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Abstract

Modern phylodynamic methods interpret an inferred phylogenetic tree as a partial transmission chain
providing information about the dynamic process of transmission and removal (where removal may be
due to recovery, death or behaviour change). Birth-death and coalescent processes have been introduced
to model the stochastic dynamics of epidemic spread under common epidemiological models such as the
SIS and SIR models, and are successfully used to infer phylogenetic trees together with transmission
(birth) and removal (death) rates. These methods integrate analytically over past incidence and preva-
lence to infer rate parameters, and thus cannot explicitly infer past incidence or prevalence. Here we
introduce a particle filtering framework to explicitly infer prevalence and incidence trajectories along
with phylogenies and epidemiological model parameters from genomic sequences under the birth-death
model. After demonstrating the accuracy of this method on simulated data, we use it to assess the
prevalence through time of the early 2014 Ebola outbreak in Sierra Leone.

1 Introduction

The main goal of epidemiological inference for infectious diseases is to estimate the number of current
and new cases through time. When it is not possible to directly estimate such prevalence and incidence
curves, it can still be possible to estimate the parameters of epidemiological compartmental models, such as
SIR-like models [1]. These parametric compartmental models can then be used to calculate fundamental
quantities like the basic reproductive number, Ry, or to simulate prevalence and incidence curves that
recapitulate the true epidemic.

In recent years, several statistical methods have been developed for epidemiological inference from
genomic data. These methods lie at the intersection of statistical phylogenetics and epidemiology, and
exploit the rapid evolution of many pathogens that occurs on the same time-scale as their epidemiological
spread. In these cases, pathogens are said to be “measurably evolving” [2] and the use of phylogenetics in
this context is termed “phylodynamics” [3].

Early phylodynamic methods only indirectly infer incidence and prevalence or epidemiological param-
eters. One of the first phylodynamic investigations [4] used the mathematical relationship between the
effective population size and the time between coalescent events in phylogenetic trees [5] to produce non-
parametric estimates of Hepatitis C virus prevalence [6]. These non-parametric “skyline plots” were then
fitted to a parametric epidemiological model to estimate the basic reproduction rate, Ry [6]. A subsequent
approach combined the estimation of the viral phylogeny and the effective viral population size through
time into a joint Bayesian method [7], but still lacked an explicit model of the epidemiological process.
Another variant of the skyline plot based on the birth-death process [8] allowed for piecewise-constant
variation in the birth and death rates 9] from which Ry could be derived.

An important limitation of all of these approaches is that they do not directly include the epidemiolog-
ical model in the phylogenetic inference method. Rather, the epidemiological parameters are themselves
estimated from estimates of the phylogeny and viral effective population size which are based on genomic
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data. This multi-step approach obscures the propagation of the overall uncertainty from one method to
the next.

There have recently been three distinct approaches to incorporate compartmental models into phylo-
dynamic inference. First, Volz et al. |10} |11] showed how to derive prior probability distributions for viral
gene trees in the coalescent limit from arbitrary birth-death processes. This method permits joint Bayesian
inference of epidemic model parameters, prevalence curves and phylogenetic trees. The coalescent basis
of this method requires epidemic curves to either be deterministic, or stochastic as long as the epidemic
events are statistically independent from the events that make up the sampled epidemic transmission tree
[12]. Either assumption is justified in the case of a large populations size (prevalence). But when preva-
lence is low, the coalescent method can lead to biases in the estimates of the phylogenetic tree and the
epidemiological parameters [13].

Second, Kiithnert et al. [14] used a parametric compartmental model — specifically, a stochastic SIR
model — to produce the piecewise-constant rates of the birth-death skyline plot. Like the coalescent
methods of Volz et al. |10} 11], this enables joint inference of epidemiological parameters, epidemic curves
and phylogeny. The stochastic formulation of the epidemiological process does not rest on the assumption
of large population sizes but, like the coalescent methods, the tree events and the epidemic events are
assumed to be statistically independent.

Third, Leventhal et al. [15] presented the first inference approach to employ an approximation-free
computation of the phylogenetic tree probability under a stochastic epidemiological model. The method
involves a tailored numerical algorithm to integrate the master equations of stochastic epidemiological
process that is conditioned on the phylogenetic tree. While this approach can be extended to full joint
inference of epidemic model parameters and the phylogeny, the current implementation assumes a known
phylogeny and integrates over all possible prevalence curves to infer epidemic model parameters.

In this paper, we introduce a new method that uses the Particle Marginal Metropolis-Hastings algorithm
[16] to jointly infer prevalence and incidence curves, phylogenetic trees, and epidemiological parameters
under stochastic epidemiological models. Our approach addresses several of the short-comings of previous
methods: (i) it accounts for the dependence of epidemic and tree events; (ii) it incorporates stochastic
models of epidemic dynamics; (iii) it includes “sampled ancestors” to account for the possibility that
some sampled viruses are directly “ancestral” to others on the transmission tree that relates them and
(iv) it provides a natural route to the inclusion of additional (non-genetic) incidence data in full joint
phylodynamic analyses. While particle filtering approaches have been previously applied to phylodynamic
inference [12, |17, 18], they have only been used in the diffusion limit where the discrete nature of the
compartment occupancies is ignored. In contrast, our particle filter is used to compute the exact probability
of a transmission tree under the full stochastic compartmental model. This distinction is important near
the start of epidemics where prevalence is low and diffusion or coalescent limits do not hold [13].

2 Methods

In this section we derive a flexible and exact inference method for unstructured stochastic compartmental
models.

2.1 Stochastic compartmental epidemic models

Compartmental models are the centrepiece of epidemiological modeling. They partition individuals in a
population into compartments according to their infection status, and allow for individuals to transition
between some of the compartments. In an SIS model, individuals are either susceptible (S) or infectious
(I). Susceptible individuals move to the infectious compartment upon infection, and infectious individuals
move back to the susceptible compartment upon recovery. The SIR is similar to the SIS model, except that
infectious individuals do not move back tot the susceptible compartment, but are modelled as removed
(R), due to for example quarantine, recovery with immunity, or death. Let S(¢), I(¢) and R(t) (or the
relevant set for a given model) represent the number of individuals in the respective compartments at time
t, and define A(t) = (S(t), I(t), R(t)) to be the state of the epidemic at time time.
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In this paper, we only consider unstructured compartmental models, i.e., models in which there is only
one class of infected individual. This rules out (i) models that include an exposed compartment, often
called E, where an individual can be infected but not yet infectious (such as SEIR and SEIS), and (ii)
structuring via space, age or other factors of the infectious compartment. The reason for this restriction is
that lineages of the transmission tree we discuss below are homogeneous and structuring requires labelling
of the lineages to indicate the compartment each part of the lineage occupies.

The transitions of individuals between compartments can be described by a continuous-time Markov
process on the state vector A, as defined by the master equation

%P(A(t)!A(O)) =D [ag(A(t) = vg) P(A(t) — vgA(0)) — aq(A(1)) P(A(t)A0))] (1)

q€Q

where a4(A(t)) is the overall rate at which the epidemiological event of type ¢ occurs, and v, is the effect
of event type g on the state: 4 — A+ v,.

The overall model is defined by the set of compartments combined with the set, O, of epidemic event
types together with their corresponding rates. This formulation encompasses a broach range of epidemi-
ological models. For instance, a linear birth-death model consists of just one compartment: I(t), the
number infected at time ¢. Possible events are infections and removals, so @ = {Infection, Removal}. The
infection event produces a single new infection as described by v,y = +1, and the overall infection rate is
ame(A(t)) = BI(t). Here, § is a constant describing the rate at which infectious individuals infect others.
Similarly, the removal event removes an individual from the infectious compartment (vgem = —1) at overall
removal rate arem (A(t)) = 9.

The SIR model has the same event type set as the linear birth-death process, @ = {Infection, Removal},
but different rate functions and event effects. An infection has effect vector v,y = (—1,1,0) and occurs at
rate ame[A(t)] = 8S(t)I(t), while a removal event has an effect vector vgem = (0,—1,+1) and occurs at
rate agem (A(t)) = §. The SIS model is similar to the SIR model, only with effect vectors vy, = (—1,1)
and YRem = (1, —1).

A specific model realization of an epidemic forward in time can be generated as follows: The epidemic
starts at at time tp = 0 with a compartment occupancy distribution A(0). Typically, I(0) = 1 for the
infectious compartment, but other choices are possible. This initial distribution is changed by a series of
events with types e, e2,...es and times t1,%9,...ts, where s is a random variable indicating the number
of events which occurred before some pre-determined stopping time 7. The number of the individuals in
each compartment after the i-th event has occurred at time ¢; is denoted by A; = A(¢;). The population
trajectory of the epidemic is then given by (Ag, Ay,...,As). Figure|lp shows an example of the infectious
compartment occupancy over time.

We can then equivalently expand A; as a sum of effect vectors:

%
Ai = Ao+ ve, + -+ 0e, = Ao + (Z%)‘
k=1

An epidemiological trajectory £ is thus well defined by the initial state, Ag, the vector of transition events
e = (e1,eg,...,¢e5), and the corresponding event times, t = (t1,t2,...,ts),

£ ={Aye,t}. (2)

As for any time-homogeneous discrete state continuous time Markov process, the probability density of
a particular realization (trajectory) is a product of exponential distributions for the waiting times between
the s events together with factors representing the probability density of each of given event times. That
is,

P(En,T) = [ [ expl—ai(t: — ti-1)]oe, (As), (3)
=1

where a; = 3 o @g(A;) is the sum of the rates of all possible transitions in interval i.
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Figure 1: Relationships between (a) an epidemic trajectory, (b) the full and sampled transmission trees,
(c) the sampled transmission tree coalescent intervals and (d) other epidemic trajectories compatible with
the sampled tree. Note that the sampled transmission tree contains only a subset of the events represented
by the full tree and trajectory, and each of these “observed” events must be present in any compatible
trajectory.

In the case of an SIS model, new infections happen at a rate 8.5;1; and infected individuals are removed
at a rate vI;. Let Zy C Z = {1,...,s} be the indices of infection events, and Zy C Z the indices of the
removal events. Then the probability density can be written,

Pys(Eln, T) = [ e~ WS40t T 8SiaLicy [ vlia- (4)

i€l 1€l 1€l

2.2 Modelling the sampling process

Sampling of individuals can be described by expanding Q to include two additional event types, sampling
with and without removal. While the particular form of the effect vectors depend on the dimension of
the compartmental model, their general result remains the same: vgampr removes an individual from the
infectious class, while vgampNr leaves A(t) unchanged. We explicitly model the number and timing of
sampling events by augmenting the stochastic process with sampling events included.

To model the timing of these events we use the following rate functions: agampr(A(t)) = rI(t)
and asampNR(A(t)) = (1 — r)I(t), where 9 is the per-individual sampling rate parameter and r is the
probability of removal following sampling. Additionally, we allow for lineages extant at time 1 with
probability p per lineage, yielding a binomial distribution of contemporaneous sampled leaf nodes. For
convenience, we group these rate parameters together in the vector o = (¢, 7, p).

We use P(E|n,o0,T) to represent the probability density of trajectories generated by this combined
process.

2.3 From epidemiological trajectories to transmission trees

By tracking the identity of who infected whom in the stochastic epidemiological model, we obtain the
transmission tree of the epidemic (full tree in Figure ) All transitions e; in the trajectory correspond
to either branching events or tips in the full phylogeny (circles and squares in Figure [1)).
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If we consider only the subtree ancestral to sampling events and pruning all other lineages from the
transmission chain, we obtain the sampled phylogeny T (represented by the red subtree in figure ) Only
a subset of the transition events are included in the sampled phylogeny, X C Z (red squares in the figure).
The probability density P(7|E) of the sampled phylogeny given the full epidemic trajectory is independent
of the specific epidemiological model, and is a straight-forward product of combinatorial factors which
depend on whether an epidemic event occurs on the sampled transmission tree or not.

For example, using the notation from Eq. , the probability density for unstructured models such as
the constant rate birth-death process, the SIR or SIS model, the probability of a labeled tree conditioned
on the trajectory is,

I\ (ki

iGIl\]C (2) i€I1NKC (2)

2.4 Bayesian inference

Our primary goal is to perform asymptotically exact Bayesian inference of the epidemiological parameters
using a set of aligned pathogen genetic sequences sampled throughout an epidemic. Our secondary goal is
to simultaneously infer the prevalence and incidence trajectory under the same model.

To this end, for a given pathogen sequence alignment D, we use Bayes’ rule to express the joint posterior
distribution for the model parameters and the epidemic trajectories in terms of the conditional distributions
composing the full model:

P(€.1,0.T|D) = Z(lD) [r P(D|T, p)P(T|E)P(Eln. 0. T)P(s.n. 0. T). (6)
M

Here Z (D) is a normalization constant, and P(D|T, ) is the probability of D evolving down the sampled
transmission tree 7 under a substitution model parameterized by p, also known as the tree likelihood.
P(p,m,o,T) represents the joint prior probability distribution for the model parameters.

Several approaches to characterizing this posterior for particular models already exist in the litera-
ture, all of which involve using Markov chain Monte Carlo (MCMC) to sample (or maximum likelihood
to optimize) a marginalized and/or approximate form of Eq. @ For instance, Stadler [§] and Stadler &
Bonhoeffer [19] analytically marginalize over the trajectory sub-space in the case of the linear birth-death
model and use MCMC to sample from (7,m,0,T). Similarly, Leventhal et al. [15] express the marginal-
ization of Eq. @ for the nonlinear stochastic SIS model as the solution to a master equation which is then
integrated numerically; with parameter inferences being drawn by applying MCMC or ML.

Kiihnert et al. [14] provide a approximation to the posterior for discretized trajectories £* under the
SIR model and use MCMC to sample (£*,7,n,0,T). Finally, Volz et al. [10] and Volz [11] present an
approximation to this posterior under the assumption that the relative amplitude of the demographic noise
in &£ is negligible and that P(€|n,o,T) therefore collapses to a point mass centred on the approximate
deterministic solution of the model.

In contrast to these methods, we use the particle marginal Metropolis-Hastings (PMMH) algorithm
[16]. This has previously been applied in a phylodynamic context by Rasmussen, Ratmann & Koelle [12]
and Rasmussen, Volz & Koelle [17] using a diffusion-limit approximation to the stochastic epidemiological
dynamics, but not to sample directly from the full phylodynamic posterior as we do in the algorithm
described below.

2.5 Particle filtering algorithm

The PMMH algorithm is closely related to the exact pseudo-marginal algorithm [20]. In the form pre-
sented here, it involves using a bootstrap particle filter to simulate trajectories £ conditional on a sampled
transmission tree 7T .

We divide the tree into intervals bounding each of its nodes, which are indexed as shown in Fig.[I. The
first interval begins at time T prior to the most recent sample. We refer to the portion of the tree within
interval ¢ as the partial tree 7T;, which is understood to include both the k; lineages within the interval
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and the tree node immediately to the right of the interval. Similarly, we divide the full trajectory & into
corresponding partial trajectories &;.

The algorithm involves simulating an ensemble of m trajectories or “particles” in each of the intervals
between ty and tp; = T'. The initial condition for each particle is sampled from the ensemble of finishing
states of particles simulated in the previous interval, weighted according to the probability of the tree event
that divides the intervals. Each interval are sampled from the simulated end states of the previous interval.

The algorithm is as follows:

1. Set the interval 7 <+ 1.

2. For each j € [1...m] we use Gillespie’s stochastic simulation algorithm [21, [22] or its asymp-
totically exact equivalent [23] to sample a partial trajectory 52.(3) from P(&|n,o,T) if i = 1 or

P(&in,o,T, Ei@l) otherwise.

3. Each sampled partial trajectory 5z-(j) is then assigned a weight wg = P(7§|51(j),n,a). The sample

average of these weights Q; = (37", w?)/m is then recorded, and a new set of m unweighted partial

trajectories & is sampled with replacement from the weighted distribution.
4. If i < M, set i < i+ 1 and go to step 2.

5. Compute the product P(T|n,o,T) = Hf\i 1 Q. Also, sample a single final partial trajectory & from
the final distribution of weights and follow it back to t = 0, yielding a single sampled trajectory &.

This algorithm can be intuitively understood by considering that, in the limit m — oo, each resampled
partial trajectory &SJ) is drawn from the distribution P(&|&i-1,...,&1,Tiy..., T1,m,0,T), meaning that
the average of each set of weights €2; becomes

M—o0

M
lim QZ - ZP(,];(C:Z = gz'(])a"‘781 - é]?j)|7;—17. . .7-177770'7T)
i=1
= P(Ti|Ti-1,..., T1,n,0,T). )

In this same limit, the product of these averages P(’T,n,a,T) approaches the marginal tree density
P(Tn,o,T). A A

For finite m, the sequences of resampled partial trajectories 5~](\f[), e 5~1(] ) are not independent. Despite
this fact, P(T|n, o, T) provided by the bootstrap particle filter is an unbiased estimate of the true marginal
probability of the transmission tree P(T|n,o,T).

We use this estimate of the marginal tree density in place of the terms P(T|€)P(E|n, o, T) in Eq. (6).
Samples from the posterior Eq. @ marginalized over the epidemic trajectory distribution are then obtained
using MCMC. By keeping track of the sampled trajectories, £, the algorithm generates samples from the
full joint posterior.

3 Results

3.1 Implementation

We have implemented the algorithm described above as a BEAST 2 [24] package. This allows the algorithm
to be used in conjunction with standard phylogenetic models such as those describing the nucleotide
substitution process as well as existing algorithms for performing the MCMC sampling of the phylogenetic
tree space. The package is released under the GNU General Public License and instructions for installing
and using it can be found, along with source code, at http://tgvaughan.github.io/EpiInf.
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Figure 2: Comparison between values of the marginal epidemiological model parameter likelihoods com-
puted using the PMMH algorithm with those calculated using other approaches: (a) marginal likelihood
of 7 under linear birth-death model compared with the analytical result [8] and (b) marginal likelihood of
$ under stochastic SIS model compared with a numerical result [15] (ExpoTree).

3.2 Verification of methods

We validated our algorithm and its implementation by comparing the likelihoods generated by the particle
filter with those computed (a) analytically under the linear birth-death model [§] and (b) numerically under
the nonlinear stochastic SIS model |15]. These comparisons were performed for a variety of parameter
combinations and in all cases yielded perfect agreement, as shown in Figure

In order to assess the capability of the sampler to recover prevalence trajectories, we simulated tra-
jectories under each of the three models supported by our implementation: linear birth-death, stochastic
SIS and stochastic SIR. Sampled transmission trees were then simulated from each of these these trajec-
tories, which were in turn used to simulate genetic sequence alignments. For each alignment, we used
our algorithm to sample from the joint posterior for the transmission tree, epidemic trajectory and model
parameters.

Figure |3 illustrates the agreement between the marginal posterior prevalence distributions obtained
from each of these analyses (red lines) and the true prevalence curves (black lines). Also shown is the
distribution of prevalence curves generated directly from the marginal posterior of the model parameters
(blue lines). These trajectories are not explicitly conditioned on the corresponding sampled transmission
trees, hence the greater variance in their distribution.

3.3 Inference of Ebola prevalence in Sierra Leone

We analyzed 101 full EBOV genomes collected from Kailahun in eastern Sierra Leone during the 2014
epidemic |25} |26, 27, 28], as collected and aligned by Dudas et al. [29]. We assumed a HKY+I" substitution
model with a strict clock rate whose value was jointly estimated using an informative prior derived from a
recent meta-analysis [30]. For the epidemiology, we assumed a stochastic SIR model in which the data are
accrued via a fixed rate linear sampling process between the times of the most recent and earliest samples.
The initial occupancy of the susceptible compartment was fixed at 3 x 10%, which is comparable to a recent
estimate [31] of the urban population size of the Luawa chiefdom, which includes Kailahun town. The
removal probability r was likewise fixed to 0, meaning that sampling was not assumed to affect infectious
potential. The complete list of distributions used for the compartmental model parameters is presented in
the second column of table [Il

A total of five independent MCMC chains were run for 5x 107 steps each compared to assess convergence.
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Figure 3: Inference of prevalence dynamics from sequence data simulated under (a) linear birth-death,
(b) stochastic SIS and (c) stochastic SIR model. Samples from the marginal posterior of the prevalence
trajectory are shown in red, while the black line represents the truth. The blue lines are prevalence
trajectories simulated from the posterior samples of the compartmental model parameters.
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Figure 4: Marginal posterior distributions for (a) prevalence and (b) effective reproduction number during
the Kailahun EVD outbreak.

The initial 10% of each chain was removed to account for burn-in and the remainder combined into a single
chain from which the final results were derived.

The 95% highest posterior density (HPD) intervals for each of the estimated compartmental model
parameters are presented in the right-most column of table The corresponding marginal posterior
distributions for the prevalence, I(t), and effective reproduction number, R.(t) = 5S(t)/u, trajectories are
shown in Figure [4

4 Discussion

The primary strength of the PMMH algorithm presented here is its versatility. With only minor modifica-
tions, the algorithm can in principle be used to jointly sample the epidemic trajectory and transmission tree
under any unstructured stochastic compartmental model whose dynamics may be described by Eq. . It
owes this versatility to its use of simulation to compute Monte Carlo estimates of the probability density
of the transmission tree under the model.

This versatility comes with a cost. Generating the transmission tree probability estimates using sim-
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Parameter | Unit | Prior distribution | Posterior 95% HPD
Lower Upper
B year ! | log N(—5.5,1.25) | 6.3 x 1073 | 9.9 x 1073
1 year—! | log N(4.6,1.25) 160 250
v/(W+p) | — Unif(0, 1) 9.7x 1073 | 2.1 x 1072
tor year 1/tor 0.33 0.47

Table 1: Parameter priors distributions used in and 95% highest posterior density intervals derived from
our analysis of EBOV genomes sampled from the 2014 EVD outbreak in Kailahun.

ulation is computationally demanding, particularly when these estimates must be computed hundreds of
millions of times as part of a larger MCMC analysis, as it must be in our algorithm. And while PMMH
allows one to sacrifice the accuracy of these estimates without affecting the exact nature of the MCMC
sampling by reducing the number of stochastic simulations used in the estimate, the corresponding increase
in the variance of the estimates can dramatically reduce the rate at which the overall MCMC algorithm
“mixes” (i.e. produces effectively independent draws from the posterior).

Furthermore, the inability of the present algorithm to handle structure in the infected population is
a significant impediment to realistic epidemic modeling, as this structure can not only originate from
spatial segmentation of an infected host population but is also necessary for describing distinct phases of
infections with varying degrees of transmissibility or a non-infectious period. To an extent this has already
been addressed through the work of Rasmussen, Volz & Koelle [17], although in an approximate way.

The question of whether or not it is possible to construct a phylodynamic sampling algorithm which
is simultaneously (a) completely general, (b) mathematically exact and (c) practically useful is therefore
still very much open.
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