
Estimating epidemic incidence and prevalence from genomic
data

Timothy G. Vaughan1,4,5,∗,‡, Gabriel E. Leventhal2,3,∗,†, David A. Rasmussen4,7, Alexei J.
Drummond1,6, David Welch1,6, Tanja Stadler4,5

(1) Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
(2) Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
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Abstract

Modern phylodynamic methods interpret an inferred phylogenetic tree as a partial trans-
mission chain providing information about the dynamic process of transmission and re-
moval (where removal may be due to recovery, death or behaviour change). Birth-death
and coalescent processes have been introduced to model the stochastic dynamics of epi-
demic spread under common epidemiological models such as the SIS and SIR models,
and are successfully used to infer phylogenetic trees together with transmission (birth)
and removal (death) rates. These methods either integrate analytically over past in-
cidence and prevalence to infer rate parameters, and thus cannot explicitly infer past
incidence or prevalence, or allow such inference only in the coalescent limit of large
population size. Here we introduce a particle filtering framework to explicitly infer
prevalence and incidence trajectories along with phylogenies and epidemiological model
parameters from genomic sequences and case count data in a manner consistent with
the underlying birth-death model. After demonstrating the accuracy of this method on
simulated data, we use it to assess the prevalence through time of the early 2014 Ebola
outbreak in Sierra Leone.

Introduction

A primary goal of infectious disease epidemiology is to understand epidemic dynamics which

are most fully described by the prevalence and incidence of cases through time. Yet most

epidemics are only partially observed so their dynamics need to be inferred using statistical

methods on incomplete data that can come from a wide variety of sources and over a wide

range of scales. A key tool for summarising and understanding epidemic dynamics are

compartmental models—such as the SIR model [1]—which partition the hosts at any time

into compartments (e.g., susceptible, infectious or removed) and describe how the counts

in the compartments change. By estimating the parameters of a compartmental model, we

can calculate fundamental quantities like the basic reproductive number, R0, or simulate

prevalence and incidence curves to approximate the true epidemic. However, the reliability

of these estimated quantities heavily depends on the adequacy of the model used.

In recent years, several statistical methods have been developed for epidemiological in-

ference from genomic data. These methods lie at the intersection of statistical phylogenetics
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and epidemiology, and exploit the rapid evolution of many pathogens that occurs on the

same time-scale as their epidemiological spread. In these cases, pathogens are said to be

measurably evolving [2] and the use of phylogenetics in this context is termed phylodynam-

ics [3].

Early phylodynamic methods used ad hoc methods to infer epidemiological parameters,

incidence, and prevalence. The “skyline plot” [4], based on the mathematical relationship

between the effective population size and the time between coalescent events in phylogenetic

trees [5], was first used to produce non-parametric estimates of HIV prevalence [4]. Later,

in the context of Hepatitis C virus, skyline plots were fitted to a parametric epidemiological

model to estimate the basic reproduction rate, R0 [6]. A subsequent approach combined

the estimation of the viral phylogeny and the effective viral population size through time

into a joint Bayesian method known as the Bayesian skyline plot [7], but this still lacked an

explicit model of the epidemiological process. Another variant of the skyline plot based on

the birth-death process [8] allowed for piecewise-constant variation in the birth and death

rates [9] from which R0 could be derived. An important limitation of all of these approaches

is that they either do not directly integrate epidemiological modeling into the phylogenetic

inference method, or they use piece-wise constant approximations to changing incidence

and prevalence through time.

There have recently been three approaches to incorporate compartmental models into

phylodynamic inference. First, Volz et al. [10, 11] showed how to derive prior probability

distributions for viral gene trees in the coalescent limit from arbitrary birth-death pro-

cesses. This method gives a theoretical basis for joint Bayesian inference of epidemic model

parameters, prevalence curves and phylogenetic trees. Inference of model parameters and

prevalence curves has been performed using this theory [12–14]. The coalescent basis of

this method requires epidemic curves to either be deterministic, or stochastic as long as the

epidemic events are statistically independent from the events that make up the sampled

epidemic transmission tree [12]. Either assumption is justified in the case of large popu-

lation size (prevalence). But when prevalence is low, the coalescent method is known to

lead to biased estimates of the phylogenetic tree and the epidemiological parameters [15,

16]. Furthermore, large sample fractions may lead to violation of statistical independence

assumption, as in this case the majority of epidemic events are present on the sampled

phylogeny.

Second, Kühnert et al. [17] used a parametric compartmental model—specifically, a

stochastic SIR model—to produce the piecewise-constant rates of the birth-death skyline

plot. Like the coalescent methods of Volz et al. [10, 11], this enables joint inference of

epidemiological parameters, epidemic curves and phylogeny which can be performed using

the software package, BDSIR. The stochastic formulation of the epidemiological process

does not rest on the assumption of large population sizes but, like the coalescent methods,

the tree events and the epidemic events are assumed to be statistically independent.

Third, Leventhal et al. [18] presented the first inference approach to employ an approximation-

free computation of the phylogenetic tree probability under a stochastic epidemiological

model. The method involves a tailored numerical algorithm to integrate the master equa-

tions of a stochastic epidemiological process that is conditioned on the phylogenetic tree.

While this approach can be extended to full joint inference of epidemic model parameters
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and the phylogeny, the available implementation assumes a known phylogeny and integrates

using differential equations over all possible prevalence curves to infer epidemic model pa-

rameters.

In this paper, we introduce a new method that uses the Particle Marginal Metropolis-

Hastings algorithm (PMMH) [19] to jointly infer prevalence and incidence curves, phyloge-

netic trees, and epidemiological parameters under stochastic epidemiological models. Our

approach addresses several of the short-comings of previous methods: (i) it accounts for the

dependence of epidemic and tree events; (ii) it incorporates stochastic models of epidemic

dynamics; (iii) it includes “sampled ancestors”; and, (v) it provides a natural route to the

inclusion of additional (non-genetic) incidence data in full joint phylodynamic analyses.

The sampled ancestors [20] mentioned in (iii) are samples which appear in the phylogenetic

tree as direct ancestors to other samples, meaning a patient transmitted after the time of

sampling and one or more patients in the downstream transmission chain were also sampled.

While particle filtering approaches have been previously applied to phylodynamic in-

ference [12, 13, 21, 22], our application is distinct. In the case of Rasmussen et al. [12],

this approach has only been used in the diffusion limit where the discrete nature of the

compartment occupancies is ignored. This assumption was relaxed in Rasmussen et al. [13],

however the tree density was still computed using a coalescent approximation and inference

was conditioned on a known genealogy. Similarly, Li et al. [22] employed particle filtering

to estimate the effect of non-geometric distributions of secondary infection counts on the

estimation of reproductive number under a coalescent assumption. In contrast, our particle

filter is used to compute the exact probability of a transmission tree under the full stochastic

discrete compartmental model and used within a joint inference framework. This distinc-

tion is especially important near the start of epidemics where prevalence is low and diffusion

or coalescent limits do not hold [16]. In the case of Smith et al. [21], particle filtering is

applied to individual-based epidemic models. Such models offer greater flexibility than the

compartment-based models we use here at the expense of greater computational complex-

ity and a correspondingly lower limit on the number of samples that can be realistically

analyzed.

Note that in this paper we use prevalence to refer to the absolute number of infectious

individuals, as this connects concretely to the discrete population models we employ. The

proportion (rather than absolute number) of infected individuals can also be easily derived

using the methods we describe, as we will demonstrate.

New Approaches

In this section we derive a flexible and exact inference method for unstructured stochastic

compartmental models.

Stochastic compartmental epidemic models

Compartmental models are the centrepiece of epidemiological modeling. They partition in-

dividuals in a population into compartments according to their infection status and describe

how they transition between the compartments. For example, in an SIS model individuals
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are either susceptible (S) or infectious (I). Susceptible individuals move to the infectious

compartment upon infection, and infectious individuals move back to the susceptible com-

partment upon recovery. The SIR is similar to the SIS model, except that infectious individ-

uals do not move back to the susceptible compartment, but are removed (R) meaning that

these individuals cannot move back to the infectious compartment. Removal may be due

to, for example, recovery with immunity, or death. Let S[t], I[t] and R[t] (or the relevant

set for a given model) represent the number of individuals in the respective compartments

at time t, and define A[t] = (S[t], I[t], R[t]) to be the state of the epidemic at time time.

In this paper, we consider unstructured compartmental models: models in which there

is only one class of infected individual, i.e. those individuals in the single infectious com-

partment. This rules out (i) models that include an exposed compartment, often called E,

where an individual can be infected but not yet infectious (such as SEIR and SEIS), and

(ii) structuring of the infectious compartment via space, age or other factors. The reason

for this restriction is that lineages of the transmission tree we discuss below would, under

a structured model, require labelling to indicate the compartment each part of the lineage

occupies thereby greatly increasing the difficulty of the inference problem.

The overall epidemiological model is defined by the set of compartments, the set of

epidemic event types, Q, and their corresponding rates, {αq : q ∈ Q}. The transitions of

individuals between compartments via the epidemic events can be described by a continuous-

time Markov process on the state vector A with master equation

d

dt
f(A, t) =

∑
q∈Q
{αq(A− vq)f(A− vq, t)− αq(A)f(A, t)} . (1)

Here f(A, t) ≡ P (A[t] = A|A[0]) is the probability that the system state A[t] at time t has

the particular value A, αq(A) is the overall rate at which the epidemiological event of type

q occurs when the epidemic is in state A, and vq is the effect of event type q on the state:

A→ A+ vq.

This formulation encompasses a broad range of models. For instance, a linear birth-

death model consists of just one compartment: A[t] = I[t], the number of infectious individ-

uals at time t. Possible events are infections and removals, so QBD = {Infection,Removal}.
The infection event produces a single new infection as described by vInf = +1, and the

overall infection rate is αInf(A[t]) = βI[t]. Here, β is a constant describing the rate at which

infectious individuals produce subsequent infected individuals. Similarly, the removal event

removes an individual from the infectious compartment, vRem = −1, at overall removal

rate αRem(A[t]) = γI[t]. The SIS model, A[t] = (S[t], I[t]), has the same event type set

as the linear birth-death process, QSIS = QBD = {Infection,Removal}, but different rate

functions and event effects. An infection has effect vector vInf = (−1, 1) and occurs at rate

αInf(A[t]) = βS[t]I[t], while a removal event has an effect vector vRem = (1,−1) and occurs

at rate αRem(A[t]) = γI[t]. The SIR model, A[t] = (S[t], I[t], R[t]), is similar to the SIS

model, only with effect vectors vInf = (−1, 1, 0) and vRem = (0,−1, 1). For brevity, we

combine the set of constants into a single variable η, ηBD = ηSIS = ηSIR = (β, γ).

A specific realisation of an epidemic forward in time—an epidemic trajectory—up to

some predetermined maximum time T can be generated as follows: The epidemic starts
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at at time t0 = 0 in state A[0]. Typically, I[0] = 1 for the infectious compartment, but

other choices are possible. This initial state is modified by a series of events with types

e1, e2, . . . , es at times t1, t2, . . . , ts, where s is a random variable indicating the number of

events which occurred before T . The number of the individuals in each compartment after

the i-th event has occurred at time ti is denoted by Ai = A[ti]. The population trajectory

of the epidemic is then just given by ((t0,A0), (t1,A1), . . . , (ts,As)). Figure 1a shows an

example of the infectious compartment occupancy over time. We can then equivalently

expand Ai as a sum of effect vectors:

Ai = A0 + ve1 + · · ·+ vei = A0 +

(
i∑

k=1

vek

)
.

An epidemiological trajectory E is thus well defined by the initial state, A0, the vector of

transition events e = (e1, e2, . . . , es), and the corresponding event times, t = (t1, t2, . . . , ts),

E = {A0,E = (e, t)} . (2)

As for any time-homogeneous discrete state continuous time Markov process, the probability

density of a particular trajectory is a product of exponentially distributed waiting times

between the s events with factors representing the probability density of each event. That

is,

P (E|η,A0, T ) =
s∏

i=1

exp{−ai−1(ti − ti−1)}αei(Ai−1) (3)

× exp{−as(T − ts)},

where ai =
∑

q∈Q αq(Ai) is the sum of the rates of all possible transitions in the interval

(ti, ti+1). For example, under the SIS model new infections happen at a rate βSiIi and

infected individuals are removed at a rate γIi. By defining IInf ⊂ I = {1, . . . , s} to be the

indices of infection events, and IRem ⊂ I to be the indices of the removal events, we can

write the probability density for an SIS trajectory as,

PSIS(E|η,A0, T ) =
∏
i∈I

exp {−(βSi−1Ii−1 + γIi−1)(ti − ti−1)}
∏

i∈IInf

βSi−1Ii−1
∏

i∈IRem

γIi−1

× exp{−(βSsIs + γIs)(T − ts)}.
(4)

Modelling the sampling process

Sampling of individuals can be described by expanding Q to include two additional event

types, sampling with and without removal. While the particular form of the effect vectors

depend on the dimension of the compartmental model, their effect remains the same: vSampR

removes an individual from the infectious class, while vSampNR leaves A[t] unchanged. We

explicitly model sampling by augmenting the stochastic process with sampling events and

times, and their corresponding rates: αSampR(A[t]) = rψI(t) and αSampNR(A[t]) = (1 −
r)ψI(t), where ψ is the per-individual sampling rate parameter and r is the probability of
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removal following sampling. Additionally, any remaining infected individuals at time T ,

i.e. the end of the process, are sampled with probability ρ. For convenience, we group

all parameters related to sampling together in the vector σ = (ψ, r, ρ). We then define

P (E,m|η,σ,A0, T ) to represent the probability density of this combined process producing

a trajectory E terminated by m contemporaneous samples at time T . For example, in the

case of the SIS model this probability density is

PSIS(E,m|η,σ,A0, T ) =
∏
i∈I

exp {−(βSi−1Ii−1 + (γ + ψ)Ii−1)(ti − ti−1)}∏
i∈IInf

βSi−1Ii−1
∏

i∈IRem

γIi−1
∏

i∈ISampR

rψIi−1
∏

i∈ISampNR

(1− r)ψIi−1

× exp{−(βSsIs + (γ + ψ)Is)(T − ts)}

×
(
Is
m

)
ρm(1− ρ)(Is−m).

(5)

From epidemiological trajectories to transmission trees

By tracking the identity of who infected whom along an epidemiological trajectory, we

obtain the transmission tree of the epidemic (full tree in Figure 1b). All events ei in the

trajectory (Figure 1a) correspond to nodes in the full tree. The number of extant lineages

in the full tree immediately following the event time ti is Ii.

The sampled phylogeny, T , is the subset of the full tree where only the subtree ancestral

to sampling events is retained (red subtree in Figure 1b). We use ki to represent the number

of lineages present in the sampled phylogeny immediately following time ti, so ki ≤ Ii. The

number of lineages remaining in the sampled tree at time T is ks = m.

Because of its relation to the full tree, each node in the sampled phylogeny must corre-

spond to a compatible event in the trajectory for the probability of the sampled phylogeny

given the trajectory P (T |E ,m) to be non-zero. Furthermore, this distribution is indepen-

dent of the particular epidemiological model. In particular, conditional on the trajectory,

the sampled phylogeny can be considered a result of a discrete-time Markov chain proceed-

ing from the most recent sample to the start of the epidemic process. This can be illustrated

by defining Ti to be the portion of the sampled phylogeny T on the interval (ti, ti+1], i.e.

including the tree node (if any) which corresponds to the event ei+1. We assume that lin-

eages in the tree Ti are labelled, such that the correspondence between lineages in Ti and

Ti+1 is unambiguous.

For example, an infection event, ei = Infection, in the trajectory only produces a branch-

ing event in the sampled tree when both the infector and the infected correspond to lineages

in the sampled phylogeny, so

P (Ti−1|Ti, Ii, ei = Infection) =


1

(Ii2 )
for ki = ki+1 − 1,

1− (ki2 )
(Ii2 )

for ki = ki+1,

0 otherwise,

where Ii is the total number of infected individuals (including the newly infected individual)
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Figure 1: The true epidemiological trajectory can be inferred from the reconstructed
phylogeny. a. The trajectory E of an epidemic outbreak consists of a sequence of events
(infection, sampling, recovery) ei at times ti that result in a corresponding sequence of
compartment occupancies such as the infectious compartment occupancies Ii. b. The full
transmission tree contains information on when infections happened and between which
lineages (filled squares) and when individuals were removed (filled circles). The sampled
transmission tree T represents a subset of the full tree (red). The rest of the transmission
tree is unobserved (blue). c. The time ordered observations Oj consist of the events
oj seen on the tree (infection, sampling w/ removal, sampling w/o removal) at times τj ,
combined with the number of lineages on the sampled tree in the intervals immediately
before each of these events. d. There is an ensemble of trajectories E(1), E(2), . . . that are
compatible with the sampled transmission tree. Note that the sampled transmission tree
contains only a subset of the events represented by the full tree and true trajectory E , and
each of these “observed” events must be present in every compatible trajectory.
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and thus
(
Ii
2

)
is the total number of pairs of lineages after the infection event, each of which

could have been the pair of lineages involved in the event.

Unsampled removal events do not themselves correspond to any nodes in sampled phy-

logenies, so if ei = Removal we have

P (Ti−1|Ti, Ii, ei = Removal) =

1 for ki−1 = ki,

0 otherwise.

On the other hand, any sampling with removal event corresponds to a leaf node at the

time of the event in the sampled phylogeny with probability one:

P (Ti−1|Ti, Ii, ei = SampR) =

1 for ki−1 = ki + 1,

0 otherwise.

In the case of samples that do not coincide with removal of the sampled lineage, there is

ambiguity regarding whether the event is represented by a external leaf node or an internal

sampled ancestor node in the sampled phylogeny, as this depends on whether or not any

descendants of the sample are subsequently sampled:

P (Ti−1|Ti, Ii, ei = SampNR) =


1
Ii

for ki−1 = ki,

1− ki
Ii

for ki−1 = ki + 1,

0 otherwise.

Combining the probabilities above allows us to calculate the full probability of the

sampled phylogeny given a complete compatible trajectory as,

P (T |E ,m) =P (Ts|m)
s∏

i=1

P (Ti−1|Ti, ei, Ii)

=δks,m
∏

i∈IInf

(
δki−1,ki

(
1− ki(ki − 1)

Ii(Ii − 1)

)
+ δki−1,ki−1

2

Ii(Ii − 1)

)
(6)

×
∏

i∈ISampNR

(
δki−1,ki

1

Ii
+ δki−1,ki+1

(
1− ki

Ii

))
,

where δ is the Kronecker delta, and P (Ts|m) = 1 provided ks = m.

Accounting for unsequenced samples

We now consider the possibility that samples generated by the birth-death-sampling process

may be absent from the sampled phylogeny. These samples, which we refer to here as

unsequenced samples, arise naturally in epidemiological settings where a large number of

pathogen samples may be collected at known times but only a subset are subsequently

sequenced. Similarly, doctors’ records can provide evidence that individuals were carrying

a pathogen at a particular time, but without sequencing there is no information about where

exactly the pathogen lineages ancestral to these samples attach to a sample phylogeny.

It is possible to directly include unsequenced samples in the phylogeny but their re-
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lationship to the rest of the phylogeny would not be informed by data and they would

contribute nothing to the inference of relationships between the sequenced samples while

increasing the complexity of the overall inference problem.

Instead, we assume that the set of all sampling event indices ISampNR∪ISampR is arbitrar-

ily partitioned into subsets ISeq and IUnseq containing indices of sequenced and unsequenced

sampling events, respectively. (By allowing this partitioning to be arbitrary, we are choos-

ing not to explicitly model the decision to sequence a given sample, but to instead condition

on this decision.) Since this classification then has no effect on the probability density of

the stochastic trajectory, we simply exclude the unsequenced sample indices from the final

product in the tree probability given by Eq. (6). This gives the following joint probability

for the time tree T and the unsequenced sample times S:

P (T ,S|E ,m, ISeq) =δks,m
∏

i∈IInf

(
δki−1,ki

(
1− ki(ki − 1)

Ii(Ii − 1)

)
+ δki−1,ki−1

2

Ii(Ii − 1)

)
(7)

×
∏

i∈ISampNR∩ISeq

(
δki−1,ki

1

Ii
+ δki−1,ki+1

(
1− ki

Ii

))
.

Again, we emphasise that this expression assumes each event in T and S has a corresponding

event in the trajectory E and that otherwise the joint probability is zero.

Bayesian inference

One of our goals is to perform asymptotically exact Bayesian inference of both the prevalence

trajectory and the epidemiological parameters using a set of pathogen sample times, a subset

for which genetic sequence data are available, collected throughout an epidemic. To this

end, for a given pathogen sequence alignment (with a sampling time associated with each

sequence) D and set of times of unsequenced samples S, we use Bayes’ rule to express the

joint posterior distribution for the model parameters and the epidemic trajectories in terms

of the conditional distributions composing the full model:

P (E , T ,µ,η,σ, T |D,S) =
1

P (D,S)
P (D|T ,µ)P (T ,S|E ,m, ISeq) (8)

× P (E,m|A0,η,σ, T )P (A0,µ,η,σ, T ).

Here P (D,S) can be treated as a normalisation constant and P (D|T ,µ) is the probability of

D evolving down the sampled transmission tree T under a substitution model parameterised

by µ, also known as the phylogenetic likelihood. P (A0,µ,η,σ, T ) represents the joint prior

probability distribution for the model parameters.

Several approaches to characterising this posterior for particular models already exist

in the literature, all of which involve using Markov chain Monte Carlo (MCMC) to sample

(or maximum likelihood to optimise) a marginalized and/or approximate form of Eq. (8).

For instance, Stadler et al. [23] analytically marginalise over the trajectory sub-space in

the case of the linear birth-death model and use MCMC to sample from (T ,µ,η,σ, T ).

Similarly, Leventhal et al. [18] express the marginalization of Eq. (8) over trajectories for

the nonlinear stochastic SIS model as the solution to a master equation which is then inte-
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grated numerically with parameter inferences being drawn by applying MCMC or maximum

likelihood.

Kühnert et al. [17] provide an approximation to the posterior for discretised trajectories

under the stochastic SIR model and use MCMC to sample (E , T ,µ,η,σ, T ). Volz et al.

[10] and Volz [11] present an approximation to this posterior under the assumption that the

relative amplitude of the stochastic noise in E is negligible and that P (E,m|η,σ,A0, T )

therefore collapses to a point mass centred on the approximate deterministic solution of the

model.

In contrast to these methods, we use the particle marginal Metropolis-Hastings (PMMH)

algorithm [19]. This has previously been applied in a phylodynamic context by Rasmussen,

Ratmann & Koelle [12] and Rasmussen, Volz & Koelle [13] using a coalescent approxima-

tion to the distribution of sampled phylogenies, but not to sample directly from the exact

phylodynamic posterior as we do in the algorithm described below.

Particle filtering algorithm

We employ the PMMH algorithm described by [19]. In the form presented here, it involves

using a bootstrap particle filter to simulate trajectories E conditional on both a sampled

transmission tree T and the times of unsequenced samples S.

We call the union of the sampled phylogeny T and the temporally distributed unse-

quenced samples S the observed process, O, and use oj to represent the jth observation

(either a node of the sampled phylogeny or an unsequenced sample) when ordered accord-

ing to the observation times τj , as illustrated in Figure 1c. The final (N th) observation

represents the contemporaneous sampling of m lineages in the sampled phylogeny, although

it is possible for m to be zero.

We divide the time into intervals between observations. The first of these intervals

begins at time τ0 = t0 = 0, while the last ends at time T . We denote the portion of

the observed process within interval j using Oj , which is understood to include both the

number of tree lineages extant within the interval and the observation oj at end of the

interval. Similarly, we divide the full trajectory E into corresponding partial trajectories Ej
which contain only the trajectory events within each observation interval, and define E ′j to

be the partial trajectory excluding the event ej corresponding to the observation oj .

The algorithm involves simulating an ensemble of M trajectories or “particles” in each

of the N intervals between τ0 and τN = T . The initial condition for each particle is sampled

from the ensemble of finishing states of particles simulated in the previous interval, weighted

according to the probability of the observation event that divides the intervals.

The algorithm is as follows:

1. Set the interval index j ← 1 and define x
(a)
0 = A0 to be the starting state of particle a.

2. For each a ∈ [1 . . .M ] use Gillespie’s stochastic simulation algorithm [24, 25] or its

asymptotically exact equivalent [26] to sample a partial trajectory E ′(a)j from the

distribution

P (E ′j |η,σ, τj − τj−1, x(a)j−1), (9)
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which is a solution to the master equation given in Eq. (1) conditioned on the initial

state x(a) and the interval time τj − τj−1.

3. Each sampled partial trajectory E(a)j , which is defined as the union of E ′(a)j and the

event corresponding to the observation oj , is assigned a weight

ω
(a)
j = P (Oj |E(a)j ,m, ISeq)αoj (y

(a)
j ). (10)

The probability on the right-hand side is given by Eq. (7) but restricted to include

only the epidemic events within the interval and the observation event oj . The factor

αoj (y
(a)
j ) is the transition rate for the epidemic event corresponding to oj given the final

state of E ′(a)j , denoted here y
(a)
j . (This factor ensures that the particle trajectories are

constrained to be consistent with the observation event oj , as inconsistent trajectories

will be assigned a weight of zero.)

4. The mean of weights Ωj = (
∑M

a=1 ω
(a)
j )/M is recorded, and a new set of M trajectory

states x
(1)
j . . . x

(M)
j is sampled with replacement from the weighted distribution of the

final states of the partial trajectories Ej .

5. If j < N , set j ← j + 1 and go to step 2.

6. Compute the product P̂ (T ,S|A0,η,σ, T ) ≡ ∏M
j=1 Ωj which is, as highlighted below,

an estimate of the marginal density P (T ,S|A0,η,σ, T ), with the marginalization be-

ing over the epidemiological trajectories. Also, sample a single final partial trajectory

Êi from the final distribution of weighted partial trajectories and follow the sequence

of events back through the observation intervals until t = 0, yielding a single sampled

full trajectory Ê .

It can be shown [27] that the value of P̂ (T ,S|A0,η,σ, T ) is an unbiased and consistent

estimate of the marginal probability density for the sampled phylogeny and unsequenced

samples P (T ,S|A0,η,σ, T ). (This probability density is sometimes called the phylody-

namic likelihood, and below we simply write “likelihood”, although the implicit classifi-

cation of T as “data” should not be understood to mean that phylogenies are physically

observed.) As shown by [19], this implies that by using this estimate in place of the terms

P (T ,S|E ,m, ISeq)P (E,m|A0,η,σ, T ) in the posterior given by Eq. (8), and using the re-

sulting expression as the target distribution for a Markov chain Monte Carlo algorithm, we

obtain an algorithm for sampling from the joint posterior marginalized over the epidemic

trajectories. Furthermore, by recording the sampled trajectories Ê generated by the par-

ticle filter alongside the parameter values and sampled phylogenies visited by the MCMC

procedure, the algorithm generates samples from the full (unmarginalised) joint posterior.

The use of particle filtering to condition the epidemic trajectories on the tree is poten-

tially confusing, due to the (backward-time) correlations between the observations that make

up the sampled phylogeny. Despite these correlations, the PMMH algorithm remains appli-

cable since the joint probability of the observations and hidden state, P (T ,S, E|A0,η,σ, T ),

can be expressed in precisely the same form as the weighted sequence of conditional proba-

bilities generated by a standard hidden Markov model. This is shown in the supplementary
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text, along with a simple demonstration that the resulting algorithm does indeed produce

samples from the required marginal density of the observations given the phylodynamic

model parameters.

Results

Implementation and validation

We have implemented the algorithm described above as a BEAST 2 [28] package. This

allows the algorithm to be used in conjunction with standard phylogenetic models such

as those describing the nucleotide substitution process as well as existing algorithms for

performing the MCMC sampling of the phylogenetic tree space. The package is released

under the GNU General Public License and instructions for installing and using it can be

found, along with source code, at http://tgvaughan.github.io/EpiInf.

All of the BEAST 2 input files necessary to reproduce the results described in this

section, together with instructions on how to use them, may be downloaded from

http://github.com/tgvaughan/ParticleFilterResults.

Direct likelihood comparison

We validated our algorithm and its implementation by comparing the likelihoods generated

by the particle filter with those computed analytically under the linear birth-death model

[8] and numerically under the nonlinear stochastic SIS model [18]. These comparisons were

performed for a variety of parameter combinations and in all cases yielded perfect agreement

(Figure 2).

Comparison of tree-based and incidence-based sampling

The joint tree and sample time prior defined in Eq. (7) has the property that marginalising

over the time tree yields a quantity which is independent of which samples are sequenced and

which samples are not. In other words, if the sequence data from the sampled individuals

provide no information about the phylogenetic tree then the only information we have are

the sample times: our estimates of the epidemiological model parameters should therefore

not depend on which samples were sequenced. This suggests the following test for the

consistency of the joint posterior:

1. Fix a set of sampling times.

2. Assign a fraction f of these times to be associated with tree leaves (i.e. play the role

of “sequenced” sample times),

3. Sample from the joint posterior defined in Eq. (8) without sequence data (i.e. setting

P (D|T ,µ) to a constant).

Provided the unsequenced sampling times are being handled consistently by the sampler,

the posteriors for model parameters should be identical regardless of f .

We performed this test using a set of 83 sample times simulated using a birth-death-

sampling process and using these times, via the procedure above, to produce the posterior
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Figure 2: Comparison between values of the phylodynamic likelihoods computed using
the PMMH algorithm with those calculated using other approaches: (a) likelihood of r
under the linear birth-death model from PMMH compared with the analytical result [8] and
(b) likelihood of β under the stochastic SIS model from PMMH compared with a numerical
result from ExpoTree [18].

for the birth rate parameter β as a function of f . The lack of variation in this posterior as

with respect to f , shown in figure 3, is strong evidence that our treatment of unsequenced

samples is indeed consistent with our treatment of sequenced samples.

Inference from simulated data

In order to assess the capability of the sampler to recover prevalence trajectories, we simu-

lated trajectories under each of the three models supported by our implementation: linear

birth-death (β = 1.2, γ = 0.1, ψ/(ψ+ γ) = 0.5, T = 7.0), stochastic SIS (β = 0.02, γ = 1.0,

ψ/(ψ + γ) = 0.1, T = 5, S0 = 199) and stochastic SIR (β = 0.2, γ = 1.0, ψ/(ψ + γ) = 0.1,

T = 5, S0 = 199). In all cases we fixed the removal probability r = 1, the present-day

sampling probability ρ = 0 and set I0 = 1. Sampled transmission trees were then simulated

from each of these trajectories, which were in turn used to simulate 2 kb genetic sequence

alignments under a simple Jukes-Cantor model with a substitution rate of 5 × 10−3 per

site per unit time. For each of these three alignments, we then used our algorithm to sam-

ple from the joint posterior for the transmission tree, epidemic trajectory and the model

parameters β, γ, T and (in the case of SIS and SIR) S0. (The remaining parameters ψ,

r, and ψ were fixed to the truth.) For the continuous parameters we employed improper

priors P (β) = 1/β, P (γ) = 1/γ and P (T ) = 1/T . For the discrete S0 parameter we used

P (S0) = Unif(0, 300).

Figure 4 illustrates the agreement between the posterior prevalence distributions ob-

tained from each of these analyses (red lines) and the true prevalence curves (black lines).

Also shown is the distribution of prevalence curves generated directly from the posterior
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Figure 3: Marginal posteriors for the infection rate as a function of the fraction f of samples
regarded as “sequenced” when no data besides the sampling times is available. The
invariance of this distribution with respect to f shows that the treatment of unsequenced
samples is consistent with the treatment of sequenced samples.

Figure 4: Inference of prevalence dynamics from sequence data simulated under (a) linear
birth-death, (b) stochastic SIS and (c) stochastic SIR model. Samples from the posterior
of the prevalence trajectory are shown in red, while the black line represents the truth.
The blue lines are prevalence trajectories simulated from the posterior samples of the
compartmental model parameters.
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Model β γ S0 ψ r ρ T

Linear birth-death 0.5 0.1 — 0.25 0.0 0.0 10.0
SIS 0.02 1.0 199 0.1 0.0 0.0 5.0
SIR 0.02 1.0 199 0.1 0.0 0.0 5.0

Table 1: Fixed parameter values used for well-calibrated trajectory inference validation.

samples of the model parameters (blue lines). Prior to our PMMH algorithm, the blue

lines were the best estimates obtained for prevalence under compartmental models (unless

coalescent approximations were appropriate in the particular application). As these blue

trajectories are not explicitly conditioned on the corresponding sampled transmission trees

however, there is a significantly greater variance in their distribution.

Quantitative validation of trajectory inference

While agreement between simulated and subsequently inferred trajectories is encouraging,

we use a well-calibrated approach [29] for a more robust quantitative validation of the

inference algorithm. The steps of this approach are as follows.

1. Under each model (linear birth-death, SIS and SIR) and a chosen set of parameters

(Table 1) we simulate 200 trajectories and sampled trees.

2. A random DNA sequence is simulated down each sampled tree, resulting in a unique

simulated sequence alignment.

3. For each simulated sequence alignment, infer the corresponding trajectory conditional

on the true model parameters using our inference algorithm.

4. We compute the proportion of analyses for which the true prevalence at a particular

time falls within the 100α% highest posterior density (HPD) interval of the sampled

posterior distribution for the prevalence at this time. This is repeated for a range of

times and α values.

Figure 5 shows, for each model, the perfectly linear relationship between α and the

proportion of analyses for which the 100α% HPD includes the truth. This relationship

provides strong evidence that our implementation of the algorithm correctly samples from

the true distribution of epidemiological trajectories.

Inference of Ebola prevalence in Sierra Leone

In order to demonstrate the applicability of our method, we analyzed 101 full Ebola virus

(EBOV) genomes collected from the Kailahun district in eastern Sierra Leone during the

2014 west-African epidemic [30–33], as curated and aligned by Dudas et al. [34]. These

sequences were analyzed jointly with the temporal distribution of unsequenced Kailahun

cases [35]. To assess the degree to which the inclusion of unsequenced data affected the

inferred trajectory distributions, we conducted a separate analysis based solely on sequence

data collected during the first four weeks. Later sequences were excluded from the latter

analysis to avoid introducing bias due to the sequencing fraction being skewed toward earlier

weeks (Figure 6f).

15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 19, 2018. ; https://doi.org/10.1101/142570doi: bioRxiv preprint 

https://doi.org/10.1101/142570
http://creativecommons.org/licenses/by/4.0/


t0 0
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
α

Tr
ut

h 
re

co
ve

ry
 p

ro
po

rt
io

n

(a)

t0 0

0.00 0.25 0.50 0.75 1.00
α

(b)

t0 0

0.00 0.25 0.50 0.75 1.00
α

(c)

Figure 5: Proportion of simulated data analyses which included the true prevalence in their
100α% highest posterior density (HPD) intervals, for alignments simulated under each of
the (a) linear birth-death, (b) SIS and (c) SIR models. Colours represent the distinct times
at which the coverage fractions were computed, and the insets indicate where these times
fall in relation to the approximate deterministic prevalence curves. The linear relationship
between the relative inclusion frequencies and α indicates that the PMMH algorithm is
correctly sampling from the posterior prevalence distribution under each of these models.

We assumed a standard neutral model of sequence evolution allowing for distinct tran-

sition/transversion rates and non-equilibrium base frequencies [36], together with Gamma-

distributed rate heterogeneity among sites [37]. We further assumed a strict clock rate whose

value was jointly estimated using an informative prior derived from a recent meta-analysis

[38].

We assumed a stochastic SIR epidemiological model in which each sample (whether

sequenced or unsequenced) is assumed to be generated by a linear sampling process with

fixed rate ψ between the times of the most recent and earliest samples. Importantly, while

the temporal distribution of sample collection times is determined by this model, the choice

of which samples to sequence is not. We feel that this is a sensible decision, given the

non-linear relationship between the sequenced and unsequenced cases.

The total removal rate γ was fixed at 25 removals per infectious individual per year,

corresponding to an expected infectious period of approximately 15 days. Similarly, the

removal probability at sampling r was fixed to 0, meaning that sampling was not assumed

to affect infectious potential. All other epidemiological parameters were estimated from the

data. The complete list of prior distributions used for these analyses is presented in the

second column of Table 2.

For the full analysis and the sequence-only analysis, a total of 30 independent MCMC

chains were run for 2×107 steps each and compared to assess convergence. The initial 10%

of each chain was removed to account for burn-in and the remaining samples combined into

two long chains (one for each analysis type) from which the final results were derived.

The 95% highest posterior density (HPD) intervals for each of the estimated compart-

mental model parameters are presented in the right-most columns of Table 2. Interestingly,

despite the broad uniform prior, the initial size of the susceptible population is inferred to

be very low: on the order of one or two thousand individuals. This is likely due to the

effects of population structure, with the fitted value representing the effective magnitude of
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Parameter Unit Prior distribution Posterior 95% HPD
Lower Upper

β year−1 Unif(0, 1) 2.9× 10−2 8.2× 10−2

S0 — Unif(0, 5× 105) 576 1390
ψ year−1 Unif(1, 365) 16 36
T year Unif(0, 2) 0.64 (May 5) 0.83 (Feb 25)

Table 2: Parameter priors distributions used in and 95% highest posterior density intervals
derived from our analysis of EBOV genomes sampled from the 2014 EVD outbreak in
Kailahun. Note that while T is the time difference between the start of the outbreak and
the end of the observation period, for a given time of cessation of observation it implies the
absolute time of the start of the outbreak, which we provide in the bracketed (2014) dates.

the susceptible population rather than a demographic count. Additionally, we find that the

overall rate of sampling is comparable to the removal rate γ, suggesting a relatively high

sampling fraction ψ/(ψ+γ) of 39–60% (95%HPD interval) during the period that sampling

was taking place, i.e., between the first and the last sample recorded for this region.

The posterior distributions for the absolute number of infectious hosts, I(t), and effective

reproduction number, Re(t) = βS(t)/γ, trajectories are shown as the distributions of red

curves in Figures 6a and 6b respectively. The blue curves shown alongside are trajectories

simulated under the model using the sampled epidemiological parameter values and not

explicitly conditioned on the observed sample data nor inferred transmission trees, hence

their broader variance.

Figure 6c shows the posterior for the prevalence in terms of the number of infectious

hosts per 105 initially susceptible hosts in the population. Since the SIR model is a constant

population size model, this is also just the proportion of the population at any time which

is inferred to be infected. Furthermore, since the initial number of susceptible hosts S0 is

jointly estimated, the shape of the estimated curve differs subtly from the absolute infected

host count trajectories shown in Figure 6a due to correlations between this shape and the

susceptible host count.

Figure 6d shows the posterior for the rate of incidence. Specifically, it shows the inferred

rate of new infections per susceptible host per week, with time measured in weeks.

The comparison between analysis of the full data set and the sequence-only analysis

(Figure 6e) clearly displays the advantage of including the additional unsequenced case

count data. In particular, it is clear that the unsequenced samples (Figure 6f) provide a

wealth of information regarding the peak prevalence of the epidemic, a value that is almost

completely unresolved in the sequence-only analysis.

Discussion

The primary strengths of the inference method and associated software presented here

are their versatility and exactness. The method jointly samples from the exact posterior

of transmission trees, epidemic trajectories and model parameters under compartmental

models without needing to make assumptions about the size of the epidemic or the size

of the host population. (In contrast, coalescent methods are usually only applicable when

population sizes are large.) The current implementation treats SI, SIS and SIR epidemic
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Figure 6: (a),(b) Jointly inferred posterior distributions (red) and unconditioned simulated
distributions (blue) for (a) infected host count and (b) effective reproduction number during
the Kailahun EVD outbreak. (c) Posterior distribution of infected host count per 105 hosts
(prevalence). (d) Expected number of of new EVD infections per susceptible host per week
(incidence). (e) Comparison of inferred number of infected hosts using all data (red curves)
and only the first four weeks of sequence data (brown curves). (f) Temporal distribution
of EBOV cases used in the full analysis, both sequenced (turquoise) and unsequenced
(orange). The vertical dashed line in (f) indicates the end of the 4-week period of sequence
data used to infer the brown trajectories in (e).
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models but, with only minor modifications, it can be used under any unstructured stochastic

compartmental model whose dynamics can be described by Equation (1).

There is also versatility in the type of data the method accepts. Many phylodynamic

methods have relied solely on sequence data to inform their models which, while increas-

ingly available, is more costly and scarce than simple case reports. Our method can use

cases reports and sequences together. The benefits of including case reports (unsequenced

samples) to improving prevalence estimation are clearly shown in the Ebola analysis where

the time of the epidemic peak is much more tightly estimated than when the sequences

are analysed alone. We also expect that including the case reports could inform the dating

of the tree in data sets where the case reports are numerous and only a small number of

sequences are available.

The method described here is also applicable to the field of macroevolution where past

species richness, i.e., the number of species through time, is a quantity of much interest.

Estimates are typically obtained by using sequences from extant species to estimate past spe-

ciation and extinction rates which are then used to simulate unconditioned trajectories [39].

As is the case with epidemic trajectories, using our particle filtering tool to fit conditioned

trajectories should improve these estimates and make quantification of species richness more

precise. Fossil occurrence data has been shown to greatly improve macroevolutionary esti-

mates [40] and are analogous to unsequenced samples, so can be directly incorporated into

analyses with our method.

The sampling model we use is relatively simple, with infected samples uniformly taken

at a constant rate through the epidemic and the possibility of burst of sampling at the end.

This overly simple approach means that data needed to be discarded in the Ebola analysis

so as not to bias results. It is feasible to extend the sampling model to more closely reflect

how the data is actually collected, for example by modeling changes in collection effort or

having multiple bursts of intense sampling and so avoid potential biases introduced by the

current model.

The software implementation of the method within the Beast 2 framework means that

the default is to estimate the tree along with other parameters, and the full range of standard

phylogenetic models can be used to model sequence evolution along the tree.

The flexibility and exactness of the inference relies on simulation to compute Monte

Carlo estimates of the probability density of the transmission tree under the model and so

comes at a heavy computational cost. While a single density estimate can be made very

quickly, when it is run as part of a larger MCMC analysis, estimates must be computed

many times for each MCMC step and for hundreds of millions of steps. The number of

simulations run at each step is a tunable parameter of PMMH and does not, in theory, alter

the accuracy of the result. But there is a trade-off in that reducing the number of stochastic

simulations that make up a density estimate increases the variance of the estimate with the

result the Markov chain can become “stuck” after an extreme estimate is made, and the

mixing rate of the chain is drastically reduced to the point that independent draws from

the target posterior are not being produced. There is potential to parallelise the density

estimate by running simulations in parallel at each step though with overheads the benefit

of this may be marginal. Overall, joint analysis under this method are currently limited to

hundreds of sequences.
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Another obvious shortcoming of the present algorithm is its inability to handle structure

in the population. Structure can originate from spatial segmentation of the host population

or from the infection having distinct phases, for example varying degrees of transmissibility

or a non-infectious period (such as in the SEIR model). This issue is addressed by Ras-

mussen, Volz & Koelle [13], although in an approximate way that assumes events in the

epidemic trajectory are independent of the events observed in the phylogeny.

Despite these difficulties, we have presented what is to our knowledge the first algorithm

capable of exactly inferring epidemiological trajectories jointly with compartmental model

parameters using a combination of pathogen sequencing data and case count records. Our

method also enables estimates of species richness through time by combining extant species

data and fossil occurrences. A focus for future work will be extending this tool to account

for population structure and to allow for the analysis of larger data sets in a mathematically

exact framework.
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