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Abstract

Therapeutic vaccines targeting mutant tumor antigens (“neoantigens”) are an increasingly
popular form of personalized cancer immunotherapy. Vaxrank is a computational tool for
selecting neoantigen vaccine peptides from tumor mutations, tumor RNA data, and patient
HLA type. Vaxrank is freely available at www.github.com/openvax/vaxrank under the
Apache 2.0 open source license and can also be installed from the Python Package Index.

1 Introduction

Mutated cancer proteins recognized by T-cells, known as “neoantigens”, are considered an
essential component of a tumor-specific immune response (Finnigan et al., 2015; Gubin
et al., 2015; Schumacher and Schreiber, 2015). Therapeutic vaccination against neoantigens
is an emerging cancer therapy that attempts to mobilize an antigen-specific immune
response against mutated tumor proteins (Türeci et al., 2016; Zhang et al., 2017). Since few
tumor mutations are shared between patients, neoantigen vaccines must be personalized. A
common approach for achieving personalization is high-throughput sequencing of tumor and
normal patient samples followed by in-silico prioritization of mutated peptides that are
likely to be presented on the surface of tumor cells by MHC (major histocompatibility
complex) molecules.

Vaxrank is a tool for selecting mutated peptides for personalized therapeutic cancer
vaccination. Vaxrank determines which peptides should be used in a vaccine from
tumor-specific somatic mutations, tumor RNA sequencing data, and a patient’s HLA type.
These peptides can then be synthesized and combined with an adjuvant to attempt to elicit
an anti-tumor T-cell response in a patient.

The sequence of each mutated protein is determined by assembling variant RNA reads.
Mutant protein sequences are ranked using a scoring system which seeks to satisfy two
objectives: choosing mutations that are abundant in the tumor and choosing those whose
translated amino acid sequences contain likely MHC ligands. Additionally, Vaxrank
considers surrounding non-mutated residues in a peptide to prioritize vaccine peptide
candidates and to improve the odds of successful synthesis.

Vaxrank was designed for and is currently being used in the Personalized Genomic
Vaccine Phase I clinical trial at the Icahn School of Medicine at Mount Sinai
(NCT02721043) (Rubinsteyn et al., 2016a).
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Figure 1: Users provide tumor mutations, tumor RNA sequence data, and patient HLA
type. These are used to determine mutant protein sequences and rank them according to
expression and predicted MHC affinity.

2 Running Vaxrank

To generate a Vaxrank vaccine report, the user must provide one or more files containing
somatic variants (in VCF, MAF, or JSON format), aligned tumor RNA-seq reads (as an
indexed BAM), and the HLA alleles to be used for MHC binding prediction:

vaxrank

--vcf somatic-variants.vcf

--bam tumor-rna.bam

--mhc-predictor netmhc

--mhc-alleles H2-Kb,H2-Db

--mhc-peptide-lengths 8-10

--vaccine-peptide-length 21

--output-pdf-report vaccine-peptides.pdf

Somatic variants can be specified using the --vcf option. Vaxrank also requires a BAM
file of aligned tumor RNA reads (--bam). This allows Vaxrank to both quantify tumor
expression of each mutation and to phase adjacent variants when reconstructing a mutated
coding sequence.

The --mhc-predictor argument controls which program is used to predict the affinity
between a peptide-MHC pair. Vaxrank supports the use of locally installed instances of
NetMHC (Andreatta and Nielsen, 2016), NetMHCpan (Nielsen et al., 2007),
NetMHCcons (Karosiene et al., 2012), MHCflurry (Rubinsteyn et al., 2016b), or a variety of
web-based predictors through IEDB (Vita et al., 2015).

Vaxrank’s output can be formatted as PDF, plain-text, HTML, or an Excel spreadsheet.
The output lists variants in ranked order along with vaccine peptide(s) containing that
variant, predicted MHC ligands, number of supporting RNA reads, and sequence properties
that affect manufacturability. A larger list of options for input data, filtering, and output
formats can be seen by running vaxrank --help. Documentation is available online at
wwvaxrank.readthedocs.org

3 Ranking Mutations

A patient’s coding mutations are ranked according to a score that combines each mutation’s
degree of expression and aggregate affinity of overlapping mutant peptides for that patient’s
MHC alleles.
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RankingScore = ExpressionScore · TotalBindingScore

ExpressionScore =
√
# RNA reads supporting variant allele

TotalBindingScore =
∑

s∈subsequences

∑
a∈alleles

BindingScore(s, a)

The BindingScore function is, by default, a logistic transformation of the peptide-MHC
binding affinity that loosely approximates the probability of T-cell response (Sette et al.,
1994). Alternatively, binding predictions can be scored using an affinity threshold
(commonly ≤ 500nM) or a threshold on the percentile rank of the affinity. Only
subsequences which overlap mutant residues and do not occur in the reference proteome are
considered as part of the TotalBindingScore.

It is important to note that there is at best a loose relationship between RankingScore
and immunogenicity. Intracellular factors such as antigen processing are not captured by
Vaxrank’s scoring logic. More importantly, even if a particular peptide is presented by a
patient’s MHCs, it is not currently possible to predict whether it will generate a cytotoxic
T-cell response. Further work is required to quantify the accuracy of Vaxrank’s ranking
algorithm.

4 Manufacturability

Vaxrank was designed under the assumption that its output will be used to make long
peptides, due to their favorable immunological properties (Rosalia et al., 2013).
Unfortunately, long peptides are also more difficult to synthesize using traditional solid
phase chemistry (Bodanszky, 1988). To avoid known difficulties in synthesis, Vaxrank
selects a window of amino acids around each mutation that minimizes the following
undesirable properties:

1. total number of cysteine residues

2. max(0, mean hydrophobicity of 7 residues at C-terminus)

3. max(0, mean hydrophobicity of any 7 amino acid window)

4. glutamine, glutamic acid, or cysteine at N-terminus

5. cysteine at C-terminus

6. proline at C-terminus

7. asparagine at N-terminus

8. total number of asparagine-proline bonds

Manufacturability optimization does not affect the ranking of mutations but is only used for
selecting which surrounding residues should be included. In cases where a mutation spans a
“difficult” sequence (e.g. long hydrophobic stretch), minimizing these criteria may fail to
salvage manufacturability.

Funding: This work has been supported by the Icahn Institute and the Parker Institute
for Cancer Immunotherapy.
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Supplemental Materials

Installing Vaxrank

Vaxrank can be installed using pip:

pip install vaxrank

This will install the Vaxrank library, along with all of its dependencies, including
PyEnsembl, Varcode, Isovar, and MHCtools.

To generate PDF reports, you first need to install wkhtmltopdf. On Mac OS X this can
be done by running:

brew install Caskroom/cask/wkhtmltopdf

Vaxrank uses PyEnsembl for accessing information about the reference genome. You
must install an Ensembl release corresponding to the reference genome associated with the
mutations provided to Vaxrank.

The latest supported release for GRCh38 is Ensembl 87:

pyensembl install --release 87 --species human

The last release for GRCh37 was Ensembl 75:

pyensembl install --release 75 --species human

If using Vaxrank for a large number of mutations, it is recommended to locally install an
MHC binding predictor such as NetMHCpan or MHCflurry. NetMHCpan can be
downloaded from /www.cbs.dtu.dk/services/NetMHCpan/, whereas MHCflurry can be
installed by running the following commands:

pip install mhcflurry

mhcflurry-downloads fetch

Basic Usage

vaxrank \

--vcf somatic-variants.vcf \

--bam tumor-rna.bam \

--mhc-predictor netmhc \

--mhc-alleles A*02:01,A*02:03 \

--mhc-epitope-lengths 8 \

--padding-around-mutation 5 \

--vaccine-peptide-length 25 \

--output-ascii-report vaccine-peptides-report.txt

This tells Vaxrank to:

• load mutations from the input VCF file somatic-variants.vcf

• look for evidence of expression for mutations in the RNA BAM file tumor-rna.bam

• predict MHC binding of each possible 8mer peptide overlapping expressed mutations
using the NetMHC prediction algorithm with the A*02:01 and A*02:03 MHC alleles

• choose protein vaccine candidates composed of 25 amino acids

• write top ranked variants with their associated vaccine proteins to
vaccine-peptides-report.txt

You can read the complete Vaxrank documentation at http://vaxrank.readthedocs.io.
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RNA Options

Vaxrank uses the Isovar library to identify RNA reads supporting each genomic variant and
assemble them into a mutant coding sequence. The assembly algorithm works by iteratively
extending candidate sequences using overlapping reads. Determining the coding sequence
from RNA reads, rather than simply substituting a variant into a reference transcript,
Vaxrank is able to capture local phasing of variants. There are several Isovar options which
are exposed as commandline flags in Vaxrank:

• --min-mapping-quality Reads which mapping quality below this value are ignored
when gathering evidence of variant expression.

• --use-duplicate-reads Duplicate reads are normally ignored by Isovar/Vaxrank
since they can inflate estimated abundance.

• --min-alt-rna-reads Controls the minimum number of RNA reads supporting a
variant required to include that variant in the output report. Ignore variants with
fewer than this number of supporting RNA reads.

• --min-variant-sequence-coverage Assembly of overlapping RNA reads may result
in variable coverage across the assembled transcript fragment. This option allows the
user to trim portions of the sequence that fall below some desired number of reads,
creating a trade-off between assembled sequence and minimum coverage for each
nucleotide.

• --max-reference-transcript-mismatches The reference transcriptome is used to
determine the reading frame for an assembled sequence. Any transcript with more
than this number of mismatches is discarded when trying to determine the reading
frame.

• --include-mismatches-after-variant Make mismatches after the variant locus
count toward the --max-reference-transcript-mismatches filter. This is normally
disabled since technically only the sequence leading up to a variant should affect its
reading frame.–

• --min-transcript-prefix-length Number of nucleotides before the variant we try
to match against a reference transcript. Values greater than zero exclude variants near
the start codon of transcripts without 5’ UTRs.

Performance

The MHC binding prediction algorithm used by Vaxrank can profoundly influence how long
it takes to determine results for a patient. To give a rough sense of Vaxrank’s performance,
we generated the following timing results on a 2013 Macbook Air. The inputs were patient
data with 521 somatic variants, 83.7M aligned tumor RNA reads, and peptide predictions
for lengths 8-11.

Predictor Time
NetMHC 4.0 42 seconds
NetMHCpan 3.0 2 minutes, 17 seconds
MHCflurry 0.9.1 44 seconds
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