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Abstract

Count data derived from high-throughput DNA sequencing is frequently used in

quantitative molecular assays. Due to properties inherent to the sequencing

process, unnormalized count data is compositional, measuring relative and not

absolute abundances of the assayed features. This compositional bias confounds

inference of absolute abundances. We demonstrate that existing techniques for

estimating compositional bias fail with sparse metagenomic 16S count data and

propose an empirical Bayes normalization approach to overcome this problem. In

addition, we clarify the assumptions underlying frequently used scaling

normalization methods in light of compositional bias, including scaling methods

that were not designed directly to address it.

Keywords: compositional bias; normalization; empirical Bayes; data integration;

count data; metagenomics; absolute abundance; scRNAseq; spike-in

Background

Sequencing technology has played a fundamental role in 21st century biology: the

output data, in the form of sequencing reads of molecular features in a sample,

are relatively inexpensive to produce [1, 2, 3, 4]. This, along with the immediate

availability of effective, open source computational toolkits for downstream analysis

[5, 6], has enabled biologists to utilize this technology in ingenious ways to probe

various aspects of biological mechanisms and organization ranging from microscopic

DNA binding events [7, 8] to large-scale oceanic microbial ecosystems [9, 10].

This remarkable flexibility of sequencing comes with atleast one tradeoff. As noted

previously in the literature [11, 12, 13, 14] (illustrated in Fig. 1), unnormalized

counts obtained from a sequencer only reflect relative abundances of the features

in a sample, and not their absolute internal concentrations. When a differential

abundance analysis is performed on this data, fold changes of null features, those
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not differentially abundant in the absolute scale, are intimately tied to those of

features that are perturbed in their absolute abundances, making the former appear

differentially abundant. We refer to this artifact as compositional bias. Such effects

are observable in the count data from the large-scale Tara oceans metagenomics

project [10], (Fig. 2), in which a few dominant taxa are attributable to global

differences in the between-oceans fold-change distributions.

Correction for compositional bias can be achieved by re-scaling each sample’s

count data with its corresponding count of an internal control feature (or “spike-in”,

Fig. 1B). In the absence of such control features, effective correction for composi-

tional bias can still be hoped for, as it can be shown that this correction amounts to

resolving a linear technical bias [13]. This fact allows one to exploit several widely

used non- spike-in normalization approaches [15, 13, 16, 17], which approximate the

aforementioned spike-in strategy by assuming that most features do not change on

average across samples/conditions. For the same reason, such an interpretation can

also be given to approaches like centered logarithmic transforms (CLR) from the

theory of compositional data, which many analysts favor when working with rela-

tive abundances [18, 19, 20, 21, 22, 23, 24]. In this paper, we analyze the behavior

of these existing scaling normalization techniques in light of compositional bias.

When trying to normalize metagenomic 16S survey data with these methods how-

ever, we found that the large fraction of zeroes in the count data, and the relatively

low sequencing depths of metagenomic samples posed a severe problem: DESeq

failed to provide a solution for all the samples in a dataset of our interest, and

TMM based its estimation of scale factors on very few features per sample (as

low as 1). The median approach simply returned zero values. CLR transforms be-

haved similarly. When one proceeds to avoid this problem by adding pseudo-counts,

owing to heavy sparsity underlying these datasets, the transformations these tech-

niques imposed mostly reflected the value of pseudocount and the number of fea-

tures observed in a sample. A recently established scaling normalization technique,

Scran [25], tried to overcome this sparsity issue in the context of single cell RNAseq

count data – which also entertains a large fraction of zeroes – by decomposing simu-

lated pooled counts from multiple samples. That approach, developed for relatively

high coverage single cell RNAseq, also failed to provide solutions for a significant

fraction of samples in our datasets (as high as 74%). Furthermore, as we illustrate
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later, compositional bias affects data sparsity, and normalization techniques that

ignore zeroes when estimating normalization scales (like CSS [26], and TMM) can

be severely biased. The relatively low sequencing depth per sample (as low as 2000

reads per sample), large number of features and their diversity across samples thus

pose a serious challenge to existing normalization techniques. In this paper, we de-

velop a compositional bias correction technique for sparse count data based on an

empirical Bayes approach that borrows information across features and samples

Since we have presented the problem of compositional bias as one affecting in-

ferences on absolute abundances, one might wonder if resolving compositional bias

is needed when analyses on relative abundances are performed. It is important to

realize that compositional bias is infused in the count data, solely due to inherent

characteristics of the sequencing process, even before it passes through any specific

normalization process like scaling by library size. In practical conditions, because

feature-wise abundance perturbations are also driven by technical sources of varia-

tion uncorrelated with total library size [27, 28, 29, 30], compositional bias correction

becomes necessary even when analysis is performed on relative abundances.

The paper is organized as follows. We first set up the problem of compositional bias

correction and with appropriate simulations, evaluate several scaling normalization

techniques in solving it. We find that techniques based only on library size (e.g. un-

altered RPKM/CPM [31], rarefication/subsampling in metagenomics [32, 33]) are

provably bad. Other scaling techniques, while providing robust compositional bias

estimates on high coverage data, perform poorly at sparsity levels often observed

with metagenomic count data. We then introduce the proposed normalization ap-

proach (Wrench) and evaluate its performance with simulations and experimental

data showing that it can lead to reduced false positives and rich annotation discov-

eries. We close by discussing the insights obtained by applying Wrench and other

scaling normalization techniques to experimental datasets, arguing both for address-

ing compositional bias in general practice and in benchmarking studies. Because all

the aforementioned techniques, including our own proposal, assume that most fea-

tures do not change across conditions on average, they would all suffer in analyses

of features arising from arbitrary general conditions. In such cases, spike-in based

techniques can be effective [34], although methods similar to the ERCC method
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for bulk RNAseq will not work for the simple reason it starts with an extract, an

already compositional data source.

Results

Formalizing compositional bias in differential abundance analysis

Below, we describe the compositional correction factor, the quantity we use to eval-

uate scaling normalization techniques in overcoming compositional bias.

Fig. 3 illustrates a general sequencing experiment and sets up the problem of

compositional bias correction. We imagine a set of samples/observations j = 1 . . . ng

arising from conditions g = 1 . . . G (e.g., cases and controls). The true absolute

abundances of features in every sample organized as a vector X0
gj·, are perturbed by

various technical sources of variation as the sample is prepared for sequencing. The

end result is a transformed absolute abundance vector Xgj·, the net total abundance

of which is denoted by Tgj =
∑
iXgji = Xgj+, where the + indicates summing over

that subscript. This is the input to the sequencer, which introduces compositional

bias by producing reads proportional to the absolute feature abundances represented

in Xgj·. The output reads are processed and organized as counts in a vector Ygj·,

which now retain only relative abundance information of features in Xgj·. The

ultimate goal of a normalization strategy is to recover X0
gj· for all g and j.

Our goal is to evaluate existing normalization approaches based on how well they

reconstruct X from Y , as it is in this step, that the sequencing process induces the

bias we are interested in. We come back to the question of reconstructing X0 at the

end of this subsection. Because we are ignoring all other technical biases inherent to

the experiment/technology (i.e., the process from X0 → X), our discussions apply

to RNAseq/scRNAseq/metagenomics and other quantititative sequencing based as-

says. In this paper, our primary interest will be in the correction of compositional

bias for metagenomic marker gene survey data, which are often under-sampled.

Although not strictly necessary, for simplicity, we shall assume that the relative

abundances of each feature i is given by qgi for all samples within a group g. It

is also reasonable to assume an Xgj·|Tgj ∼ Multinomial(Tgj , qg·), where qg· is the

vector of feature-wise relative abundances. Such an assumption follows for example

from a Poisson assumption on the expression of features Xgji [35] . Similarly, we

shall assume the observed counts Ygj·|Xgj·, τgj ∼Multinomial(τgj ,
Xgj·
Tgj

), τgj is the
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corresponding sampling depth. Notice that marginally, E[Ygji|τgj ] = qgi · τgj , and

hence averaging the observed sample-wise proportions q̂gji = Ygji/τgj in group g

for feature i yields the marginal expectation E[q̂g+i] = qgi. We shall use E[Tg1] to

denote the average (across samples) total absolute abundance of features in group

g at the time of input. Similarly, E[Xg+i] will denote the marginal expectation of

absolute abundance of feature i across samples in group g (number of molecules per

unit volume in case of RNAseq / number of distinct 16S fragments per unit volume

in an environmental lysate in the case of 16S metagenomics). If we set g = 1 as

the control group, and define, for every feature i, νgi =
E[Xg+i]

E[X1+i]
, then log νgi is the

log-fold change of true absolute abundances associated with group g relative to that

of the control group. We can write:

νgi =
E[Xg+i]

E[X1+i]
=
E[Tg1]qgi
E[T11]q1i

≡ Λg ·
qgi
q1i

= Λg ·
E[q̂g+i]

E[q̂1+i]
(1)

This indicates that the fold changes based on observed proportions (estimated from

Y ) from the sequencing machine confounds our inference of the fold changes asso-

ciated with absolute abundances of features at stage X, through a linear bias term

Λg. Thus, to reconstruct the average absolute abundances of features in experimen-

tal group g, one needs to estimate the compositional correction factor Λ−1
g , where

for convenience in exposition below, we have chosen to work with the inverse. Note

that the compositional correction factor for the control group Λ−1
1 = 1 by definition.

Details on our terminology and how it differs from normalization factors, which are

compositional factors altered by sample depths, are presented in the Simulations

subsection under Methods. Below, we use the terms compositional scale or more

simply scale factor interchangeably to refer to compositional correction factors.

The central idea in estimating compositional correction factors For any group g,

an effective strategy for estimating Λ−1
g can be derived based on an often quoted as-

sumption behind scale normalization techniques [13]: if most features do not change

in an experimental condition relative to the control group, eqn. 1 should hold true

for most features with νgi = 1. Thus, an appropriate summary statistic of these

ratios of proportions could serve as an estimate of Λ−1
g .
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So far we have discussed estimating group-specific compositional factors. With this

idea in place, a normalization procedure for deriving sample-specific compositional

scale factors can be devised. One only needs to carry out the above procedure by

pretending that every sample arises from its own experimental group. Indeed, as

illustrated in Table 1, many scale normalization methods (including the proposal

in this work) can be viewed in this light, where some control set of proportions

(“reference”) is defined, and the Λ−1
gj estimate is derived for every sample j based

on the ratio of its proportions to that of the reference. This central idea being the

same, the robustness of these methods are dependent on how well the assumptions

hold with respect to the chosen reference, and the choice of the estimation strategy.

Reconstrucing X0 from Y It is worth emphasizing that the aforementioned estima-

tion strategy does not restrict compositional factors to only reflect biology-induced

global abundance changes; in reality, if feature-wise perturbations (νgi) are also of

technical origin, they can well be correlated with other sources of technical vari-

ation, and can be seen to estimate technical variation beyond what is accounted

for by sample depth adjustments. Thus, it is interesting to ask under what condi-

tions compositional factors arising from scaling techniques (including our proposed

technique in this work) can reconstruct X0. In the supplementary, we show that

in the presence of sequence-able experimentally introduced contaminants, utilizing

existing compositional correction tools amounts to applying stricter assumptions

than the often-cited assumption of “technical biases affecting all feature the same

way”. The precise condition is given in the supplement (supplementary section 3,

eqn. 6). In the absence of contamination, we find the traditional assumption to be

sufficient.

Existing techniques fail to correct for compositional bias in sparse 16S survey data.

In this subsection, we ask how existing techniques fare in estimating compositional

correction factors, both in settings at large sample depths and with particular rel-

evance to sparse 16S count data. We will find that library size/subsampling ap-

proaches are provably bad and that other scaling techniques face certain difficulties

with sparse data. We will also note that the common strategy of deriving normaliza-

tion factors/data transformations after adding pseudocounts to the original sparse

count data transformations also lead to biased estimates of scale factors.
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Our analysis below is limited to methods that provide interpretable estimates of

fold-changes. We therefore do not consider differential abundance inferences arising

from rank-based methods. We also leave the analysis of non-linear normalization

techniques for future work.

Library size/Subsampling based approaches To understand the practical impor-

tance of resolving confounding caused by compositional bias, we first asked under

what conditions, inferences made without compositional correction would continue

to reflect changes in absolute abundances in an unbiased manner. We formally an-

alyzed its influence within the framework of generalized linear models, a widely

used statistical framework within several count data packages (supplementary sec-

tion 1). Under the most natural adjustments based on the total count (e.g., unaltered

R/FPKM/CPM/subsampling/rarefication based approaches), we found that these

conditions can be precisely characterized and are extremely limited in their appli-

cability in general experimental settings. It may be tempting to argue that one can

resort to total count-based normalization if total feature content is the same across

conditions. However, as shown in supplementary section 1, it is easy to see that

this assumption is only valid when strict constraints on the levels of technical per-

turbation of feature abundances and sequence-able contaminants are respected, an

assumption that can be very easily violated in metagenomic experiments [36, 37, 38],

which usually feature high intra- and inter-group feature diversity.

Reference normalization and robust fold-change estimation techniques We now

compare and contrast library size adjustments with a few reference based techniques

(reviewed in Table. 1) in overcoming compositional bias at high sample depths. Fur-

thermore, many widely used genomic differential abundance testing toolkits enforce

prior assumptions on reconstructed fold changes, and moderate their estimation.

This made us wonder about the robustness of these testing techniques in overcom-

ing the false positives that would otherwise be created without compositional bias

correction. With an exhaustive set of simulations at high coverage sample depths

(similar to bulk RNAseq) with 20M reads per sample, by and large, we found that

all testing packages behaved the same way, and the key ingredient to overcome

compositional bias always was an appropriate normalization technique (supplemen-

tary section 2). We also found that reference based normalization procedures out-
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performed library size based techniques significantly, re-emphasizing the analytic

insights we mentioned previously. With sparse 16S data however, such techniques

developed for bulk RNAseq faced major difficulties as illustrated next.

In Fig. 4, we plot the feature-wise compositional scale estimates (i.e., ratio of

sample proportion to that of the reference; third column entries in Table. 1), ob-

tained from TMM and DESeq for a sample in two different 16S microbiome datasets.

TMM computes a weighted average over these feature-wise estimates, while DESeq

proposes the median. The first column corresponds to a bulk RNAseq study of

the rat body map [39]; the second corresponds to those from a 16S metagenomic

dataset [40]. Strikingly, while a large number of features agree on their scale factors

for a sample arising from bulk RNAseq for both TMM and DESeq strategies, the

sparse nature of metagenomic count data makes robust estimation of their scale

factors extremely difficult. Furthermore, large variance is also observed across the

scale factors suggested by the individual features. Clearly, a moderated estimation

procedure is warranted.

One might wonder if adding pseudocounts to the orginal count data (a common

procedure in metagenomic data analysis [19, 41]) effectively deals away with the

problem. However, as shown in Fig. 5, with large number of features absent per

sample, these scale factors roughly reflect the value of the pseudocount, and are

systematically scaled down in value as sequencing depth, which is strongly correlated

with feature presence, increases. This result suggests that addition of pseudocounts

to data need not be the right strategy for deriving normalization scales based on

CLR [42] or other similar methods, especially when the data is sparse. The alternate

idea of only deriving scale factors based on positive values alone, are also associated

with problems as we will see later in the text.

Our proposed approach (Wrench) reconstructs precise group-wise estimates, and

achieves significantly better simulation performance

To overcome the issues faced by existing techniques, we devised an approach based

on the following observations and assumptions. First, group/condition-wise feature

count distributions are less noisy than sample-wise feature count distributions, and

it may be useful to Bayes-shrink sample-wise estimators towards that of group-

wise global estimates. Second, zero abundance values in metagenomic samples are
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predominantly caused by competition effects induced by sequencing technology (il-

lustrated in Fig. 1), and therefore can be indicative of large changes in underlying

compositions[1] with respect to a chosen reference. Indeed, ignoring sterile/control

samples, the median fraction of features recording a zero count across samples in

the mouse, lung, diarrheal, human microbiome project and (the very high coverage)

Tara oceans datasets were: .96, .98, .98, .98 and .88. These respectively had median

sample depths of roughly 2.2K, 4.5K, 3.3K, 4.4K and 100K reads. In direct con-

trast, this value for the high coverage bulkRNAseq rat body map across 11 organs

at a median sample depth of 9.7M reads, is .33. Large number of features, extreme

diversity, and time-dependent dynamic fluctuations in microbial abundances can re-

sult in such high sparsity levels in metagenomic datasets. When working within the

fundamental assumption that most features do not change across conditions, such

extraordinary sparsity levels can then be attributed, by and large, to competition

among features for being sequenced. As we illustrate in Fig. 6, zero observations

in a sample are correlated with compositional changes, and truncated analyses that

ignore them (as is done with TMM / DESeq / metagenomic CSS normalization

techniques) effectively leads to loss of information and results that are opposite to

what is expected.

We now give a brief overview of the technique (Wrench) proposed in this work.

More details are presented in the Methods section. With average proportions across

a dataset as our reference, we model our feature-wise proportion ratios as a hurdle

log-normal model[2], with feature-specific zero-generation probabilities, means and

variances. The analytical tractability of the model allows us to standardize the

feature-wise values within and across samples, and derive the compositional scale

estimates by basing heavy weights on less variable features that are more likely to

occur across samples in a dataset. In addition, to make the computed factors robust

to low sequencing depths and low abundant features, we employ an empirical Bayes

strategy that smooths the feature-wise estimates across samples before deriving the

sample-wise factors. Such situations are rather common in metagenomics, and some

robustness to overcome heavy sampling variations is desirable.

[1]the idea being that in the limit Λg →∞, feature-wise ratios that reflect Λ−1
g , → 0

[2]the random variable assumes a value of zero with probability π and a positive

value based on its specific log-normal distribution with probability (1− π)
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Table. 2 succinctly illustrates where current state of the art fails, while more

comprehensive simulations illustrating the effectiveness of the proposed approach is

presented in Fig. 7. To generate table 2, roughly, we simulated two experimental

groups, with 54K features whose proportions were chosen from the lung microbiome

data, and let 35% of features change across conditions (see Methods for details on

simulations). The net true compositional change resulting from each simulation, and

their corresponding reconstructions by the various techniques when the count data

are generated at different sequencing depths are shown. The following observations

form the theme of these, and the more elaborate simulations summarized in Fig. 7:

1)TMM/CSS, because they focus on positive-valued observations only, are restricted

in the range of scales they can reconstruct. 2) Scran can yield accurate estimators

at very large sequencing depths when high feature-wise coverages are achieved. Un-

fortunately, this behavior is highly dependent on the underlying feature proportions

and their diversity. 3) Wrench estimators offer better alternatives for under-sampled

data, and as we shall observe below in their empirical performances, they can still

offer robust protection against compositional bias at higher coverages. For specific

comparisons with pseudocounted CLR, please refer supplementary Fig. 9, in which

we show the proposed technique (Wrench) performing significantly better.

We briefly note a key ingredient about our simulation procedure. Simulating se-

quencing count data as independent Poissons / Negative Binomials – as is commonly

done in benchmarking pipelines – does not inject compositional bias into simulated

data. From the perspective of performance comparisons for compositional correc-

tion, doing so is therefore inappropriate. A renormalization procedure after assign-

ing feature-wise fold-changes is necessary. Alternatively, if absolute abundances are

generated, subsampling to a desired sample depth needs to be performed.

Wrench has better normalization accuracy in experimental data

Below, we show five different results illustrating the improvements Wrench offers

over existing techniques in experimental data. The first two show that Wrench leads

to reduced false positive calls in differential abundance inference, while the other

three demonstrate the improved quality of positive associations.

Reduction of false positives We used two approaches to compare the performance

of Wrench in reducing false positive calls in differential abundance inference. Each
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of these analyses was performed across all biological groups with atleast 15 samples

in the mouse (2 diet types), Diarrheal (2 groups), Tara (5 oceans), HMP (JCVI, 16

body sites), and HMP (BCM, 16 body sites) and averaged the results across these

41 experimental groups.

We ignored the lung microbiome for these analyses as Scran had particular diffi-

culty making direct comparisons hard. Owing to the heavy sparsity in these datasets,

Scran failed to provide scales for 53 out of 72 samples of the lung microbiome, 10

out of 132 observations of the mouse microbiome, 6 out of 992 samples of the diar-

rheal dataset. Notice that Wrench not only recovers compositional scales for these

samples, but also at magnitudes that were coherent with other samples from similar

experimental groups (see next subsection) indicating some validity for the computed

normalization factors.

First, a standard resampling analysis was performed. For every given experimental

group, two artificial groups are repeatedly constructed via resampling (without

replacement), and the total number of significant calls made during differential

abundance analysis is recorded in each repetition. For each iterate, we compute the

log2(FOther/FWrench) ratio, where FOther is the total number of significant calls

made by a competing method (Total Sum / TMM / Scran / CSS ) and FWrench is

the total number of significant calls made by Wrench. If Wrench is superior these

logged ratios should be > 0. The average of these ratios across all the experimental

groups mentioned above is plotted in Fig. 8A, and we find Wrench meeting the

goal. Although total sum does not show a significant difference in this analysis, as

illustrated next, it is insufficient in capturing the null variation in the data.

We next exploited the offset-covariate approach introduced in [25]. For every fea-

ture/OTU within a homogenous experimental group, two generalized linear models

are fitted: in model (a) Wrench normalization factors as offset, and those of a com-

peting method as covariate. In model (b), normalization factors from a competing

method as offset, and those of Wrench as covariate. The number of features for which

the covariate term was called significant is recorded in both (a) and (b). We will de-

note them respectively as CWrench and COther. If Wrench sufficiently captures the

variation in data, the number of times the covariate term from a competing method

is called significant will be low. That is: the logged ratio log2(COther/CWrench) must
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be > 0. The average of these values across all the experimental groups mentioned

above is plotted in Fig. 8B, and we find Wrench to improve upon other techniques.

Improved association discoveries To compare the quality of associations achieved

with the various normalization methods, we re-analyzed the Tara Oceans 16S mi-

crobiome dataset.

Even though the contribution of true compositional changes and other technical

biases are not identifiable from the compositional scales without extra information,

we asked if the reconstructed scales correlate with orthogonal information on ab-

solute abundances, and other measures of technical biases. The results are summa-

rized in Table 3. Interestingly, in the very high coverage Tara Oceans metagenomics

project, Wrench and Scran estimators achieve comparable correlations (>50%) with

absolute flow cytometry measurements of microbial counts from the Tara Oceans

project. Scran failed to reconstruct the scales for 3 samples. TMM and CSS had

substantially poor correlations. Similarly, Wrench normalization factors had com-

parable/slightly better correlations to the total ERCC spike-in counts in bulk and

single cell RNAseq datasets. In direct contrast, CLR scale factors (the geometric

means of proportions) computed with pseudocounts were either uncorrelated or

highly anti-correlated with the aforementioned measurements reflecting technical

biases. These results reaffirm that there are advantages to exploiting specialized

compositional correction tools even with microbiome datasets teeming with mi-

crobes of extraordinary diversity.

We next analyzed the quality of differential abundance inference arising from

competing normalization techniques, by performing two sets of enrichment analyses.

In the first procedure, we extracted broad genus-level functional annotations from

the Faprotax database [43], and tested for their enrichment in positively associated

genera in the deep chlorophyll (DCM) and the mesopelagic layer (MES) samples

of the oceans relative to the surface layer. The total number of significantly differ-

entially abundant OTU calls were widely different across techniques: Wrench and

Scran made roughly 30% fewer calls compared to total sum, TMM, and CSS. Given

the relatively general nature of the annotations, all methods yielded expected anno-

tations in the DCM and MES layers based on previous studies, although there were

a few differences (additional file 2). Nitrite respiration/reduction/anoxygenic pho-
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totropy, oil bioremediation were found enriched in mesopelagic layer by all methods,

while methanogenesis, a function that is usually associated with mesopelagic and

deep sea microbes [44, 45, 46, 10, 43] was not found enriched in MES by total sum.

Both Wrench and Scran did not find xylanolysis to be enriched in the mesopelagic

layer, while other methods did. We were unable to find literature evidence support-

ing this call, and the result could potentially be due to the higher number of OTUs

called differentially abundant by the other methods. Aerobic ammonia/nitrite oxi-

dation and fixation were found to be enriched in DCM by all methods. Total sum

and TMM found a methanogenesis related module enriched in DCM, while other

methods did not.

To evaluate the methods in a more fine-grained setting, we devised the following

validation approach. The design of the Tara oceans experiments - where 16S recon-

structions are obtained from whole metagenome shotgun sequencing data - makes

the following analysis feasible. Because the Tara project’s functional (gene content

summarized as Kegg Modules, KMs) and 16S data arise from the same input DNA

samples, the same compositional factors should apply for both datatypes. We there-

fore estimated compositional factors from 16S data using the different normalization

methods and applied the resulting estimates to the KM abundance data from the

corresponding matched samples. Next, we computed Spearman rank correlation be-

tween OTU and KM normalized abundances and annotated OTUs with those KMs

which showed correlation of at least 0.75. Finally, we identified OTUs that were

positively associated with each layer using differential abundance analysis. With

the KM annotations in place, we performed Fisher exact tests to compute the en-

richment scores in the identified OTUs. Detailed tables are provided in additional

file 2. In mesopelagic samples, Scran finds enrichment in only 30 KMs, while other

methods recovered at least 100 KMs. Specifically, ureolysis, motility, several den-

itrification/methanogenesis processes and aminoacid biosynthetic/transport mech-

anisms (functions that have been attributed to microbes in the mesopelagic layer

and deep sea) [47, 48, 10, 43], were missed by Scran, while Wrench finds them. On

the other hand, Total sum, TMM and CSS found more varied and general processes

including various ribosomal, transcription/translation components to be enriched

in both MES and DCM layers.
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Notice that the first analysis gives a broad sense of the genera identified by the

competing methods in light of existing annotations, while the second gives a sense

of the quality of annotations one might confer on the OTUs based on the normal-

ized expression levels of OTUs and the measured functional content themselves. In

both cases, Wrench is shown to retain relevant information, and the relatively more

specific nature of the latter analysis reveals that Wrench demonstrably improves

upon other methods.

Inferences following compositional correction show improved coherence with

experimental data

We further demonstrate the impact of compositional bias in downstream inference

below. The experimental cell density measurements in the Tara Oceans project show

a highly significant overall reduction in the mesopelagic samples when compared the

surface layer (see Fig. 3 in ref [10]). Thus, we expect an overall negative change in

the reconstructed fold changes, when performing a differential abundance analysis

of the OTUs across these two ocean layers.

Summing the log-fold changes of significantly associated OTUs (both positive and

negative) serves as a measure of a net change experienced by a community. If a given

method produces fold change inferences that track the above mentioned empirical

cell density measurements, we expect it to yield an overall negative net change value

for the significantly differentially abundant OTUs in the mesopelagic community.

As illustrated in Fig. 9A, this value for total sum normalized data is +10577.99,

while that for Wrench is −8919.65, showing that differential abundances arising

from Wrench agrees more appropriately with the underlying community change.

Fig. 9B and C, show how these values distribute across the major phyla focussed

in the Tara oceans article. These plots demonstrate that the two approaches lead

to markedly different conclusions on the net change experienced by a phylum. In

particular, Proteobacteria, Actinobacteria, Euryarchaeota were predicted to have

drastically high positive changes by total sum (while Wrench predicts a marked

decrease in the negative direction), and sizable differences were apparent in the

values obtained with the rest of the phyla.
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Compositional scale factor estimates imply substantial technical biases, indicating

importance of further experimental studies

We next analyzed the phenotypic integrity of the compositional scales reconstructed

by the various methods. In the absence of technical biases, following our discus-

sion in the previous subsection, compositional factors should hover around 1 (upto

some arbitrary scaling). This is not what we observe in samples from metagenomic

datasets. All scale normalization techniques resulted in group-wise integrity in the

scales they reconstructed within and across related phenotypic categories, poten-

tially indicating the general importance of correcting for confounding induced by

compositional bias in general practice. Total sum normalization is oblivious to these

biases, making further experimental studies on compositional bias important. For

instance, in the microbiome samples arising from the Human Microbiome Project,

as shown in Fig. 10A, we noted systematic body site-specific global deviations in

the fold change distributions. This is similar to what was illustrated with the Tara

project in Fig. 2. We found the reconstructed compositional scales to largely or-

ganize by body sites, across normalization techniques (Fig. 10B), behind-ear and

stool samples were distinctly located in terms of their compositional scales from the

oral and vaginal microbiomes (notice the log scale in these plots). This behavior

was also recapitulated in scales reconstructed from other centers. Supplementary

Figs. 10 and 11 present similar results on samples arising from the J. Craig Ven-

ter Institute. In the case of the mouse microbiome samples, most normalization

techniques predicted a mild change in differential feature content across the two

diet groups (Fig. 10C, and supplementary Fig. 12 ). In the lung microbiome, the

lung and oral cavities had roughly similar scales across smokers and non-smokers (

supplementary Fig. 13 ), while scales from the probing instruments had relatively

higher variability, which we found to directly correlate with the high variability

of feature presence in the count data arising from these samples. In the diarrheal

datasets of children, however, no significant compositional differences were found

across the various country/health-status populations (Fig. 10D).

For completeness, we also attach similar results from all the 11 organs of the rat

body map dataset in the supplementary Fig. 15.
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Discussions

For some researchers, statistical inference of differential abundance is a question

of differences in relative abundances; for others, it is a matter of characterizing

differences in absolute abundances of features expressed in samples across condi-

tions [49, 14]. In this work, we took the latter view and aimed to characterize the

compositional bias injected by sequencing technology on downstream statistical in-

ference of absolute abundances of genomic features.

It is clear that the probability of sequencing a particular feature (ex: mRNA from

a given gene or 16S RNA of an unknown microbe) in a sample of interest is not just

a function of its own fold change relative to another sample, but inextricably linked

to the fold changes of the other features present in the sample in a systematic, statis-

tically non-identifiable manner. Irrevocably, this translates to severely confounding

the fold change estimate and the inference thereof resulting from generalized linear

models. Because the onus for correcting for compositional bias is transferred to the

normalization and testing procedures, we reviewed existing spike-in protocols from

the perspective of compositional correction, and analyzed several widely used nor-

malization approaches and differential abundance analysis tools in the context of

reasonable simulation settings. In doing so, we also identified problems associated

with existing techniques in their applicability to sparse genomic count data like that

arising from metagenomics and single cell RNAseq, which lead us to develop a refer-

ence based compositional correction tool (Wrench) to achieve the same. Wrench can

be broadly viewed as a generalization of TMM [13] for zero-inflated data. We showed

that this procedure, by modering feature-wise zero generation, reduces the estima-

tion bias associated with other normalization procedures like TMM/CSS/DESeq

that ignore zeroes while computing normalization scales. In addition, by recovering

appropriate normalization scales for samples even where current state of the art

techniques fail, the method avoids data wastage and potential loss of power during

differential expression and other downstream analyses (We catalog a few potential

ways by which compositional sources of bias can cause sparsity in metagenomic

and single cell sequencing count data in Supplementary section 6). A few important

insights emerge.

In our simulations, we found reference based normalization approaches to be far

superior in correcting for sequencing technology-induced compositional bias than
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library size based approaches. From a more practically relevant perspective, we

found that in all the tissues from the rat body map bulk RNAseq dataset, the scale

factors can be robustly identified. We expect that in other bulk RNAseq datasets,

the assumptions underlying compositional correction techniques to hold well. These

results reinforce trust in exploiting such scaling practices for other downstream anal-

yses of sequencing count data apart from differential abundance analysis; for exam-

ple, in estimating pairwise feature correlations. In the regimes where assumptions

underlying these techniques are met, an analyst need not be restricted to scientific

questions pertaining to relative abundances alone. The fundamental assumption be-

hind all the aforementioned techniques (including our own) is that most features do

not change across conditions. As we illustrated, these assumptions appear to hold

rather well in bulk RNAseq. Do we expect these to hold in arbitrary microbiome

datasets as well? This question is not easy to address without more experiments,

but the relatively high correlations obtained with orthogonal measurements of tech-

nical biases, the similarity in the compositional scales obtained within samples aris-

ing from biological groups, and their sometimes highly significant shifts preserved

across normalization techniques and across sequencing centers in large scale studies

certainly reinforce the critical importance of characterizing compositional biases, if

any, in metagenomic analyses by establishing carefully designed spike-in protocols.

In particular, given the inverse dependence of compositional correction factors on

the total feature content in the absence of technical biases, the large compositional

scale estimates obtained for stool samples (across all normalization techniques) is

suspect. Compositional effects can amplify even when a few features experience ad-

verse technical perturbations, and only carefully designed experiments can isolate

these effects to inform further normalization approaches. Finally, our results also

emphasize the tremendous care one needs to exercise before applying the most nat-

ural normalizations based on total sequencing depth or by applying pseudocounts

when the data is excessively sparse (CLR, RPKM, CPM, rarefication are a few

examples).

This brings us to the question of how effective spike-in strategies are in enabling

us to overcome compositional bias. It is immediately clear that the widely used

ERCC recommended spike-in procedure for RNAseq cannot help us in overcoming

confounded inference due to compositional bias for the simple reason that it already
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starts with an extract, a compositional data source (supplementary section 2). If

one is able to add the spike-in quantities at a prior stage during feature extraction,

we would have some hope. Lovén et al., [50] demonstrate a procedure for RNAseq

that precisely does this, in which the spike-ins are added at the time when the cells

are lysed and suspended in solution [51]. One can perhaps extend these solutions

to metagenomics, where we may expect confounding due to compositionality to be

heavy by adding barcoded 16S RNAs during feature extraction. We expect similar

problems to arise in other genomic and epigenetic measurement techniques that

exploit sequencing technology, and the need for the development of appropriate

spike-in procedures should be addressed.

Finally, it is imperative that we enforce new tools and techniques for normalization

and differential abundance analysis of sequencing count data be benchmarked for

compositional bias at least in the simulation pipelines. Data analyses based on

large-scale integrations of different data types for predicting clinical phenotypes is

increasingly common, and care should be taken to include effective normalization

techniques to overcome compositional bias. We hope the results and ideas presented

and summarized in our paper enables a researcher to do just that.

Conclusions

Compositional bias, a linear technical bias, underlying sequencing count data is in-

duced by the sequencing machine. It makes the observed counts reflect relative and

not absolute abundances. Normalization based on library size/subsampling tech-

niques cannot resolve this or any other practically relevant technical biases that

are uncorrelated with total library size. Reference based techniques developed for

normalizing genomic count data thus far, can be viewed to overcome such linear

technical biases under reasonable assumptions. However, high resolution surveys

like 16S metagenomics are largely undersampled and lead to count data that are

filled with zeroes, making existing reference based techniques, with or without pseu-

docounts, result in biased normalization. This warrants the development of normal-

ization techniques that are robust to heavy sparsity. We have proposed a refer-

ence based normalization technique (Wrench) that estimates the overall influence

of linear technical biases with significantly improved accuracies by sharing informa-

tion across samples arising from the same experimental group, and by exploiting
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statistics based on occurrence and variability of features. Such ideas can also be ex-

ploited in projects that integrate data from diverse sources. Results obtained with

our and other techniques, suggest that substantial compositional differences can

arise in (meta)genomic experiments. Detailed experimental studies that specifically

address the influence of compositional bias and other technical sources of variation

in metagenomics are needed, and must be encouraged.

Materials and Methods

An approach (Wrench) for compositional correction of sparse, genomic count data

Briefly, our normalization strategy can be described as follows. Based on eqn. 1, for a

chosen reference vector q0·, accounting for sample depth τgj , the mean model for the

observed positive count of the ith feature can be written as: E[log Ygji|Ygji > 0] =

log [qgjiτgj ] = log
[
qgji
q0i

q0iτgj

]
≡ log (θgjiq0iτgj), where θgji = Λ−1

gj νgji. Thus the

true ratio of proportions θgji encapsulate both the constant Λ−1
gj and the absolute

fold changes νgji, and can be viewed as the net fold change experienced by feature i

in sample j from group g. To reflect the assumption that most features do not change

across conditions, as is commonly done in genomics, we assume that log νgji has

a zero mean Gaussian distribution. It then follows that log θgji follows a Gaussian

distribution with a mean parameter log Λ−1
gj . Thus, a robust location estimate of θgji

for every sample leads us to the desired compositional scale estimate Λ̂gji. Below,

we first illustrate how the θgji are estimated, and subsequently discuss the robust

averaging procedure.

Model We assume the following model for the counts Ygji:

Ygji ∼


0 with probability πgji

eZgji with probability (1− πgji)
,

Zgji = log q0i︸ ︷︷ ︸
log-reference

+ log τgj︸ ︷︷ ︸
log-sample depth

+ log ζ0g + µgj + agji︸ ︷︷ ︸
=log θgji, log net fold change relative to reference

+εgji,

agji ∼ N(0, η2
0g), g = 1 . . . G,

εgji ∼ N(0, σ2
0i), i = 1 . . . p,

log

(
πgji

1− πgji

)
= βi1 + βi2 log τgj + possibly other covariates
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(2)

The model assumes the following. For each sample j from group g, the ith feature’s

count value is sampled from a hurdle log-normal distribution, in which with proba-

bility πgji, a value of 0 is realized; and with probability 1− πgji a positive count is

observed. The probabilities πgji are determined by sample covariates, including the

total sequencing depth. The positive count value is realized as an exponential of a

Gaussian random variable Zgji the mean of which is determined (in accordance with

the eqn. 1) by the chosen reference value q0i, sample-depth τgj , and the net fold

change θgji = νgji ∗ Λ−1
gj , the log of which has been modeled in the above equation

as a sum of group-wise effect (log ζ0g), two-way group-sample interaction (µgj), a

three-way group-sample-feature interaction random effect agji and a noise term.

Estimation of regularized ratios θ̂gji: In the model, the 0 subscripted parameters

are considered known, and are determined the following way. τgj = Ygj+ is the

total count of sample gj. The reference value for each feature i, q0i, is set to the

average proportion value q̂++i, where q̂gji is the observed proportion of feature i in

sample gj, i.e., q̂gji = Ygji/Ygj+ = Ygji/τgj . The mean and variance parameters

log ζ0g and η2
0g of the Gaussian prior distribution on the log θgji are determined

based on the corresponding moments of the corresponding empirical distribution of

the group-wise pooled raw ratios of proportions: {rgji = q̂gi/q0i}pi=1. Here, q̂gi =

Yg+i/Yg++ i.e., the overall proportion of feature i in the samples from the entire

group. Specifically, we fix the group-wise compositional scale ζ0g = rg+i i.e., as the

average of the raw ratios including the zero values (following discussions in Fig. 6).

We set the variance parameter η2
0g = 1∑

i I[Ygji>0]

∑
i:Ygji>0(log rgji− log rg+i) i.e., as

the empirical variance of the logged-ratios. Finally, the feature-specific expression

variances σ2
0i are fixed with values obtained from Limma/Voom. With the above

fixed, the unknown parameters µgj and agji are estimated/predicted using standard

random effects estimators: µ̂gj =
∑
i wgji (log rgji − log ζ0g) with wgji ∝ 1

σ2
0i+η

2
0g
,

and âgji =
σ2
0i

σ2
0i+η

2
0g

(log rgji − log ζ0g − µ̂gj). The identifiability of these terms is

ensured as the other variance components are fixed. The π̂gji are estimated with

logistic regression. The regularized ratios are then calculated as: θ̂gji = exp(log ζ0g+

µ̂gj + âgji).
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Robust averaging of the θ̂gji: While averaging over the regularized ratios W0 =:

1
p

∑
i θ̂gji would be one estimation route to Λ−1

gj , better control can be achieved

by taking the variation in the feature-wise zero generation in to account. We shall

notice that E[rgji|rgji > 0] = θgji ·eσ
2
0i/2, and so a robust averaging over θ̂gji/eσ

2
0i/2,

can serve as an estimator of Λ−1
gj . One might choose the weights for averaging to

be proportional to that of the inverse hurdle/inclusion probabilities (as is done in

survey analysis) ∝ 1/(1− π̂gji) or on the inverse marginal variances ascribed by our

model above ∝ 1

(1−π̂gji)(π̂gji+e
σ2
0i

+η20g−1)
. An estimator that we also found to work

well empirically is a weighted average of θ̂gji/e
σ20i/2

1−π̂gji with weights proportional to 1
σ2
0i
.

Supplementary section 7 sketches the derivations.

An advantage of these weights (and hence the model) is that the weighting strate-

gies proceed smoothly for features with zero expression values as well, unlike the

binomial weights employed in the TMM procedure. Furthermore, when constructing

averages, the weights have a favorable property of downweighting zeroes at higher

sample depths relative to those in samples at lower sample depths.

In summary, we explored the performance of the following estimators:

W0 =:
1

p

∑
i

θ̂gji = θ̂g+j ,

W1 =:
1

p

∑
i

wgjiθ̂gji, with wgji ∝ 1/(1− π̂gji)

W2 =:
1

p

∑
i

wgjiθ̂gji, with wgji ∝
1

(1− π̂gji)
(
π̂gji + eσ

2
0i+η

2
0g − 1

)
W3 =:

1

p

∑
i

wgji
θ̂gji

1− π̂gji
, with wgji ∝

1

σ2
0i

(3)

We have found W1,W2 and W3 to work comparably well in simulations and em-

pirical comparisons, and W0 slightly less so at high sparsity levels at low sample

depths. We prefer W2 as it systematically integrates both the hurdle and positive

component variations. In our software implementation, users have the option for

other weighted variants, and whether weighted averaging over zeroes is necessary as

they see fit. Software documentation and supplementary material embark on further

discussions on these ideas.
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Finally, with this framework setup, extensions for batch correction can be imme-

diately made; this work is being planned for a forthcoming submission.

Data

We principally demonstrate our results with five datasets from metagenomic sur-

veys. A smoking study (n = 72) where the lung microbiome of smokers and

non-smokers were surveyed (along with the instruments that were used to sam-

ple the individual). A diet study in which the gut microbiomes (n = 139) of

carefully controlled laboratory mice fed plant-based or western diets were se-

quenced [32]. A large scale study of human gut microbiomes (n = 992) from

diarrhea-afflicted and healthy children from various developing countries [40]. 16S

metagenomic count data corresponding to all these studies were obtained from

the R/Bioconductor package metagenomeSeq [26]. The Tara Oceans project’s

16S reconstructions from whole metagenome shotgun sequencing (n = 139)

was downloaded from The Tara Oceans project website under http://ocean-

microbiome.embl.de/data/miTAG.taxonomic.profiles.release.tsv.gz. The flow cy-

tometry counts for autotrophs, bacteria, heterotrophs, picoeukaryotes were ob-

tained from TaraSampleInfo_OM.CompanionTables.txt from the same website and

summed to serve as a rough measure of total cell count that correlates with sequence-

able DNA material. The Human Microbiome Project count data were downloaded

from http://downloads.hmpdacc.org/data/HMQCP/otu_table_psn_v35.txt.gz,

and the associated metadata are from v35_map_uniquebyPSN.txt.bz2 under the

same website.

The processed bulk-RNAseq data corresponding to the rat body map from [39]

was obtained from [52].

The UMI single cell RNAseq data from Islam et al., [53] was downladed from

GEO under accession GSE46980.

Implementation of normalization and differential abundance techniques

All analysis and computations were implemented with the R 3.3.0 statistical

platform. EdgeR’s compNormFactors for TMM, DESeq’s estimateSizeFactors,

Scran’s computeSumFactors (with positive=TRUE in sparse datasets) and metagenomeSeq’s

calcNormFactors for CSS were used to compute the respective scales. Imple-

mentation of CLR factors used a pseudo-count of 1 following [41], and were
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computed as the denominator of column 3 in table 1. Limma’s eBayes in com-

bination with lmFit, edgeR’s estimateDisp, glmFit and glmLRT, DESeq2’s

estimateDispersionsGeneEst and nbinomLRT were used to perform differential

abundance testing [54]. Welch’s t-test results were obtained with t.test.

Implementation of Wrench

Wrench is implemented in R, and is available through the Wrench package at

https://gitlab.umiacs.umd.edu/smuthiah/Wrench.

Simulations

Given a set of control proportions q1i for features i = 1. . . p, and the fraction of

features that are perturbed across the two conditions f , we sample the set of true

log fold changes ( log νgi ) from a fold change distribution (fold change distribution)

for those randomly chosen features that do change. The fold change distribution is

a two-parameter distribution chosen either as a two-parameter Uniform or a Gaus-

sian. Based on the expressions from the first subsection of the results section, the

target proportions were then obtained as qgi =
νgiq1i∑
k νgkq1k

. Conditioned on the total

number of sequencing reads τ , the sequencing output Ygi· for all i were obtained as

a multinomial with proportions vector qg· = [|qgi|]pi=1. We set the control propor-

tions from various experimental datasets (specifically, mouse, lung and the diarrheal

microbiomes). With this setup, we can vary f , and the two parameters of the fold

change distribution, and ask, how various normalization and testing procedures

compare in terms of their performance. For bulk RNAseq data, as illustrated in

supplementary figure 1, we simulated 20M reads per sample.

For comparison of Wrench scales with other normalization approaches, we al-

tered the above procedure slightly to allow for variations in internal abundances of

features in observations arising from a group g. We used νgi ( where the bar indi-

cates this value will now assume the role of an average) generated above as a prior

fold change for observation-wise fold change generation. That is, for all samples

j ∈ 1 . . . ng for all g, where ng represents the number of samples in group g, for all

i (including the truly null features), sample νgji from LN(log νgi, σ̃
2
ν) for a small

value of σ̃2
ν = .01. This induces sample specific variations in the proportions within

groups. Notice that this makes the problem harder and more realistic, as feature

marginal count distributions now arise from a mixture of distributions. Based on
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empirically observed MA plots for our metagenomic datasets, we set the mean and

standard deviation of prior log-fold change distribution to 0 and 3 respectively. For

generating 16S metagenomic-like datasets, logged sample depths were sampled from

a log-normal distribution with logged-standard deviation of .25 and logged-means

corresponding to log(4K), log(10K) and log(100K) reads. These parameters were

chosen based on comparisons with MA plots, the sparsity levels and total sample

depths observed in current experimental datasets.

In both versions of simulations, the total induced abundance change relative to

that of the control is Λgj = νTgj·q1, where νgj· is the vector of fold changes for sample

j, and q1 is the average vector of control proportions. We apply the term composi-

tional correction factor for Λ−1
gj and the term normalization factor for a sample as

the product of its compositional correction factor with something that is propor-

tional to that of its sample depth. Thus, all technical artifacts like total abundance

changes, but sample depth, are incorporated into the definition of compositional

factors.

Performance comparisons

For simulations, we used edgeR as the workhorse fitting toolkit. The compositional

scale factors provided by all normalization methods were provided to edgeR as

offset factors. We define detectable differential abundance in our simulated count

data as follows. For each simulation, as we know the true compositional factors,

we input them as normalization factors in edgeR, and the detectable differences in

abundances are recorded. All the performance metrics are then defined based on

this ground truth. Because we are interested in fold changes and their directions,

the performance metrics we report are redefined as follows: Sensitivity as the ratio

of the number of detectable true-positives with true sign over the total number of

positives, False discovery as the ratio of the number of detectable true positives

with false sign and false positives, over the total number of significant calls made.

The offset-covariate analysis followed the procedure in [25]. For resampling anal-

ysis, samples from each experimental group (with atleast 15 samples) were split in

half randomly to construct two artificial groups. Normalization factors from each

method were then used to perform differential abundance analysis, and the total

number of differentially abundant calls were recorded. The procedure was repeated
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for ten iterations for each group, and the results were averaged across 41 experimen-

tal groups. Those samples for which Scran fails to reconstruct normalization scales

were discarded from differential abundance analyses to avoid any power differences

while testing. The normalization scales however, were obtained with all data for

each method.

Fisher exact tests were used to perform functional enrichment analyses for pos-

itively associated OTUs. A Genus level functional enrichment analysis was first

performed by aggregating annotations from the FAPROTAX1.1 database [43]

at the Genus level. A more specific OTU level functional enrichment analysis

was devised as follows. Because the Tara Oceans Kegg module (KM) abundance

data (downloaded from http://ocean-microbiome.embl.de/data/TARA243.KO-

module.profile.release.gz) and the 16S reconstructions are obtained from the same

input DNA through whole metagenome shotgun, the same compositional factors

apply to both datatypes. Each normalization approach’s compositional factors for

16S data was used to rescale the KM relative abundance data. This normalized

KM data was used to annotate each OTU by (normalized) KMs that Spearman

correlate at a value of atleast .75.

Software availability.

Wrench is available from GitLab as an R package at the URL: https://gitlab.umiacs.umd.edu/smuthiah/Wrench.
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Figure 1 Scaling normalization approaches from the perspective of compositional correction.
(A) Features S and A have similar absolute abundances in two experimental conditions, while B

has increased in its absolute abundance in condition g due to technical/biological reasons.

Because of the proportional nature of sequencing, increase in B leads to reduced read generation

from others (compositional bias). An analyst would reason A and S to be significantly reduced in

abundance, while, in reality they did not. (B) Knowing S is expressed at the same concentration

in both conditions allows us to scale by its abundance, resolving the problem. DESeq and TMM,

by exploiting rerefence strategies across feature count data (described below), approximate such a

procedure, while techniques that are based only on library size alone like RPKM and

rarefication/subsampling can lead to unbiased inference only under very restrictive conditions.

Approaches available for sparse settings are indicated. Wrench is the proposed technique in this

paper.

Additional Files

Additional file 1 — Supplementary Note

Presents further discussions on compositional bias, and supplementary results in context.
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Technique Proposed Abundance Measure, Scale factor Signal for Compositional Scale in

Total Sum

ygji

τgj ·Λ
−1
gj

,

Λ−1
gj = 1

TMM

ygji

τgj ·Λ
−1
gj

,

Λ−1
gj = e

[∑
i:yij>0 ∩ i∈trimmed set for j wij log

(
qgji
q1ji

)] qgji
q1ji

, ratio of proportions

DESeq
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C·τgj ·Λ
−1
gj

∝ ygji

τgj ·Λ
−1
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∏
k qik]

1
n
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∏
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τgj ·Λ
−1
gj

,

Λ−1
gj = mediani qgji ∝ mediani

qgji
1/p

qgji
1/p

, ratio of proportions

Upper quartile

ygji

τgj ·Λ
−1
gj

,

Λ−1
gj = upper quartilei qgji ∝ upper quartilei

qgji
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, ratio of proportions

CLR Transformation
log

(
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[
∏
i ygji]

1
p

)
≡ log

(
qgji

[
∏
i qgji]

1
p

)
≡ log
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)
,
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[∏
i qgji

] 1
p ∝
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] 1
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closely tracks Median factors above;

ratio of proportions

Scran

ygji

τgj ·Λ
−1
gj

,

Λ−1
gj = fit linear models to

{
q1ji
q++i

, . . . ,
qnji
q++i

}p
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qgji
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, ratio of proportions

Wrench
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τgj ·Λ
−1
gj

,

Λ−1
gj = 1

p

∑
i wij

qgji
q++i

qgji
q++i
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Table 1 Scaling normalization approaches derive their technical bias estimates from ratio of
proportions. For each scaling normalization technique (rows of the table, named in the first

column), we present the transformation they apply to the raw count data (second column) to

produce normalize counts. The third column shows how all techniques use statistics based on

ratio of proportions (third column) to derive their scale factors. In the table, i = 1 . . . p indexes

features (genes/taxonomic units), and each sample is considered to arise from its own singleton

group: g = 1 . . . n and j = 1, τgj the sample depth of sample j, qgji the proportion of feature i in

sample j, wij represents a weight specific to each technique, and q++i is the average proportion

of feature i across the dataset. In the second column, the first row in each cell represents the

transformation applied on the raw count data by the respective normalization approach. They all

adjust a sample’s counts based on sample depth (τgj) and a compositional scale factor Λ−1
gj . As

noted in the third column, the estimation of Λ−1
gj is based on the ratio of sample-wise relative

abundances/proportions (qgji) to a reference that are all some robust measures of central

tendency in the count data. The logarithmic transform accompanying CLR should not worry the

reader about its relevance here, in the following sense: the log-transformation often makes it

possible to apply statistical tests based on normal distributions for the rescaled data; this is

in-line with applying log-normal assumptions on the rescaled data obtained with the rest of the

techniques. C =
[∏

j τgj

]−1/n
is a constant factor independent of sample, and its presence does

not matter. For the same reason, Median and Upper Quartile scalings and CLR transforms, can

be thought to base their estimates on a reference that assigns equal mass to all the features or if

the reader wishes, a more complicated reference that behaves proportionally. When most features

are zero, values arising from classical scale factors can be severely biased or undefined as we shall

illustrate in the rest of the paper.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2018. ; https://doi.org/10.1101/142851doi: bioRxiv preprint 

https://doi.org/10.1101/142851
http://creativecommons.org/licenses/by/4.0/


Kumar et al. Page 31 of 40

Net Compositional

Change (Λg)

Average

Sample Depth
CLR TMM CSS Scran W0 W1 W2 W3

36.86X 1M 1.36 1.45 5.41 22.57 19.32 31.44 30.65 32.01

7.75X 10K .95 3.05 1.47
12.08

(14/40 samples failed)
5.30 6.32 6.31 6.70

Table 2 Example simulations illustrate the limitations of current techniques. Shown are the

group-wise true and reconstructed compositional scales from the methods compared on two simulated

examples, each at different sequencing depths and at different total true absolute abundance changes

for a roughly 54K features with control group proportions derived from the Lung microbiome.

Low-coverage and/or high compositional changes are problematic for current techniques due to the

sparsity they cause in the count data. W1, . . .W3 are Wrench estimators proposed in the Methods

section that adjust the base estimator W0 for feature-wise zero-generation properties. All are

presented here for comparison purposes. Our default estimator is W2.

Dataset Type CLR TMM CSS Scran W0 W1 W2 W3

Tara Oceans [10] 16s (from Whole Metagenome) 0 (−2.65× 10−6) 0.26 0.15 0.52 .58 .54 .53 .53

Rat BodyMap [39] Bulk RNAseq -0.36 0.22 0.16 0.18 .20 .19 .20 .26

Embryonic Stem Cells [53] UMI/scRNAseq -0.70 .70 .67 .67 .71 .70 .70 .68

Table 3 Correlations of compositional scales with orthogonal measurements on absolute
abundances/technical biases. Correlations of logged reconstructed abundance factors

(1/compositional correction factor) with logged total flow cytometry cell counts is shown for the Tara

project. Correlations of logged normalization factors with logged total ERCC counts are shown in the

case of the rat body map and embryonic stem cells datasets. Given the high sparsity in these datsets,

CLR factors computed by adding pseudocounts, essentially had no information on technical biases.

W1, . . .W3 are estimators proposed in the Methods section that adjust the base estimator W0 for

feature-wise zero-generation properties. All are presented here for comparison purposes. The default

Wrench estimator (W2) compares well at low and high coverage settings. For more details on these

and the distinction in terminology between compositional correction factors and normalization factors,

refer Materials and Methods.
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Figure 2 Importance of compositional bias correction in sparse metagenomic data. (A) M-A

pots of 16S reconstructions (from high sequencing depth, whole metagenome shotgun sequencing

experiments) from two technical replicates each from the Tara oceans project [10] generated for

the Southern and South Atlantic Oceans. In all subplots, x-axis plots for each feature, its average

of the logged proportions in the two compared samples; y-axis plots the corresponding differences.

The red dashed line indicates the median log fold change, which is 0 across the technical

replicates. (B) M-A plots of the same replicates but plotted across the two oceans. The median of

the log-fold change distribution is clearly shifted. A few dominant taxa in the South Atlantic

Ocean (circled) are attributable for driving this overall apparent differences in the observed fold

changes. The Tara 16s dataset, reconstructed from very deep whole metagenome shotgun

experiments of oceanic samples, albeit boasting of an average 100,000 16S contributing reads per

sample, still encourages a median 88% feature absence per sample.

Additional file 2 — Enrichment Analysis Results

The results of enrichment analyses based on faprotax annotations and Kegg modules procedure described in the

Methods section is presented. Names in the sheets and their descriptions are as follows: KM.POS.SIG.MES and

KM.POS.SIG.DCM show the Kegg module based enrichment analyses for positively associated features in MES

and DCM layers respectively. FAPRO.POS.SIG.MES and FAPRO.POS.SIG.DCM show the results of faprotax

annotations based enrichment analyses for positively associated features in MES and DCM layers respectively.
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Figure 3 Compositional bias introduced by sequencing technology. As a sample j from group

g of interest is prepared for sequencing, its true internal feature concentrations (organized as a

vector) X0
gj is transformed by various technical biases to Xgj . A sequencing machine introduces

compositional bias by generating counts Ygj proportional to the input absolute abundances in

Xgj according to proportions qgj = [. . . xgji/(
∑
k xgjk). . . ], i and k indexing features. Directly

performing a differential abundance test on Y (DE Test 1), by using normalization factors

proportional to that of total sequencing output (ex: R/FPKM/subsampling in metagenomics)

amounts to testing for changes in relative abundances of features in X, in general (not X0). For

inferring differences in absolute abundance, we need to reconstruct X0 from Y to perform our

inference (DE Test 3). For compositional bias correction in particular, we care about

reconstructing Xj from Y (DE Test 2). We show more formally later that compositional

correction can reconstruct X0 if technical biases perturb all feature abundances by the same

factor, and that the presence of sequence-able contaminants induces more stricter assumptions

behind their application.
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Figure 4 Estimation of compositional correction scales from sparse count data. On the left

column, we plot the feature-wise ratio (Λgji) estimates adjusted for sample depth from each

feature i in one of the samples from the Adrenal tissue of the rat body map dataset (bulk

RNAseq), and on the right column, we plot the same values arising from a sample in the Diarrheal

dataset (16S metagenomics). The top and bottom rows correspond to the scales estimated using

TMM and DESeq respectively. In the case of bulk RNAseq data, large numbers of individual

feature estimates agree on a compositional scale factor. Simple averaging, or some robust

averaging would help us obtain the scale factor exactly. A similar robust behavior is observed with

all the tissues available in the bodymapRat dataset (considered later in text). On the second

column, we plot the feature-wise ratio values from a metagenomic 16S marker gene survey of

infant gut microbiota. There is no general agreement among the features on the scale factors, and

simple averaging will not work. We note that what we have shown are fairly good cases. Several

samples entertain only a few tens of shared species with an arbitrary reference sample within the

dataset. In this work, we aimed to model this variability and estimate the scale factors robustly by

borrowing information across features and samples.
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Figure 5 Adding pseudocounts leads to biased normalization. For each of the four microbiome

count datasets (rows: Mouse, Lung, Diarrheal and Tara Oceans ), we plot (A) CLR and (B)
DESeq compositional scales obtained after adding a pseudo count value of 1, as a function of

fraction of features that are zero in the samples (first column) and the sample depth (second

column). The observed behavior was not sensitive to the value of pseudocount used. Refer

supplementary Fig. 7 for the same plot for a pseudocount value of 10−7. (C) shows the total

number of pseudocounts added, which is essentially the number of features observed in a dataset,

and the total actual counts observed in the dataset divided by their sum i.e., the total implied

sequencing depth after pseudocounts addition. A large fraction of sequencing depth in the new

pseudocounted dataset is now arising from pseudocounts than the true experimental counts, when

the data is excessively sparse. Indeed, if the pseudocount value is altered to a very low positive

fraction value, the boxplots will reflect reversed locations, but this plot is only used to stress the

level of alteration made to a dataset. Only in the Tara Oceans project, where the sample depth is

100K reads, do the boxplots shift. However, at a roughly median 90% features absent, that data

when altered by pseudocounts, also leads to biased scaling factors as seen in (A) and (B).
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Figure 6 Ignoring zeroes can introduce bias in normalization, when zeroes predominantly
arise from under-sampling. An artificial example with 10 features and two groups ("controls"

and "cases"), when one of the features undergoes a roughly 50X expansion (a log2 fold change of

5.64) in cases compared to controls. This drives the relative abundances of the rest of the 9

features relatively low in the case group. As a result features that are largely present in the

controls are not observed in the case group at moderate sequencing depths. Scaling normalization

strategies that derive scales based only on the positive count values, can underestimate

compositional changes as shown.
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Figure 7 Wrench scales outperform competing approaches in reconstructing

compositional changes and in differential abundance testing. Multiple iterations of two

group simulations are simulated with various fractions of features perturbed across

conditions (rows, f in figures), total number of reads. Their average accuracy metrics in

reconstruction and differential abundance testing are plotted. The control proportions

were set to those obtained from the mouse microbiome dataset. (A) Average log ratios of

reconstructed to true absolute abundance changes. Each row corresponds to a particular

setting of f , and each column a particular setting of average sequencing depth. Scran also

suffered from being unable to provide scales for samples in each simulation set (sometimes

as high as 60% of the samples at 4K and 10K average reads). (B) Average sensitivity,

specificity and false discoveries at FDR .1 of detecting true differential absolute

abundances. W0 is the regularized Wrench estimator without sparsity adjustments and

W1, ..W3 are various adjusted estimators compared here. For details on this and

simulations, see Methods. Behavior was similar for other parameteric variations (variances

of global and sample-wise fold change distributions, number of samples) of simulations.
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Figure 8 Wrench scales lead to reduced false positive calls. (A) The average of

log2(FOther/FWrench) values obtained over artificial two group splits of homogeneous

experimental group data is shown and (B) the average of log2(COther/CWrench) values

across 41 metagenomic experimental groups are shown. Standard error bars are shown. In

both plots, positive values for a method imply reduced accuracy relative to Wrench.

FOther: total number of diffferentially abundant features found by a competing method

(total sum, TMM, CSS or Scran). FWrench: total number of differentially abundant

features found by Wrench. COther: total number of features where the covariate term for

Wrench normalization factors were found to be significant when competing method is

used as offset. CWrench: total number of features where the covariate term for a

competing method’s normalization factors were found to be significant, when Wrench is

used as covariate.
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Figure 9 Wrench normalized data lead to better downstream inferences. (A) The sum of

log-fold changes of differentially abundant OTUs is used as a measure of net change

experienced by a community. This value is plotted for the differentially abundant OTUs in

the mesopelagic ocean layer relative to the surface layer in the Tara oceans 16S data, for

Total Sum and Wrench normalization. (B) The same metric plotted for various major

phyla of interest in the Tara oceans project.
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Figure 10 Wrench retains potential biological information, and indicates importance of

compositional correction in general practice. We plot some statistical summaries and the

compositional scale factors reconstructed by a few techniques for various Human

Microbiome Project samples, sequenced at the Baylor College of Medicine. (A) On the

top-left, we plot the logged median of the positive ratios of group-averaged proportions to

that of Throat chosen as the reference group. Stool samples show considerable deviation

from the rest of the samples despite having comparable fraction of features detected and

sample depths to other body sites. Notice the log scale. (B) The similarity in the

reconstructed scales across techniques (second row) for closely related body sites are

striking; although minor variations in the relative placements were observed across centers

potentially due to technical sources of variation, the overall behavior of highly significant

differences in the scales of behind-ear and stool samples were similar across sequencing

centers ( supplementary Fig. 10) and normalization methods. Corresponding CSS scales in

supplementary Fig. 11. These techniques predict a roughly 4X-8X (ratio of

medians)inflation in the Log2-fold changes when comparing abundances across these two

body sites. (C) Wrench and scran compositional scale factors across the plant-based diet

(BK) and Western diet (Western) mice gut microbiome samples. (D) Compositional scale

factors for healthy (Control) and diarrhea afflicted (Case) children. Slight differences in

the compositional scales are predicted in the diet comparisons with t-test p-values < 1e-3

for all methods except TMM, but not as much in the diarrheal samples.
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