝑀]𝑖𝑗 = {
max (𝑚1, 𝑚2), 𝑖𝑓 [𝐵]𝑖𝑗 = 1

min (𝑚1, 𝑚2), 𝑖𝑓 [𝐵]𝑖𝑗 = 0
 

 

Having now obtained a matrix of predicted means 𝑀 of dimension Rn0×k0, we seek to obtain the 

information about the other cell types (in case 𝑘0 < 𝑘) and genes (in case 𝑛0 < 𝑛). We first 

obtain information about the missing cell types by using Poisson Kmeans++ to obtain 𝑘 − 𝑘0 

additional means, starting from the current 𝑀. We then augment these means to 𝑀 making its 

dimension Rn0×k. We then proceed to obtain information about the missing genes by 

performing one round of Poisson k-means clustering (see below) on the subset of genes for 

which qualitative information is known. Once the cells have been assigned to 𝑘 clusters, we 

take the means of all genes for the cells in these clusters. These 𝑘 means then provide us with 

a new 𝑀 of dimension Rn×d. This matrix of predicted means is now used to initialize the various 

downstream algorithms.  

 

State estimation with Sampled Matrix Factorization 

 

For the task of lineage estimation, UNCURL works under the assumption that the true state of 

the cells lie in the convex hull spanned by the states of the archetypal cell types. For this 

problem, we assume that we are provided with a matrix of initial means 𝑀 ∈ Rn×k and a data 

matrix X ∈ Rn×d. The Sampled Matrix Factorization method assumes that the observed 

transcriptomic state of each cell is a discrete sampled version of the true state (the two 

sampling distributions explored in this paper are Poisson and Negative Binomial) i.e. 

 

𝑋 ∼  𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑋𝑡𝑟𝑢𝑒),      𝑤ℎ𝑒𝑟𝑒 𝑋𝑡𝑟𝑢𝑒  =  𝑀 ×  𝑤 

 

Here, 𝑋𝑡𝑟𝑢𝑒 is the matrix of transcriptomic states of all cells (this is hidden from us) and w ∈ 
Rk×d is the cell type fraction matrix which satisfies the property 1T𝑤𝑖  = 1 and 𝑤𝑖 ≽ 0. These 

conditions ensure that each cell’s original state lies in the convex hull of the cell states of the 

various cell types. Our goal now is to maximize the log-likelihood of the observed data matrix 

X, by finding the optimal M and w. While this problem is non-convex, the sub-problems of 

estimating either M or w with the other matrix fixed are convex problems. We thus adopt an 

EM like algorithm to estimate these model parameters. In the first step we estimate the 

mixture parameter while keeping the means fixed as follows: 

 

𝑤 =  𝑎𝑟𝑔min
𝑤

𝑃𝑟𝑜𝑏(𝑋|𝑀, 𝑤, Θ) 

  

subject to  
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            𝑤 ≽ 0 

 

Here the cost function describes the log-likelihood of the observed data given the factor 

matrices M, w and any additional statistical parameters Θ. The parameter Θ is distribution 

dependent and is the empty set in case of the Poisson distribution, while it is the gene specific 

dispersion vector (calculated apriori) in case of the negative binomial distribution. Similar to 

this step, the following step fixes the new estimate of w and updates the estimate of the mean 

matrix M by solving the following optimization problem: 

 

𝑀 =  𝑎𝑟𝑔min
𝑀

𝑃𝑟𝑜𝑏(𝑋|𝑀, 𝑤, Θ) 

  

subject to  

            𝑀 ≽ 0 

 

The condition 𝑀 ≽ 0 is a required condition because the true transcriptomic state cannot be 

negative. We repeat these two steps iteratively till convergence or till a maximum number of 

iterations. 

Once converged, we normalize the columns of w to sum to 1 to ensure the condition 1T𝑤𝑖  

= 1 is satisfied. The condition 1T𝑤𝑖  = 1 is not enforced during the optimization steps to ensure 

that cells with similar transcriptomic profiles but different cell sizes (thereby larger number of 

total transcripts) are allowed to converge to the optimal mixing weights. The post normalization 

step then ensures that cells with different cell sizes but with similar transcriptomic profiles end 

up having similar estimated states. We have implemented these steps using the optimization 

toolbox of Matlab and scipy in Python (for the Python implementation). 

 

Dimensionality reduction using UNCURL 

 

The objective of this section is to transform the data matrix 𝑋 ∈ Rn×k to a lower dimension data 

matrix 𝑋𝐿𝐷 ∈ Rl×d, where 𝑙 < 𝑛. Dimensionality reduction with UNCURL follows directly from the 

state estimation procedure (described previously). In this step, we assume we are provided 

with an estimated mean matrix 𝑀 ∈ Rn×k and a cell type fraction matrix w ∈ Rk×d. We then 

calculate the Poisson distances between each of the means and compile them into a matrix D 
∈ Rk×k as follows: 

 

[𝐷]𝑖𝑗 = 𝑑(𝑀𝑖, 𝑀𝑗) 

 

Where 𝑑(𝑥, 𝑦) is the Poisson distance between points x and y. We then use Multi Dimensional 

Scaling (MDS)31 to obtain a distance preserving lower dimensional representation of the mean 

matrix, MLD ∈ Rm×k. Finally we obtain a lower dimensional representation of the data XLD by 

performing the following operation: 

 

𝑋𝐿𝐷 =  𝑀𝐿𝐷 × 𝑤 

 

This method of dimensionality reduction forces the relative states of cells to stay unchanged. 

We argue that this leads to efficient separation of cell types even in the reduced dimensional 

representation. 
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Poisson clustering 

 

UNCURL gives the user two choices for clustering, namely Poisson and Negative Binomial 

clustering. Poisson clustering is very similar to the classical k-means clustering with the 

difference being in the underlying distribution of the data. We assume we are provided the 

expected number of cell types k and the data matrix X ∈ Rn×d. The first step of the algorithm 

involves calculating the Poisson log-likelihood for each cell given a set of means M ∈ Rn×k and 

then assigning each cell to the cell type for which it has the maximum log-likelihood value. The 

Poisson log-likelihood function is as follows: 

 

𝑙𝑙𝑝(𝑋𝑘|𝑀𝑖) =   ∑ −[𝑀]𝑖𝑗 + [𝑋]𝑗𝑘 log([𝑀]𝑖𝑗)
𝑗

 

 

This is called the E step of the algorithm. Here, Xk is the observed data from the k th cell and 

Mi  is the mean for the 𝑖th cell type. The result of this step is the identification of distinct sets of 

cells (cell types in this case). This is followed by the M step, where we calculate the optimal 

means for each cell type which maximizes the log-likelihood quantity. For the case of the 

Poisson distribution, this is simply the arithmetic mean of the data given by: 

 

𝑀𝑖 =  
1

|𝑆𝑖|
∑ 𝑋𝑗

𝑗 ∈ 𝑆𝑖

 

 

Here, Si  is the set of cell indices for which the log-likelihood is highest for the 𝑖th cell type. The 

M step gives rise to a new estimate of means, which are then used to re-do the E step. This 

procedure is repeated till convergence or till a maximum number of iterations are performed. 

 

Negative Binomial clustering 

 

The Negative Binomial clustering performed by UNCURL follows the same general principles 

as the Poisson clustering while respecting the assumptions about the underling distribution of 

the data. Unlike the Poisson distribution, the Negative Binomial distribution is specified by two 

parameters r (number of failures before stopping) and p (success probability of each 

experiment). We initially assume that we are provided with matrices P and R ∈ Rn×k containing 

the parameters for each gene in each cell type. The log-likelihood function is then specified in 

terms of these parameters as follows: 

 

𝑙𝑙𝑛𝑏(𝑋𝑘|𝑃𝑖, 𝑅𝑖) =  ∑ log (
[𝑋]𝑗𝑘 +  [𝑅]𝑗𝑖 − 1

[𝑋]𝑗𝑘
) + [𝑅]𝑗𝑖 log(1 −  [𝑃]𝑗𝑖) + [𝑋]𝑗𝑘 log([𝑃]𝑗𝑖)

𝑗

 

 

However, the M step in Negative Binomial is sufficiently different as there is no closed form 

solution to the optimal parameter estimation problem, unlike the Poisson case. Thus, the 

optimal parameters [𝑃]𝑗𝑖  and [𝑅]𝑗𝑖  for each gene 𝑗 and each cell type 𝑖 are estimated using an 

EM like algorithm. Another additional complication for this method is that negative binomial 

model parameters can only be estimated when the mean of data is smaller than the variance. 

To remedy this drawback, at each iteration we identify the genes that have higher mean than 
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variance for each cell type. These genes are therefore closer to the Poisson distribution, which 

is a limiting case of the Negative Binomial distribution. So we estimate the M matrix for these 

genes instead of P and R. During the E step, we calculate the log-likelihood of negative 

binomial genes and Poisson genes separately and sum them to obtain the cumulative log-

likelihood. Due to these extra steps involved, the Negative Binomial clustering is sufficiently 

slower than the Poisson clustering. 

 

Lineage estimation 

 

After the estimation of the true transcriptomic state of cells, one of the downstream learning 

tasks is to construct a lineage based on these new cell states. In order to do this, we perform 

dimensionality reduction (explained previously) to obtain a 2D representation. We then use the 

weight matrix w ∈ Rk×d to identify its’ dominant cell type by simply finding which weight element 

has the maximum value for a given cell. We then fit a smooth curve through the 2D 

representation of all cells belonging to one cell type (this can be any family of smooth curves). 

We then replace the points with the smoothed points and consolidate them in a set Si, where 𝑖 

denotes the cell type index. This operation is now performed on all the cell types to obtain 𝑘 

disjoint sets of cells. We then compute the Minimum Spanning Tree32 on each of these sets 

individually which enables us to trace progress within each cell type individually. Finally we 

connect cell types that are closest to each other in order to complete the lineage graph. This is 

done by connecting each set to its closest set and connecting the two closest points of the two 

sets to each other with a straight line. 

 

Pseudotime calculation for cells 

 

While the calculation of the cell lineage identified differentiation hierarchy of cells, a more 

quantified measurement of cell state is the pseudotime33, which calculates the effective 

distance from the root cell. To calculate this value for each cell we have to first determine the 

root cell in a population of cells. Since the output of lineage calculation is a smooth tree, we 

can simply hypothesize that the root cell is going to be one of the leaf nodes of the tree. The 

leaf nodes are then calculated by first calculating the degrees of all the nodes and then 

selecting only the ones with degree = 1 as leaf nodes. Once the leaf nodes are obtained, we 

let the user choose the starting node among the leaf nodes in a manner similar to9. The 

pseudotime value of each cell is then their distance along the weighted lineage graph from the 

root cell. 

 

Measuring seperability of clusters in reduced dimensions 

 

To measure the separability of clusters in reduced dimensions given true labels, we define a 

nearest neighbor based error metric as follows: 

 

𝐸𝑟𝑟𝐹𝑢𝑛𝑐(𝑋𝐿𝐷 , 𝐿) =  
1

𝑘𝑑
∑ 𝐼𝑐 (𝐿(𝑖), 𝐿 (𝑁(𝑋𝑖

𝐿𝐷)))

𝑑

𝑖=1

 

 

Here 𝐿(𝑖) is the true label of i th cell and 𝐿(𝑁(𝑋𝑖
𝐿𝐷)) is the true label of it’s nearest neighbor in 

the reduced dimensional representation. The function 𝐼𝑐(𝑥, 𝑦) is a binary function whose value 
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is 0 if x = y and 1 otherwise. This metric calculates the probability that two randomly chosen 

adjacent points in the reduced dimension representation belong to a different cell type. 

 

Data Pre-processing 

 

The datasets are subject to pre-processing in order to select genes of interest. For the Islam 

et. al. dataset, this was done by performing differential gene expression analysis using DESeq 

on the bulk dataset. For the Zeisel et. al. dataset, this was done by considering a list of around 

3000 cell type specific genes that were provided in the original paper which were also present 

in the bulk dataset. For the Hanchate et. al. dataset, this was done by removing genes with 

very few reads in the same way as done in the original paper.  
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Figure 1: Learning with scRNA-Seq data using UNCURL. (A) The primary input for UNCURL is 
the highly sampled single cell sequenced data. The user is also expected to specify the 
appropriate sampling distribution for the data and optionally any prior information that is known 
about the specific dataset. UNCURL then converts the observed sampled data to an estimated 
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version of the true data using a novel technique called Sampled Matrix Factorization. This is 
then used in downstream unsupervised learning tasks. (B) Sampled Matrix Factorization using 
UNCURL. The true transcriptomic states of cells are assumed to lie along a continuum of states 
in a high dimension. These states are then sampled during the single cell sequencing process 
resulting in the transcript count matrix, which contain the observed states. UNCURL then 
reconstructs an estimated version of the true state from the observed states by a novel 
algorithm for ‘Sampled Matrix Factorization’, which can be viewed as an un-sampling process. 
(C) Comparison of fit error of all genes with data taken from [1] using Gaussian and Poisson 
distributions. 96.44% of genes have lower fit error for Poisson than Gaussian distribution. (D) 
Some of the different types of prior information supported by UNCURL, namely bulk RNA-Seq 
data, Micro array data, cell type specific marker information, FISH images etc.  
 

 

Figure 2: UNCURL leads to better low dimensional visualization of distinct cell types in single 
cell data. (A) Dimensionality reduction process of UNCURL. We first project the main means 
down to a lower dimension using the Multi-Dimensional Scaling algorithm (MDS), which 
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preserves the distances between the points in the reduced dimension. The cell type fraction 
matrix is then used to find the low dimensional representation of the cells. (B) Comparison of 
various algorithms on synthetic SCS data which models the sequencing process as a Poisson 
sampling process. We demonstrate that using UNCURL with the correct sampling distribution 
outperforms other common dimensionality reduction algorithms (as well as UNCURL with 
Gaussian as the sampling distribution). (C-E) Comparison of different dimensionality reduction 
methods on the various biological and synthetic SCS datasets namely (C) Mouse embryonic 
stem cell data from Islam et. al., (D) Olfactory development data from Hanchate et. al., (E) 
Mouse neuron data from Zeisel et. al.. The numbers in the bracket denote the error metric value 
which captures the probability that the closest neighbor of a cell belongs to a different labeled 
cell type. 

 

 

Figure 3: Distribution informed unsupervised and semi-supervised clustering leads to significant 
improvements in identifying cell types. (A) An illustration of the ‘qualNorm’ framework to convert 
qualitative prior information into good initialization points for unsupervised learning algorithms. 
The user provides cell type specific qualitative information as input, which is then converted to a 
binary matrix of gene expression for each cell type. We then identify the ‘ON’ and ‘OFF’ state 
values for each gene in the dataset and replace the binary matrix with these numerical values. 
This numeric matrix is then used to initialize unsupervised learning algorithms. (B) Semi-
supervision using qualNorm can lead to improved visualization. Here we see the improvement 
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in visually separating cell types in reduced dimensions in the Olfactory dataset, when using 
aggregate means and qualitative means. We see that qualitative means lead to a largely 
improved separation between cell types and the visual representation is very similar to that 
obtained using aggregate means. (C) UNCURL has an average performance better than other 
competing clustering algorithms on two SCS datasets containing different no. of cell types for 
unsupervised learning tasks. When using semi-supervision, qualitative means inferred by the 
qualNorm lead to performance improvements that are comparable to using aggregate means 
(inferred using true labels). This is seen to be significantly better than using bulk datasets 
directly for semi-supervision. (D) Comparison of improvement in purity with prior information 
about different number of cell types. Here it can be seen in the case of data from Zeisel et. al., 
that the clustering purity monotonically increases as qualitative information about more cell 
types becomes available. Moreover, even information about a subset of cell types is enough to 
dramatically improve the clustering purity.  
 

 

Figure 4: UNCURL leads to the estimation of smooth and accurate lineages that use meta 

information generated during the state estimation procedure. A) An illustration of UNCURL’s 

lineage estimation process. The cells which are closest to each cell type (identified from convex 

mixture parameters) are divided into separate sets and visualized in a two dimensional space. 

Each set is then fitted with a smooth curve to obtain within-cell-type lineages. These smooth 
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curves are then joined with the closest curves, thereby completing the lineage tree construction. 

B-D) Comparison of lineage estimation with UNCURL to some other common lineage estimation 

methods namely Monocle and SLICER, on the dataset from [5]. The left-most panels consist of 

the estimated lineages by the different algorithms. The two other panels have relative 

expression levels of known marker genes visualized on the trajectories. UNCURL estimates a 

less noisy trajectory and separates out the different cell types well. Monocle identifies the 

correct ordering of cell types but the estimated trajectory is much more noisy. SLICER’s 

estimated trajectory fails to separate out the interstitial cells from the myoblasts. 
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Figure 5: Estimated states of UNCURL are compatible with other unsupervised algorithms and 
can lead to an improvement in their performance. (A) An illustration of the workflow for using 
UNCURL as a data pre-processing tool. (B) Pre-processing using UNCURL is demonstrated to 
improve the accuracy of common clustering algorithms on the two different scRNA datasets. (C) 
Using estimated states instead of observed data leads to better separation of cell types in lower 
dimension using common methods such as PCA and tSNE (here demonstrated on the Neuronal 
dataset). (D) Monocle is seen to estimate smoother and more accurate lineages when using 
estimated data instead of observed data.  
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