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Abstract

Phylogenetic networks are rooted, directed, acyclic graphs that model reticulate evolutionary histories.

Recently, statistical methods were devised for inferring such networks from either gene tree estimates or

the sequence alignments of multiple unlinked loci. Bi-allelic markers, most notably single nucleotide

polymorphisms (SNPs) and amplified fragment length polymorphisms (AFLPs), provide a powerful

source of genome-wide data. In a recent paper, a method called SNAPP was introduced for statistical

inference of species trees from unlinked bi-allelic markers. The generative process assumed by the method

combined both a model of evolution for the bi-allelic markers, as well as the multispecies coalescent. A

novel component of the method was a polynomial-time algorithm for exact computation of the likelihood

of a fixed species tree via integration over all possible gene trees for a given marker. Here we report on a

method for Bayesian inference of phylogenetic networks from bi-allelic markers. Our method significantly

extends the algorithm for exact computation of phylogenetic network likelihood via integration over all

possible gene trees. Unlike the case of species trees, the algorithm is no longer polynomial-time on all

instances of phylogenetic networks. Furthermore, the method utilizes a reversible-jump MCMC technique

to sample the posterior of phylogenetic networks given bi-allelic marker data. Our method has a very

good performance in terms of accuracy as we demonstrate on simulated data, as well as a data set of

multiple New Zealand species of the plant genus Ourisia (Plantaginaceae). We implemented the method

in the publicly available, open-source PhyloNet software package.

Key words: multispecies network coalescent; phylogenetic networks; bi-allelic markers; reticulation;
incomplete lineage sorting.

Introduction

The availability of genome-wide data from many

species and, in some cases, many individuals per

species, has transformed the study of evolutionary

histories, and given rise to phylogenomics—

the inference of gene and species evolutionary

histories from genome-wide data. Consider a data

set S={S1,...,Sm} consisting of the molecular

sequences of m loci under the assumptions of free

recombination between loci and no recombination
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within a locus. The likelihood of a species

phylogeny Ψ (topology and parameters) is given

by

L(Ψ|S)=
m∏
i=1

L(Ψ|Si)=
m∏
i=1

∫
G

p(Si|g)p(g|Ψ)dg (1)

where the integration is taken over all possible

gene trees. The term p(Si|g) is the likelihood of

gene tree g given the sequence data of locus i

(Felsenstein, 1981). The term p(g|Ψ) is the density

function (pdf) of gene trees given the species

phylogeny and its parameters. For example,

(Rannala and Yang, 2003) derived this pdf under

the multispecies coalescent (MSC) (Degnan and

Rosenberg, 2009). This formulation underlies

the Bayesian inference methods of (Heled and

Drummond, 2010; Liu and Pearl, 2007; Rannala

and Yang, 2003).

Debate has recently ensued regarding the size

of genomic regions that would be recombination-

free (or almost recombination-free) and could

truly have a single underlying evolutionary tree

(Edwards et al., 2016; Springer and Gatesy,

2016). One way to overcome this issue is to use

unlinked single nucleotide polymorphisms (SNPs)

or amplified fragment length polymorphisms

(AFLPs). Such data provide a powerful signal

for inferring species phylogenies and the issue of

recombination within a locus becomes irrelevant.

Furthermore, as long as those markers are sampled

far enough from each other the assumption of free

recombination within loci holds. Indeed, this is

the basis of the SNAPP method that was recently

introduced in the seminal paper of (Bryant et al.,

2012). Since a bi-allelic SNP or AFLP marker has

no signal by itself to resolve much of the branching

patterns of a gene genealogy, a major contribution

of Bryant et al. was an algorithm for analytically

computing the integration in Eq. (1) for bi-allelic

markers.

While trees constitute an appropriate model

of the evolutionary histories of many groups

of species, it is well known that other groups

of species have evolutionary histories that are

reticulate (Mallet et al., 2016). Horizontal gene

transfer is ubiquitous in prokaryotes (Gogarten

et al., 2002; Koonin et al., 2001), and several

bodies of work are pointing to much larger extent

and role of hybridization in eukaryotic evolution

than once thought (Arnold, 1997; Barton, 2001;

Mallet, 2005, 2007; Mallet et al., 2016; Rieseberg,

1997). Not only does hybridization play an

important role in the genomic diversification of

several eukaryotic groups, but increasing evidence

is pointing to the adaptive role it has played,

for example, in wild sunflowers (Rieseberg et al.,

2003), humans (Racimo et al., 2015), macaques

(Stevison and Kohn, 2009), mice (Liu et al., 2015),

butterflies (Zhang et al., 2016), and mosquitoes

(Fontaine et al., 2015; Wen et al., 2016b).

Reticulate evolutionary histories are best

modeled by phylogenetic networks. Two statistical

methods were recently introduced for inference

under the formulation given by Eq. (1), when

Ψ is a phylogenetic network (Wen and Nakhleh,
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2016; Zhang et al., 2017), and other methods

were also introduced for statistical inference of

phylogenetic networks using gene tree estimates as

the input data (Soĺıs-Lemus and Ané, 2016; Wen

et al., 2016a; Yu and Nakhleh, 2015; Yu et al.,

2012, 2014).

The methods of (Wen and Nakhleh, 2016;

Zhang et al., 2017) assume that the data for

each locus consists of a sequence alignment

that has no recombination. In this paper,

we devise an algorithm that builds on the

algorithm of (Bryant et al., 2012) for analytically

computing the integral in Eq. (1) when Ψ is

a phylogenetic network. In other words, our

algorithm allows for computing the likelihood

of a phylogenetic network from unlinked bi-

allelic markers while analytically integrating out

the gene trees for the individual markers. We

couple this likelihood function with priors on the

phylogenetic network and its parameters to obtain

a Bayesian formulation, and then employ the

reversible-jump MCMC (RJMCMC) kernel from

(Wen and Nakhleh, 2016) to sample the posterior

of the phylogenetic networks and their associated

parameters given the bi-allelic data.

We implemented our algorithm and the

RJMCMC sampler in PhyloNet (Than et al.,

2008), which is a publicly available open-source

software package for inferring and analyzing

reticulate evolutionary histories. We studied the

performance of our method on simulated and

biological data. For simulations, we extended

the framework of (Bryant et al., 2012) so that

the evolution of bi-allelic markers could be

simulated within the branches of a phylogenetic

network. For the biological data, we analyzed

two data sets of multiple New Zealand species

of the plant genus Ourisia (Plantaginaceae). The

results on the simulated data show very good

accuracy as reflected by the method’s ability to

recover the true phylogenetic networks and their

associated parameters. For the biological data, the

method recovers two established hybrids and their

putative parents correctly.

The proposed method and Bayesian sampler

provide a new tool for biologists to infer reticulate

evolutionary histories, while also account

for the complexity arising from incomplete

lineage sorting, from bi-allelic markers, thus

complementing existing tools that use gene tree

estimates or sequence alignments of the individual

loci as the input data. The use of such bi-allelic

markers, particularly when they are sampled far

enough across the genome, completely sidesteps

potential problems that could arise due to the

presence of recombination within loci.

Methods

Phylogenetic networks and gene trees

A phylogenetic X -network, or X -network for

short, Ψ is a rooted, directed, acyclic graph (DAG)

whose leaves are bijectively labeled by set X of

taxa. We denote by V (Ψ) and E(Ψ) the sets of

nodes and edges, respectively, of the phylogenetic

network Ψ. Every node, except for the root, of
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the network has in-degree 1, which we call tree

node, or in-degree 2, which we call reticulation

node. The edges whose head is a reticulation node

are the reticulation edges of the network; all other

edges constitute the tree edges of the network.

We assume all phylogenies considered here (trees

and networks) are binary—no node has out-degree

higher than 2.

Each node in the network has a species

divergence time and each edge b has an associated

population mutation rate θb=4Nbµ. The network

has a special edge er(Ψ)=(s,r), where r is the

root of the network. This special edge is infinite

in length so that all lineages that enter it coalesce

on it eventually. For every pair of reticulation

edges e1 and e2 that share the same reticulation

node, we associate an inheritance probability,

γ, such that γe1 ,γe2 ∈ [0,1] with γe1 +γe2 =1. We

denote by Γ the vector of inheritance probabilities

corresponding to all the reticulation nodes in the

phylogenetic network. We use Ψ to refer to the

topology, species divergence times and population

mutation rates of the phylogenetic network.

An X -phylogenetic tree, or X -tree, is an X -

network with no reticulation nodes. A gene tree

is an X -tree. Each node in the gene tree has

an associated coalescence time. In the algorithm

below, we make use of a coloring function c :

(E(g),t)→{0,1}, similar to that used in (Bryant

et al., 2012), where c(e,t) indicates the color, or

allele, at time t along the branch e of gene tree g.

Notations

Bryant et al. devised an algorithm for exact

computation of the likelihood of a species tree

given bi-allelic markers. We extend the algorithm

to compute the likelihood of a phylogenetic

network given bi-allelic markers. To make

connections to the SNAPP method as clear as

possible, we use the notations from (Bryant et al.,

2012) and extend them for our purposes.

Looking forward in time (from the root toward

the leaves), let u and v be the mutation rate from

red allele to green allele and the mutation rate

from green allele to red allele, respectively. The

stationary distribution of the red and green alleles

at the root is given by v/(u+v) and u/(u+v),

respectively. Observed alleles are indicated by

values of the coloring function c at gene tree

leaves.

Given a gene history embedded within the

branches of the network, the numbers and types

of lineages at both ends of each branch of the

network are needed to compute the likelihood. Let

x be a branch in the phylogenetic network. We

denote by nTx and nBx the total numbers of lineages

at the top and bottom of x, respectively, and by

rTx and rBx the numbers of red lineages at the top

and bottom of x, respectively. See Fig. 1 for an

illustration.

Labeled partial likelihoods

Let x be an arbitrary branch in the phylogenetic

network and let Rx be the event that for every

4
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A B C

Ancestral species x

Ancestral species y

nB
x = 2 rB

x = 2

rT
y = 1nT

y = 1

nB
y = 2 rB

y = 0

FIG. 1. Illustrating the “growth” of lineages of a
gene tree in a phylogenetic network. The histories
of green and red alleles are shown as solid (green) lines and
dashed (red) lines, respectively.

external branch z that is a descendant of x, the

actual number of red alleles in z equals to rBz .

Bryant et al. defined two partial likelihoods: FBx

is the product of the likelihood of a subtree rooted

at the bottom of x and the probability Pr[nBx =n],

and FTx is the product of the likelihood at the top

of branch x and the probability Pr[nTx =n]. In the

case of a species tree (i.e., no reticulation nodes

in the species phylogeny), the partial likelihood

vectors FBx and FTx are given by

FBx (n,r)=Pr[Rx|nBx =n,rBx =r]Pr[nBx =n] (2)

and

FTx (n,r)=Pr[Rx|nTx =n,rTx =r]Pr[nTx =n]. (3)

Here FBx and FTx are indexed by nonnegative

integers n and r, where r≤n. Let m be the

maximum possible value of nBx and nTx over all

branches. Then, each of FBx and FTx has at most

l=(1+(m+1))(m+1)/2 entries.

In the case of a species tree, the path from a

leaf to the root is unique. However, this might

not be the case for phylogenetic networks: If there

is a reticulation node on a path from a leaf

to the root, then multiple paths exist between

that leaf and the root. This is the issue that

necessitates modifying the algorithm of (Bryant

et al., 2012) significantly, and that leads to much

larger computational requirements in the case

of phylogenetic networks. The key idea behind

the modification is as follows. As the algorithm

proceeds to compute the likelihood in a bottom-

up fashion from the leaves to the root, whenever a

reticulation node is encountered, the current set of

lineages is bipartitioned in every possible way so

that one side of the bipartition tracks one parent

of the reticulation node and the other side tracks

the other parent. As the network has a unique

root, the two sides of each bipartition eventually

come back together at an ancestral node. At that

point, these two sides are merged properly.

To achieve this proper merger, we introduce

“labeled partial likelihoods,” or LPL. Given a

phylogenetic network Ψ with k reticulation nodes

numbered 0,1,··· ,k−1, an LPL P is an element

of Rl×Zk, where the first element of the pair is a

partial likelihood as in (Bryant et al., 2012). The

second element is the label to keep track of partial

likelihoods that originated from a split of the same

partial likelihood at a reticulation node so that

these two could be merged. More formally, we

say two LPLs P1 =(F1,s1) and P2 =(F2,s2), where

|s1|= |s2|, are compatible if and only if for every

0≤ i< |s1|, either s1(i)=s2(i) or s1(i) ·s2(i)=0.

5
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We denote by PT
x and PB

x the sets of LPLs

that are associated with the top and bottom

of branch x, respectively. These two quantities

are computed in a bottom-up fashion, proceeding

from the leaves of the network towards its root.

Once the LPLs at the root are computed, the

overall likelihood of a give site is computed. As the

algorithm proceeds from the leaves towards the

root, it needs to compute LPLs at the leaves, the

top of a branch, the bottom of reticulation edges,

and the bottom of tree edges. We now describe

each of those computations; the overall algorithm

is simply a bottom-up traversal of the network

while applying the appropriate computation as a

node is encountered.

Computing LPLs for leaf nodes

Consider an external branch x that is connected

to a leaf node. Let nx denote the number of

individuals sampled from the species associated

with that leaf, and let rx be the number of red

lineages among those individuals. We create LPL

PB
x =(FBx ,s

B
x ), where

FBx (n,r)=


1, if n=nx and r=rx

0, otherwise

(4)

sBx =0. Finally, we associate PB
x ={PB

x } with the

bottom of branch x.

As pointed out in (Bryant et al., 2012), the input

data may contain dominant markers like AFLPs,

which means heterozygotes and homozygotes are

not distinguishable for the dominant band. If there

are dominant markers in the data, and the red

allele is dominant, FBx is computed by

FBx (n,r)=



n!
(r−rx)!(2rx−r)!(n−rx)!2

2rx−r
(
2n
r

)−1
,

if n=2nx and rx≤r≤2rx

0,

otherwise

.

(5)

instead of using Eq. (4).

Computing LPLs at the top of a branch

Bryant et al. computed partial likelihoods using

a continuous-time Markov chain whose transition

rate matrix Q is indexed by ((n,r);(n′,r′)) for

transitioning from n lineages r of which are red

alleles to n′ individuals r′ of which are red alleles,

and its entries are given by

Q(n,r);(n,r−1) =(n−r+1)v

Q(n,r);(n,r+1) =(r+1)u

Q(n,r);(n−1,r) =(n−1−r)n/θ

Q(n,r);(n−1,r−1) =(r−1)n/θ

Q(n,r);(n,r) =−n(n−1)/θ−(n−r)v−ru

. (6)

Let x be any branch in the phylogenetic network,

with θ and t being the population mutation rate

and branch length of x, respectively, and assume

PT
x has already been computed. Then,

PT
x ={(exp(Qt)F,s) : (F,s)∈PB

x }. (7)

Computing LPLs at the bottom of reticulation
edges

Consider a reticulation node given by two

reticulation edges y and z, with inheritance

probabilities γ and 1−γ, respectively, and branch

x emanating from the reticulation node, as
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illustrated by Fig. 2. The main idea in this part

Branch y

Branch x

Branch z

FT
x

Decompose

F0 F1 F2

F3 F4 F5

Split

corresponding

(0,0)

(1,0)
(1,1)

(2,1)

(2,1)

(1,1)

(1,0)
(0,0)

F4y0

F4y1

F4y2

F4y3

F4z0

F4z1

F4z2

F4z3

(ny, ry) (nz, rz)

(n4, r4) = (2, 1)

corresponding

· · ·

· · · · · ·

· · ·

FIG. 2. Illustration of the decompose-and-split

operation. In this example, partial likelihood FT
x is

decomposed into six vectors F0 to F5. An illustrating of
how F4 is split in the four possible ways to trace branches
y and z is shown, and every split is assigned a unique label.

is as follows. Given a set of lineages at the top of

branch x, a subset of those lineages is inherited

along branch y and the remaining lineages is

inherited along branch z. Since there are multiple

ways of bipartitioning the set of lineages, the

labels in an LPL allow the algorithm to keep track

of the subsets of lineages that originated from the

same split. We now describe this formally.

Decomposing: Let (F,s) be an LPL in PT
x .

Given that F has l entries, we decompose F into

l vectors, each with l entries: F0, F1, ···, Fl−1.

Let φ :{(n′,r′) :n′,r′∈N,r′≤n′≤m}→N be given

by φ(n′,r′)=n′(m+1)+r′. The entries of Fi are

set according to

Fi(n
′,r′)=


F(n′,r′) if i=φ(n′,r′)

0 otherwise

. (8)

Splitting: Consider vector Fi and assume i=

φ(ni,ri). The existence of ni lineages out of which

ri are red at the top of branch x means that

any 0≤ny≤ni lineages of those could be inherited

along branch y, and out of those 0≤ry≤ny could

be red; the remaining nz=ni−ny lineages, out

of which rz=ri−ry are red, are inherited along

branch z. Such a split gives rise to two LPLs: Py=

(Fy,sy) and Pz=(Fz,sz) with sy and sz assigned

the same value that is unique to the specific split.

For this specific split we define

δi=Fi(ni,ri)

(
ni
ny

)
γny(1−γ)ni−ny , (9)

and compute Fy and Fz by

Fy(n,r)=


δi, if n=ny and r=ry

0, otherwise

, (10)

and

Fz(n,r)=


1, if n=nz and r=rz

0, otherwise

. (11)

The resulting Py and Pz from all possible splits

constitute the elements of the sets PB
y and PB

z ,

respectively. The full procedure for executing

the decompose-and-split operations is given in

Algorithm 1.

Computing LPLs at the bottom of a tree edge

Consider an internal tree node j with its three

associated edges x=(u,j), y=(j,v), and z=(j,w).

We are interested in computing the set PB
x in

terms of the two sets PT
y and PT

z . The labels in

LPLs allow the algorithm to determine whether

two LPLs originated from a split at a descendant

reticulation node or not (including the case of no

descendant reticulation nodes of node j). Let Py=

(Fy,sy) and Pz=(Fz,sz) be two elements of PT
y

7
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Input: Reticulation node j and the three distinct
branches y=(u,j), z=(v,j) and x=(j,w)

associated with it; set PT
x .

Output: Sets PB
y , PB

z .
oj←0;

PB
y ←∅;

PB
z ←∅;

foreach (F,s)∈PT
x do

l← number of entries in F;
if l=0 then

PB
y ←PB

y ∪{(F,s)};

PB
z ←PB

z ∪{(F,s)};
// decompose

for i=1→ l−1 do

(ni,ri)←φ−1(i);
Compute Fi using Eq. (8);
// split

foreach 0≤ny≤ni and 0≤ry≤min(ri,ny)
do

(nz ,rz)←(ni−ny ,ri−ry);
sy←s; sz←s;
sy(j)←oj +1; sz(j)←oj +1;
Compute Fy and Fz Eqs. (10) and (11);

PB
y ←PB

y ∪{(Fy ,sy)};

PB
z ←PB

z ∪{(Fz ,sz)};
oj←oj +1;

return PB
y ,PB

z ;

Algorithm 1: Compute LPLs at Bottom of

Reticulation Edges.

and PT
z , respectively, that are compatible. A label

sx is computed by

sx(i)=


sy(i) if sy(i)=sz(i) or sz(i)=0

sz(i) if sy(i)=0

(12)

for 0≤ i≤|sy|. Furthermore, Fx is computed by

Fx(n,r)=
n−1∑
ny=1

r∑
ry=0

FTy (ny,ry)F
T
z (n−ny,r−ry)

×
(
r
ry

)(
n−r
ny−ry

)(
n
ny

) . (13)

The LPL (Fx,sx) is added to PB
x . The full

procedure for computing set PB
x is give in

Algorithm 2.

Input: Internal tree node j and the three distinct
branches y=(j,v), z=(j,w) and x=(u,j)

associated with it; sets PT
y , PT

z .

Output: Set PB
x .

PB
x ←∅;

foreach (Fy ,sy)∈PT
y do

foreach (Fz ,sz)∈PT
z do

if sy and sz are compatible then
Compute sx using Eq. (12);
Compute Fx using Eq. (13);

PB
x ←PB

x ∪{(Fx,sx)};

return PB
x ;

Algorithm 2: Compute LPLs at Bottom of

Tree Edge.

Termination: Computation above root node

Let the infinite-length branch associated with root

be ρ. Then, we let FBρ be the sum of all vectors F

in elements (F,s) of set PB
ρ .

To obtain the overall likelihood L(Ψ|Si) given

the data Si for site i, vector x is obtained as a

solution of Qx=0, and the likelihood is computed

by

L(Ψ|Si)=FBρ ·x. (14)

Optimizing the computation

As described above, the partial likelihood vectors

are split to follow every possible way of

bipartitioning a set of lineages at a reticulation

node. It is this operation that leads to a significant

increase in the running time and memory

requirement of the likelihood computation as

compared to the case of species trees. Here we
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describe an optimization step that we employ to

improve performance in terms of computational

requirements, without affecting the correctness of

the likelihood computation.

An articulation node in a graph is a node

whose removal disconnects the graph into two or

more components. In a directed graph, a lowest

articulation node is an articulation node that has

at least one child that is not an articulation

node. For example, in a tree, every node is an

articulation node. However, in a phylogenetic

network that is not necessarily the case. For

example, in the phylogenetic network of Fig. 1,

the reticulation node is an articulation node.

However, the root of the network is the only lowest

articulation node.

The main idea of the optimization is that all

LPLs are a lowest articulation node could be

merged into a single LPL, thus avoiding carrying

forth all that information. More formally, given a

set of LPLs at the bottom of a lowest articulation

node, a new LPL is produced by summing all

the partial likelihood vectors in the LPLs, and

assigning it an empty label. This new LPL is the

only one assigned to the bottom of the articulation

node; all other LPLs are deleted.

Time complexity

Our algorithm computes the likelihood of a

phylogenetic network given a set of biallelic

markers. This algorithm computes matrix

exponential along every branch, and processes

the network’s nodes in a post-order traversal.

Computation at a leaf takes O(1) time. At a tree

node, computation is mostly spent on evaluating

Eq. (13). Let n be the number of individuals

present under an internal tree node. Then,

this evaluation takes O(n4) time for a pair of

compatible LPLs. The total time consumption of

processing tree nodes also depends on the number

of LPLs. Assuming k reticulation nodes in the

phylogenetic network, there are at most O(n4k)

pairs of compatible LPLs. Therefore the time

complexity of processing a tree node is O(n4k+4).

At a reticulation node, the time consumption

increases after each reticulation node is processed,

due to the accumulation of (split) LPLs. In the

last processed reticulation node, the number of

LPLs in its descendant is at most O(n4(k−1)).

There are at most O(n4) new LPLs generated

due to decompose-and-split operation for each

original LPL. Therefore the time complexity of

processing a reticulation node is at most O(n4k).

We adopted the same approximation of matrix

exponential as in (Bryant et al., 2012), so the time

complexity of computing matrix exponentiation is

O(n2), and computation along every branch is at

most O(n4k+2).

In total, the time complexity of the algorithm

is O(mn4k+4), where m is the number of species,

n is the total number of lineages sampled from

the species, and k is the number of reticulation

nodes. Notice that when k=0, which means the

species phylogeny is a tree, the time complexity is

9
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O(mn4), which is the running time of the SNAPP

algorithm without fast Fourier transform.

Bayesian inference

The prior on the phylogenetic network is

the same as that employed in (Wen and

Nakhleh, 2016). It is composed of the prior

on the number of reticulation nodes (Poisson

distribution), the prior on the diameters of

reticulation nodes (Exponential distribution), the

prior on the species divergence times (Exponential

distribution), and the prior on the population

mutation rate (Gamma distribution). For the

prior on the population mutation rate, we use the

Gamma distribution Γ(2,ψ) with mean value 2ψ

and shape parameter 2. We also used the non-

informative prior Pψ(x)=1/x for hyper-parameter

ψ. For the prior on the inheritance probabilities,

we use Beta(α,β). Unless there is some specific

knowledge on the inheritance probabilities, a

uniform prior on [0,1] is adopted by setting α=

β=1.

We employed the reversible-jump MCMC, or

RJMCMC (Green, 1995) algorithm implemented

in PhyloNet (Than et al., 2008) to sample from

the posterior distribution given by

p(Ψ|S)∝L(Ψ|S)p(Ψ)

where Ψ here denotes the topology of the network

and all its parameters, and p(Ψ) is the prior

on the network and its parameters. We only

make use of the 12 proposals designed for

sampling phylogenetic networks and inheritance

probabilities described in (Wen and Nakhleh,

2016), but not the proposals aimed at sampling

gene trees, as gene trees are integrated out.

Synthetic data generation

We implemented a program to simulate bi-

allelic markers on a given phylogenetic network.

Bryant et al. simulated bi-allelic markers by first

generating gene trees inside a species tree (under

the multispecies coalescent model), and then

simulating the markers down the gene trees. In

our case, we replaced the first step by generating

gene trees inside a phylogenetic network under

the multispecies network coalescent (Yu et al.,

2014); the second step of simulating bi-allelic

markers down gene trees remains the same as that

employed in (Bryant et al., 2012) . When requiring

the data set to contain only polymorphic sites, if

the generated site is not polymorphic, we discard

both gene tree and markers, and repeat until a

polymorphic site is generated.

We used following commands in PhyloNet to

generate four data sets to exam the ability to

recover topology of our Bayesian inference. Each

of these commands was also repeated with “-num

10000”, “-num 100000”, “-num 1000000”, instead

of “-num 1000”, for different numbers of sites.

SimBiMarkersinNetwork -pi0 0.5 -sd 12345678 -num

1000 -cu 0.036 -truenet "(((((A:0.7)I6#H1

:1.3::0.8,Q:2.0)I4:1.0,L:3.0)I3:1.0,R:4.0)I2

:1.0,(G:2.0,(I6#H1:0.7::0.2,C:1.4)I5:0.6)I1

:3.0)I0;"
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SimBiMarkersinNetwork -pi0 0.5 -sd 12345678 -num

1000 -cu 0.036 -truenet "(((((Q:2.0,A:2.0)I4

:1.0,L:3.0)I3:0.5)I8#H1:0.5::0.7,R:4.0)I2

:1.0,(I8#H1:0.5::0.3,(G:2.0,C:2.0)I1:2.0)I7

:1.0)I0;"

SimBiMarkersinNetwork -pi0 0.5 -sd 12345678 -num

1000 -cu 0.036 -truenet "(((((Q:0.5)I8#H1

:0.5::0.7,A:1.0)I4:1.0,L:2.0)I3:2.0,(I8#H1

:1.0::0.3,R:1.5)I7:2.5)I2:1.0,(G:1.0,C:1.0)I1

:4.0)I0;"

SimBiMarkersinNetwork -pi0 0.5 -sd 12345678 -num

1000 -cu 0.036 -truenet "(((((Q:0.5)I8#H1

:0.5::0.7,(A:0.5)I6#H2:0.5::0.8)I4:1.0,L:2.0)

I3:2.0,(I8#H1:1.0::0.3,R:1.5)I7:2.5)I2:1.0,((

I6#H2:0.5::0.2,C:1.0)I5:1.0,G:2.0)I1:3.0)I0;"

The true networks of those commands

correspond to four models, given by the four

phylogenetic networks, their branch lengths, and

inheritance probabilities, shown in Fig. 3. These

networks and parameters were inspired by the

phylogenetic networks inferred from six mosquito

genomes in (Fontaine et al., 2015; Wen et al.,

2016b). For each of the four models, we simulated

data sets consisting of 1000, 10000, 100000, and

1000000 bi-allelic sites. In the simulations, we set

u=1 and v=1 as the mutation rate. Furthermore,

we used θ=0.036 as the population mutation

rate in the unit of population mutation rate per

site. Under these settings, we observed that each

of the 16 data sets contained between 34% and

37.5% polymorphic sites; the remaining sites were

all monomorphic.

We also used following command in PhyloNet

to generate one data set to test the robustness

to the misspecification of the value of the

hyperparameter ψ of our algorithm to recover

continuous parameters. The true value for ψ is

0.018.
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FIG. 3. The four model phylogenetic networks
used to generate the simulated data sets. The
branch lengths of the phylogenetic networks are measured
in coalescent units (scale is shown). The inheritance
probabilities are marked in blue. All four networks are
based on the same “backbone” tree: If for every pair of
reticulation edges sharing the same reticulation node the
edge with the smaller inheritance probability is removed, all
four networks give rise to the tree ((C,G),(R,(L,(A,Q)))).
The hybridization events in each of the four panels can be
viewed as involving pairs of branches of this tree. (A) The
hybridization is from C to A. (B) The hybridization is from
(C,G) to (L,(A,Q)). (C) The hybridization is from R to Q.
(D) One hybridization is from R to Q and another from C
to A.

SimBiMarkersinNetwork -diploid -pi0 0.5 -sd

12345678 -num 10000 -cu 0.036 -truenet "(((((

A:0.7)I6#H1:1.3::0.8,Q:2.0)I4:1.0,L:3.0)I3

:1.0,R:4.0)I2:1.0,(G:2.0,(I6#H1:0.7::0.2,C

:1.4)I5:0.6)I1:3.0)I0;"

We considered the network in Fig. 3(A)

to show the ability of our algorithm to

estimate the continuous parameters (branch

lengths, inheritance probabilities, and population

mutation rates) given different values of the

hyperparameter ψ. In this case, we assumed two

individuals for each taxon and generated 10000

bi-allelic sites using our simulator.

Monomorphic sites help estimate parameter

values, but sometimes they are removed because

they are uninformative for estimating the

topology and to reduce the computation time
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for the phylogenetic analyses. If there are only

polymorphic sites in the data set, sampling

multiple individuals could improve parameter

estimation. To investigate this aspect, we set up a

simulation with the phylogenetic network in Fig.

4. In the simulation, we set u=1 and v=1 as the

A

B

C

D
0.8

0.2

0.01

I1I2

I0
I4

I3
FIG. 4. The phylogenetic network used to
investigate effect of multiple individuals. The
branch lengths of the phylogenetic networks are measured
in units of expected number of mutations per site. The
inheritance probabilities are marked in blue.

mutation rates. Furthermore, we used θ=0.005.

We sampled one diploid individual for each of

the three species A, B, and D, and four diploid

individuals for species C. We generated 10000

polymorphic sites with dominant markers for each

of those individuals.

We used following command in PhyloNet to

generate the data set:

SimBiMarkersinNetwork -diploid -dominant -op -pi0

0.5 -sd 123456 -num 10000 -tm <A:A_0; B:B_0;

C:C_0,C_1,C_2,C_3; D:D_0> -truenet

"[0.005]((((C:0.005:0.005)I1#H1

:0.006:0.005:0.8,D:0.011:0.005):0.009:0.005,(

B:0.014:0.005,I1#H1:0.009:0.005:0.2)

:0.006:0.005):0.005:0.005,A:0.025:0.005);"

We ran the method on the entire data set

(7 diploid individuals, amounting to 14 haploid

individuals), and on a subset that consists of a

single diploid individual from each of the four

species (8 haploids in total).

Results and Discussion

Simulations
The method’s ability to recover the phylogenetic
network topology

To test the ability of our algorithm to recover

the topology of the true phylogenetic network,

we ran the RJMCMC sampler on simulated

data sets consisting of 1000, 10000, 100000, and

1000000 bi-allelic sites of the four phylogenetic

networks in Fig. 3. We ran an MCMC chain

for 1.5×106 iterations, and one sample was

collected from every 500 iterations in the last

5×105 iterations. While sampling topologies,

inheritance probabilities and branch lengths of

the phylogenetic network, we assume a correct

population mutation rate along every branches.

Before we discuss the quality of the sampled

networks, we introduce the notion of a “backbone

tree.” Given a phylogenetic network with

inheritance probabilities on its reticulation edges,

removing for each reticulation node the incoming

edge with the smaller inheritance probability

results in a tree, which we call the backbone tree.

For example, for the network in Fig. 3(D), the

reticulation edges with inheritance probabilities

0.2 and 0.3 would be removed, resulting in the

backbone tree ((G,C),((L,(A,Q)),R)).

For each data set and collected samples from the

RJMCMC results, we computed the 95% credible

set of phylogenetic networks and their parameters.

The results were as follows:

12

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 29, 2017. ; https://doi.org/10.1101/143545doi: bioRxiv preprint 

https://doi.org/10.1101/143545
http://creativecommons.org/licenses/by-nc-nd/4.0/


“ZhuEtAl17-biorxiv” — 2017/5/29 — 11:10 — page 13 — #13i
i

i
i

i
i

i
i

• Data corresponding to the phylogenetic network

of Fig. 3(A):

• For the 1000-site data set, 85.0% in the 95%

credible set consist of the backbone tree of

the true phylogenetic network; the remaining

topologies were all trees that differed from

the backbone tree. In other words, using 1000

sites, the true network was not recovered.

• For all other three data sets, the 95% credible

sets contain only the true phylogenetic

network topology.

• Data corresponding to the phylogenetic network

of Fig. 3(B):

• For the 1000-site data set, 85.1% in the 95%

credible set consist of the backbone tree of

the true phylogenetic network; the remaining

topologies were all trees that differed from

the backbone tree. In other words, using 1000

sites, the true network was not recovered.

• For the 10000-site data set, the 95% credible

set contains only the backbone tree of the

true phylogenetic network. In other words,

using 10000 sites, the true network was not

recovered.

• For the other two data sets, the 95% credible

sets contain only the true phylogenetic

network topology.

• Data corresponding to the phylogenetic network

of Fig. 3(C):

• For the 1000-site data set, 81.0% in the 95%

credible set consist of the backbone tree of

the true phylogenetic network; the remaining

topologies were all trees that differed from

the backbone tree. In other words, using 1000

sites, the true network was not recovered.

• For all other three data sets, the 95% credible

sets contain only the true phylogenetic

network topology.

• Data corresponding to the phylogenetic network

of Fig. 3(D):

• For the 1000-site data set, 29.1% of the 95%

credible set consist of the backbone tree of

the true phylogenetic network; the remaining

topologies were all trees that differed from

the backbone tree. In other words, using 1000

sites, the true network was not recovered.

• For all other three data sets, the 95% credible

sets contain only the true phylogenetic

network topology.

These results indicate a very good performance

of the method. First, as the number of sites

increases, the ability of the method to recover

the true network improves. In particular, in all

cases, the method was able to recover the true

network topology when using more than 10,000

sites.1 Second, even for small data sets (in terms

of the number of sites), when the method fails to

recover the true network, it recovers the backbone

1It is worth noting that while not many empirical AFLP- or
SNP-based studies currently include as many as 10,000 loci,
such large data sets may become commonplace as genomic

technologies continue to advance.
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tree of the network. That is, the method misses

the reticulation signal. This is not unexpected.

Given that percentage of polymorphic sites in the

data (an average of around 36%), and the low

inheritance probability on the reticulation edges

not present in the backbone trees, this implies that

very few, if any at all, polymorphic sites in a data

set of 1000 sites support reticulation edges with

the low inheritance probability. In other words,

it could very well be the case that there is no

signal at all for recovering those reticulation edges.

Third, we observe that only in the case of the

phylogenetic network of Fig. 3(B) that the method

does not recover the network from 10,000 sites. In

this network, the reticulation is much deeper in

the phylogeny (immediately after the split from

the root) than in the other three model networks.

Ancient reticulation events are in general much

harder to detect than newer ones. In the case of bi-

allelic markers in particular, most of the mutations

could have happened after this reticulation and

there is hardly any signal for recovering it.

This simulation was performed on NOTS (Night

Owls Time-Sharing Service), which is a batch

scheduled High-Throughput Computing (HTC)

cluster. We used 4 cores, with two threads per core

running at 2.6GHz, and 4G RAM per thread. The

runtimes, in hours, for analyzing the 1000-, 10000-

, 100000-, and 1000000-site data sets, respectively,

on each of the four networks in Fig. 3 were as

follows. The network of Fig. 3(A): 0.9, 2.0, 2.0,

2.1; The network of Fig. 3(B): 0.9, 1.1, 5.3, 5.1;

The network of Fig. 3(C): 0.9, 1.8, 1.8, 2.2; The

network of Fig. 3(D): 1.0, 21.0, 5.3, 6.6.

The method’s ability to recover the continuous
parameters

The analysis was run twice: the first time it was

fed the correct starting value for ψ (0.018), and

the second time it was fed an incorrect starting

value for ψ (0.0018). Each time we let the sampler

sample the value of ψ, and we ran an MCMC

chain for 1.5×106 iterations, with 5×105 burn-

in iterations, one sample was collected from every

500 iterations.

The posterior distribution of branch lengths

for the data is shown in Fig. 5. The posterior

distribution of population mutation rate is shown

in Fig. 6. The posterior distribution of inheritance

probability is shown in Fig. 7.
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FIG. 5. The posterior distribution of branch lengths
using our method on the simulated data set of
the phylogenetic network of Fig. 3(A). Blue: Correct
starting prior. Green: Incorrect starting prior. The red
dashed lines correspond to the true values.
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FIG. 6. The posterior distribution of population
mutation rates using our method on the simulated
data set of the phylogenetic network of Fig. 3(A).
Blue: Correct starting prior. Green: Incorrect starting prior.
The red dashed lines correspond to the true values.
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FIG. 7. The posterior distribution of inheritance
probability using our method on the simulated data
set of the phylogenetic network of Fig. 3(A). Blue:
Correct starting prior. Green: Incorrect starting prior. The
red dashed lines correspond to the true value.

These results indicate a very good performance

of the method in terms of the robustness

to misspecification of the hyperparameter to

estimate parameter values. The blue and green

curves are in very good agreement, indicating

that our method recovered very similar posterior

distributions of parameters given two different

starting values of ψ. In other words, our

method is robust to the (mis)specification of

the hyperparameter ψ. Second, the posterior

distributions of parameters fit well with the

true value, which is marked by red dashed

lines. This further demonstrates the robustness

of our method, because the true parameters

are correctly recovered under both correct and

incorrect specifications of the hyperparameter ψ.

However, the posterior distributions in Fig. 6 are

widespread for the branches near the root. The

reason is that those deep branches are where the

mutation signal is very weak, if at all existent.

This simulation was performed on NOTS. We

used 16 cores, with two threads per core running

at 2.6GHz, and 4G RAM per thread. The runtime

for analyzing the data set is about 3.7 hours.

The effect of the number of sampled individuals
on parameter estimates

We ran each test using an MCMC chain for

1.0×106 iterations, with 5×105 burn-in iterations,

and one sample was collected from every 500

iterations.

The posterior distribution of branch lengths

for the data is shown in Fig. 8. The posterior

distribution of population mutation rates is shown

in Fig. 9. The posterior distribution of inheritance

probability is shown in Fig. 10.

These results show that the method’s

performance improves as more individuals

are sampled from the hybrid species. The biggest

improvement is achieved for the branch length

and population mutation rate estimates of branch
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FIG. 8. The posterior distribution of branch lengths
using our method on the simulated data set of the
phylogenetic network of Fig. 4. In all cases, a single
individual was sampled from A, B, and D. Blue: A single
individual is sampled from C. Green: Four individuals are
sampled from C. The red dashed lines correspond to the
true values.
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FIG. 9. The posterior distribution of population
mutation rates using our method on the simulated
data set of the phylogenetic network of Fig. 4. In
all cases, a single individual was sampled from A, B, and
D. Blue: A single individual is sampled from C. Green:
Four individuals are sampled from C. The red dashed lines
correspond to the true values.

“I1→C”. In particular, when all four individuals

are sampled from C, the posterior distributions

become more concentrated around the true

values. Furthermore, the branch length estimates

of those branches adjacent to “I1→C” are

also improved given more individuals of C. The

population mutation rates are not improved much
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FIG. 10. The posterior distribution of inheritance
probability using our method on the simulated data
set of the phylogenetic network of Fig. 4. In all cases,
a single individual was sampled from A, B, and D. Blue: A
single individual is sampled from C. Green: Four individuals
are sampled from C. The red dashed lines correspond to the
true value.

except for the branch “I1→C”. The inheritance

probability estimates also improve when four

individuals are sampled, as the posterior samples

become more concentrated and peak much closer

to the true value.

This simulation was performed on NOTS. We

used 8 cores, with two threads per core running at

2.6GHz, and 4G RAM per thread. The runtime for

analyzing the full data set with four individuals

sampled from C is 23.3 hours. The runtime for

analyzing the subset with a single individual

sampled from C is 0.5 hour. This shows the drastic

effect of the number of individuals sampled on the

running time of the method.

Analysis of an empirical data set

Two small subsets of a larger AFLP data

set of multiple New Zealand species of the

plant genus Ourisia (Plantaginaceae) (Meudt

et al., 2009) were analyzed, including previously

unpublished AFLP profiles from two different

hybrid individuals O. × cockayneana and O.

× prorepens (herbarium codes follow Thiers

[continuously updated]) . There is both

morphological (Meudt, 2006) and molecular
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(Meudt unpubl.) data supporting the hybrid

nature of these two individuals. Although other

Ourisia hybrid combinations have been reported

in New Zealand (Meudt, 2006), O. × cockayneana

and O. × prorepens are perhaps the most

common, both involve O. caespitosa as a putative

parent, and both have been formally named. Each

data subset comprised five diploid individuals in

total, which means ten haploid individuals were

effectively analyzed due to the correction for

dominant markers. A Poisson distribution with

λ=2 as the prior of the number of reticulations

was adopted. An MCMC chain was run on each

data subset for 1.5×106 iterations, and sampled

from every 500 iterations in the last 90% of

iterations.

Data subset with hybrid O. × cockayneana

The first data subset comprises the following

five individuals: O. macrocarpa (voucher: Meudt

133a, MPN 29546; herbarium codes follow Thiers

[continuously updated]), O. macrophylla subsp.

lactea (Cameron 13392, AK 294893), hybrid O.

× cockayneana (Meudt 175a, MPN 29710), O.

caespitosa (Meudt 174a, MPN 29705), and O.

calycina (Meudt 176a, MPN 29713). The number

of loci in this data set is 802.

The phylogenetic network with highest

posterior probability is shown in Fig. 11. Other

topologies in the 95% credible set have different

ways of rooting the network, but all topologies

successfully detected the hybrid and its putative

parents. If the hybrid is removed, the topology in

Fig. 11 also agrees with that of Fig. 3 in (Meudt

et al., 2009).

It should be noted that the posterior standard

deviations reported in Fig. 11 is much larger

than those in (Bryant et al., 2012). This is

perhaps not unexpected because we only used

one individual per species in our analysis. Our

simulation study shows that increased sampling

of individuals helps the estimation of parameters,

whereas when only one individual per species is

sampled, the posterior distribution is much larger.

Data subset with hybrid O. × prorepens

The second data subset comprises O. sessilifolia

subsp. splendida (Heenan s.n., MPN 32149), O.

macrocarpa (Meudt 133a, MPN 29713), hybrid

O. × prorepens (Meudt 203a, MPN 29774), O.

sessilifolia subsp. sessilifolia (Meudt 199a, MPN

29771), and O. caespitosa (Meudt 196a, MPN

297695). The number of loci in this data set is

820.

The phylogenetic network with highest

posterior probability is shown in Fig. 12. The

result shows our method successfully detected

the hybird and its putative parents. If the hybrid

is removed, the topology in Fig. 12 also agrees

with that of Fig. 3 in (Meudt et al., 2009). As

with the first data subset, the posterior standard

deviations reported in Fig. 12 are large.

Nevertheless, the mean values of inferred

parameters are very similar for the two species
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FIG. 11. Phylogenetic network with highest posterior distribution for the subset with the hybrid O. ×
cockayneana (Meudt 175a, MPN 29710) and putative parents. The width of each tube is proportional to the
population mutation rate of each branch, which is printed on each tube. The length of each tube is proportional to the
length of the corresponding branch in units of expected number of mutations per site (scale shown). Blue arrows indicate
the reticulation edges and their inheritance probabilities are printed in blue.

that were common to the two data subsets, O.

caespitosa and O. macrocarpa. The mean value

of inferred population mutation rate of their

corresponding leaves are similar. This shows that

the method is both robust and consistent.

In summary, our method was able to extract the

signal of the hybrid and successfully recover its

putative parents, as well as reconstruct network

topologies which were consistent with a previous

study of a larger dataset (Meudt et al., 2009).

Conclusions

Phylogenetic networks allow for representing

evolutionary relationships that involve both

vertical and horizontal transmission of genetic

material. Extensions of the multispecies coalescent

process to include hybridization events have

facilitated the development of statistical methods

for inferring and analyzing phylogenetic networks

from gene tree estimates and sequence data. A

major challenge with using gene tree estimates

as the input to species phylogeny inference

methods is the error in these estimates. While

using the sequence data directly overcomes this

issue, the problem of recombinations within

loci can confound inferences. Using bi-allelic

markers from individual, independent loci could

provide a way to avoid both the gene tree

uncertainty and recombination problems (the two

are not necessarily independent). Furthermore, it

is important to note that many biological studies

use data sets that consists of bi-allelic markers

and no available sequence alignment data for

individual loci.

Bryant et al. recently devised an algorithm

for inferring species trees from bi-allelic genetic

markers while analytically integrating out the
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FIG. 12. Phylogenetic network with highest posterior distribution for the subset with the hybrid O. ×

prorepens (Meudt 203a, MPN 29774) and putative parents. The width of each tube is proportional to the population
mutation rate of each branch, which is printed on each tube. The length of each tube is proportional to the length of the
corresponding branch in units of expected number of mutations per site (scale shown). Blue arrows indicate the reticulation
edges and their inheritance probabilities are printed in blue.

gene trees for the individual loci (Bryant

et al., 2012). In this paper, we extended their

algorithm significantly so as the likelihood of

a phylogenetic network given bi-allelic markers

could be computed while integrating out the

gene trees. This method complements existing

ones that use gene tree estimates or sequence

alignments as input for statistical inference of

phylogenetic networks.

We implemented a Bayesian method for

sampling the posterior of phylogenetic networks

and their associated parameters from bi-allelic

data, and studied its performance on both

simulated and empirical data. The results indicate

a very good performance of the method. This work

adds a powerful method to the biologist’s toolbox

that allows for estimating reticulate evolutionary

histories.

A major bottleneck of the method is its

computational requirements. While the SNAPP

method is very time consuming on species trees,

our method is much more time consuming given

that reticulations in the phylogenetic network

give rise to an explosion of the number of

partial likelihoods that need to be computed

and stored. More generally, the number of taxa

in a data set has more of an effect on the

running time of the method than the number

of loci does. In particular, two aspects of the

phylogenetic network under consideration affect

the computational requirements of the method:

The number of leaves under the reticulation nodes

and the diameter of each of the reticulation

nodes. As discussed above, the set of lineages

entering a reticulation node must be bipartitioned

in every possible way. This number of lineages
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is dependent on the number of leaves under

that reticulation node. For example, if a single

individual is sampled from a single species that

exist under the reticulation node, then the number

of bipartitions is very small (only two bipartitions

exist). However, if n individuals are sampled from

a single species that exist under the reticulation

node or one individual is sampled per n species

that exist under the reticulation node, then a

number of bipartitions on the order of 2n arises.

This computation becomes much more demanding

if there are more reticulation nodes on the

path to a lowest articulation node. As for the

diameter—which is the number of branches on the

paths between the two parents of the reticulation

node and a lowest articulation node above them,

the larger its value, the more demanding the

computation becomes. An important direction for

future research is improving the computational

requirements of the method to scale up to data

sets with many taxa.
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