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ABSTRACT	

Cas	nucleases	are	popular	tools	for	genome	editing	applications	due	to	their	ability	to	introduce	DNA	breaks	at	
desired	 genomic	 locations.	 Such	 differential	 targeting	 is	 achieved	 through	 loading	 an	 RNA	 guide	
complimentary	 to	 the	 intended	target	sequence.	As	 it	 turns	out,	sequences	with	only	a	partial	match	to	the	
guide	 can	 also	 be	 cleaved.	 A	 large	 number	 of	 experiments	 have	 shed	 light	 on	 this	 off-targeting,	 outlining	 a	
number	 of	 rather	 peculiar	 empirical	 rules	 that	 detail	 the	 effect	 of	 mismatches	 at	 various	 positions	 and	 at	
various	relative	distances.	We	construct	a	kinetic	model	predicting	on-target	cleavage	efficiency	as	well	as	off-
target	 specificity.	 Our	 model	 explains	 a	 unified	 targeting	 rule	 for	 any	 target	 harboring	 mismatches,	
independent	of	their	abundance	and	placing,	and	the	observed	decoupling	between	efficiency	and	specificity	
when	protein-DNA	 interactions	are	weakened.	We	 favorably	 compare	our	model	 to	published	experimental	
data	 from	 CRISPR-Cas9,	 CRISPR-Cpf1,	 CRISPR-Cascade,	 as	 well	 as	 to	 the	 human	 Argonaute	 2	 systems.	
Understanding	the	origins	of	off-targeting	principles	is	important	for	the	further	development	of	CRISPR-Cas	as	
a	precise	genome	editing	tool.		
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INTRODUCTION	

RNA	 guided	 nucleases	 (RGNs)	 target	 nucleic-acid	 sequences	 based	 on	 complementarity	 to	 any	 guide	 RNA	
(gRNA)	 loaded	 into	 the	 complex.	 This	 versatility,	 together	 with	 the	 ability	 to	 design	 synthetic	 gRNA	
complementary	to	any	target	of	choice,	holds	great	promise	for	gene	editing	and	gene	silencing	applications	
(1–4).	 Among	 the	 known	 RGNs,	 the	 Clustered	 Regularly	 Interspaced	 Short	 Palindromic	 Repeats	 (CRISPR)	
associated	 (Cas)	 nucleases	 Cas9	 (3,	 5–8)	 and	 Cpf1	 (Cas12a	 (9))	 (10–12)	 are	 of	 special	 interest,	 as	 they	 are	
comparatively	simple	single-subunit	enzymes.	Cas	nucleases	have	been	successfully	used	to	target	sequences	
in	 genomes	 from	 a	 variety	 of	 organisms,	 ranging	 from	 prokaryotes	 to	mammalian	 cells	 (7,	 11–15).	 Recent	
success	stories	include	the	correction	of	point	mutations	relevant	to	human	disease	(16),	the	construction	of	
sequence	specific	antimicrobials	(17),	the	conveyance	of	infertility	in	malaria	carrying	mosquitoes	(18),	and	the	
inactivation	of	retroviral	elements	to	facilitate	porcine-to-human	organ	transplants	(19).	

Cas	nucleases	originate	 from	the	CRISPR-Cas	adaptive	 immune	system,	which	many	prokaryotes	use	to	 fight	
off	 foreign	 genetic	 elements.	 In	 vivo,	 the	 Cas	 protein	 (complex)	 is	 programmed	by	 loading	 RNA	 transcribed	
from	a	CRISPR	 locus	 in	 the	host	genome.	The	transcribed	sequence	 includes	sections	referred	to	as	spacers,	
which	were	acquired	during	past	encounters	with	 foreign	genetic	elements	 (20–22).	Once	programmed,	 the	
Cas	nuclease	is	able	to	target	and	degrade	genetic	elements	with	the	same	sequence	as	the	stored	spacer,	and	
so	offers	protection	against	repeat	invasions.	Autoimmune	response	to	sequences	stored	at	the	CRISPR	locus	is	
prevented	 through	 the	 additional	 requirement	 of	 a	 protein-mediated	 recognition	 of	 a	 short	 Protospacer	
Adjacent	Motif	 (PAM)	 sequence	present	 in	 the	 foreign	genome,	but	not	 incorporated	 into	 the	CRISPR	 locus	
with	the	spacer	(23).		

As	viruses	evolve	in	response	to	the	selective	pressure	induced	by	the	CRISPR	immune	system,	the	host	 is	 in	
turn	under	pressure	to	not	only	attack	the	target,	but	to	also	attack	slightly	mutated	target	sequences	(24–26).	
It	is	therefore	not	surprising	that	Cas	nucleases	exhibit	considerable	off-target	activity	on	sequences	similar	to	
the	intended	target	(11,	12,	15,	27–34).	Such	off-target	activity	presents	a	severe	problem	for	any	therapeutic	
applications	(4),	as	DNA	breaks	introduced	at	the	wrong	site	could	lead	to	loss-of-function	mutations	in	a	well-
functioning	gene,	or	the	improper	repair	of	a	disease	causing	gene.		

Surprisingly,	 the	 level	 of	 complementarity	 to	 the	 guide	 alone	does	 not	 determine	how	 strongly	 a	 particular	
sequence	 is	 targeted.	To	shed	 light	on	the	determinants	of	off-target	activity,	a	recent	 flurry	of	experiments	
has	 systematically	 probed	 the	 level	 of	 binding	 and/or	 cleavage	 on	mutated	 target	 sequences	 (3),	 including	
high-throughput	screens	of	large	libraries	of	off-targets	(11,	12,	14,	27,	29–31,	33–36),	biochemical	studies	(6,	
8,	10,	35,	37,	38),	structural	studies	(39–45),	and	single-molecule	biophysical	studies	(46–53)	providing	insights	
into	the	mechanics	of	targeting.	To	date,	a	number	of	rather	peculiar	targeting	rules	have	been	established	for	
Cas	 nucleases:	 (i)	 specificity-efficiency	 decoupling:	 weakened	 protein-DNA	 interactions	 can	 improve	 target	
selectivity	while	still	maintaining	efficiency	(54–57);	(ii)	seed	region:	single	mismatches	within	a	so-called	seed	
region	 (a	 stretch	 of	 nucleotides	 following	 the	 PAM	 (58))	 can	 completely	 disrupt	 interference,	 while	
mismatches	 further	 into	 the	guide	have	much	 less	of	 an	effect	 (6,	 8,	 11,	12,	15,	27–34,	38,	47,	48,	50);	 (iii)	
mismatch	spread:	when	mismatches	are	outside	the	seed	region,	off-targets	with	spread	out	mismatches	are	
targeted	 most	 strongly	 (27,	 30,	 59).	 Although	 these	 experimental	 observations	 have	 already	 aided	 the	
development	 of	 strategies	 to	 improve	 the	 specificity	 of	 the	 CRISPR-Cas9	 system	 (3,	 54,	 55,	 57,	 60,	 61),	 an	
understanding	of	the	mechanistic	origin	behind	target	selectivity	is	still	 lacking,	and	our	ability	to	predict	off-
targets	remains	limited	(1,	62).	

Gaining	 a	 precise	 understanding	 of	 RGN	 specificity	 has	 the	 potential	 to	 greatly	 further	 therapeutic	
applications,	 as	 it	 could	 help	 both	 with	 the	 design	 of	 new	 enzyme	 re-engineering	 strategies	 for	 improved	
targeting	and	with	 choosing	a	 gRNA	 that	minimizes	off-targeting	 (1,	 62).	 Current	 computational	 approaches	
aimed	at	predicting	off-targets	for	a	given	gRNA	are	often	based	on	sequence	alignment	with	the	target,	and	
discard	potential	 targets	 if	 they	have	more	 than	 some	 (user-defined)	 threshold	number	of	mismatches	 (62–
65).	To	recover	the	mismatch-position	dependence	observed	as	seed	regions	(rule	(ii)),	such	scoring	schemes	
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must	 be	 supplemented	 with	 phenomenological	 rules	 that	 penalize	 seed	 mismatches	 more	 than	 non-seed	
mismatches	(66–68).	

To	move	beyond	ad	hoc	scoring	schemes,	we	here	use	biophysical	modelling	to	incorporate	knowledge	of	the	
underlying	 targeting	process.	With	 this	aim,	 it	would	be	attractive	 to	assume	that	 the	binding	dynamics	has	
had	 time	 to	 equilibrate	 before	 DNA	 degradation	 (69,	 70),	 as	 this	 would	 allow	 us	 to	 use	 simple	 binding	
energetics	 to	 predict	 cleavage	 activity.	 Though	 attractive,	 this	 approach	 has	 recently	 been	 questioned	 by	
Bisaria	et	al.	since	the	off-rate	is	generally	not	found	to	be	much	faster	than	the	cleavage	rate	(71),	as	would	
be	 required	 for	 establishing	 a	 binding	 equilibrium	 before	 cleavage.	 In	 addition,	 the	 authors	 show	 how	
abandoning	 the	 equilibration	 assumption	 directly	 explains	 the	 specificity	 increase	 observed	with	 shortened	
gRNA	(60)—bypassing	the	need	to	fine	tune	energetic	contributions	along	the	guide.	

Inspired	by	 these	observations,	we	go	beyond	binding	energetics	 to	build	a	biophysical	model	capturing	 the	
kinetics	of	guide-target	hybrid	formation.	We	show	that	also	the	targeting	rules	(i)-(iii)	can	be	seen	as	simple	
consequences	 of	 kinetics.	 The	 targeting	 rules	 are	 captured	 by	 four	 parameters	 that	 pertain	 to	 transition	
barriers	 between	 metastable	 states	 of	 the	 RGN-guide-target	 complex,	 and	 we	 translate	 these	 into	 four	
experimentally	observable	quantities:	 the	 length	of	 the	seed	 region,	 the	width	of	 the	 transition	 region	 from	
seed	to	non-seed,	the	maximum	amount	of	cleavage	on	single-mismatch	off-targets,	and	the	minimal	distance	
between	mismatches	outside	the	seed	region	that	allows	for	the	cleavage	of	targets	with	multiple	mismatches.	
By	tying	microscopic	properties	to	biological	and	technological	function	we	here	to	open	the	door	to	refined	
and	rational	reengineering	of	the	CRISPR-Cas	system	to	further	its	use	in	therapeutic	applications.	

Though	 we	 frame	 our	 considerations	 in	 terms	 of	 the	 well-studied	 and	 technologically	 important	 Cas9,	 our	
approach	applies	to	any	RGN	that	displays	a	progressive	matching	between	guide	and	targeted	(40,	47,	48,	50,	
51)	 before	 cleavage	 (41,	 72)	 (Figure	 1A).	 To	 demonstrate	 the	 generality	 and	 power	 of	 our	 approach,	 	 we	
present	fits	to	targeting	data	from	Argonaute	2	(hAgo2),	as	well	as	type	I,	II	and	V	CRISPR	systems	(11,	31,	38,	
52).	

RESULTS	

At	 the	 start	 of	 target	 recognition,	 Cas	 nucleases	 bind	 to	 dsDNA	 from	 solution	 (Figure	 1A).	 The	 subsequent	
recognition	of	a	PAM	sequence	triggers	the	DNA	duplex	to	open	up,	exposing	the	PAM	proximal	nucleotides	to	
base	pairing	 interactions	with	the	guide.	From	here,	an	R-loop	 is	 formed,	expanding	a	guide-target	hybrid	 in	
the	PAM	distal	direction	(38,	40,	47–49,	51).	 If	the	target	and	guide	reach	(near)	full	pairing,	cleavage	of	the	
two	DNA	strands	is	triggered	(41,	72).		

To	establish	 the	determinants	of	off-	 vs.	on-target	cleavage,	we	construct	a	biophysical	model	of	 sequential	
target	 recognition	 in	 the	unsaturated	binding	 regime	 (see	Methods).	Using	 this	model,	we	can	calculate	 the	
cleavage	 probability	 for	 any	 sequence	 and	 guide.	 To	 elucidate	 the	mechanics	 of	 the	 targeting	 process,	 we	
envision	 it	 as	 a	 diffusion	 through	 a	 free-energy	 landscape,	 eventually	 leading	 to	 either	 unbinding	 from,	 or	
degradation	 of,	 the	 targeted	 sequence	 (Figure	 S1).	 	 The	 targeting	 decision	 can	 further	 be	 understood	with	
reference	 to	 only	 a	 ‘transition	 landscape’	 (Figure	 1B),	 which	 show	 the	 transition	 states	 between	 any	 two	
metastable	states,	but	excludes	the	free-energy	of	the	(meta)stable	states	themselves	(see	Methods).	In	such	
a	 landscape,	the	R-loop	typically	grows	whenever	the	forward	barrier	 is	 lower	than	the	backward	barrier,	or	
where	 the	 transition	 landscape	 tilts	 downward.	 To	 facilitate	 the	discussion	of	 our	 exact	 results,	we	use	 the	
rule-of-thumb	(for	justification	see	Methods)	that	a	bound	Cas9	is	most	likely	to	unbind	before	cleavage	if	the	
highest	barrier	to	cleavage	is	greater	than	the	largest	barrier	to	unbinding,	and	vice	versa	(Figure	S1A-B).	

Though	we	 treat	 the	general	 scenario	 in	 the	methods	 section,	we	here	 further	 limit	ourselves	 to	a	minimal	
description	with	only	four	effective	microscopic	parameters,	pertaining	to	the	average	kinetic	bias	for:	R-loop	
initiation	after	PAM	binding	(∆"#$),	R-loop	extension	past	a	correctly	matched	(∆%)	and	mismatched	(∆&)	base	
pairs,	and	cleavage	once	the	R-loop	is	fully	formed	(∆'())	(for	definitions	see	Figure	1B).	Using	this	approach,	
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we	 investigate	to	what	extent	our	minimal	model	explains	 the	three	empirical	 targeting	rules	deduced	 from	
experiments.		

Rule	(i):	Specificity-efficiency	decoupling	

PAM	 recognition:	 Although	 PAM	mismatches	 often	 completely	 abolish	 interactions	with	 the	 target	 (27,	 38,	
50),	binding	 to	 (and	 interference	with)	 targets	 flanked	by	non-canonical	PAM	sequences	has	been	observed	
(25,	26,	40,	46,	73,	74).	Since	PAM	mismatches	will	shift	the	entire	free-energy	 landscape	upwards	from	the	
bound	 PAM	 state	 onwards	 (Figure	 1B;	 left	 panel),	 these	 always	 increase	 the	 highest	 barrier	 to	 cleavage,	
thereby	reducing	the	cleavage	efficiency	on	any	sequence.	For	increased	specificity,	we	thus	need	the	cleavage	
efficiency	for	the	off-targets	to	be	reduced	more	than	for	the	target	itself.	

Protein	reengineering	approaches	most	easily	affect	the	overall	strength	of	PAM	interactions,	influencing	the	
bias	for	both	the	correct	PAM	(Δ"#$)	and	incorrect	PAM	(Δ"#$+ ).	 In	Figure	2A	we	show	the	relative	cleavage	
efficiency	 between	 incorrect	 and	 correct	 PAMs,	 and	 in	Figure	 2B	we	 show	 the	 cleavage	 efficiency	with	 the	
correct	PAM—both	as	functions	of	the	average	kinetic	bias	((Δ"#$ + Δ"#$+ )/2)	and	the	kinetic	bias	difference	
(Δ"#$ − Δ"#$+ ).	As	long	as	the	system	operates	in	region	A	(Figure	2A),	it	is	possible	to	increase	the	specificity	
by	 lowering	 the	 average	 kinetic	 bias	 toward	R-loop	 formation,	without	 changing	 the	 kinetic-bias	 difference.	
Outside	this	region,	the	system	is	either	completely	non-discriminating	between	PAMs	(region	C)	or	insensitive	
to	 the	average	kinetic	bias	 (region	B).	 Interestingly,	 it	 is	only	 in	 region	B	 that	 lowering	 the	average	bias	also	
leads	 to	 a	 lower	on-target	 efficiency	 (Figure	2B),	 and	 consequently	 the	wild	 type	 (wt)	 nuclease	 can	only	be	
improved	if	brought	 into	region	A,	where	it	 is	possible	to	engineer	specificity	 increases	without	 lowering	the	
on-target	efficiency.	The	transition-state	diagrams	shown	 in	Figure	2C	 show	a	situation	where	the	barrier	 to	
cleavage	 (right	 most	 node)	 is	 substantially	 lower	 than	 the	 barrier	 to	 unbinding	 (leftmost	 node)	 for	 two	
different	PAM	biases,	resulting	in	near	unit-probability	cleavage	for	both,	corresponding	to	region	C	in	Figure	
2A.	 Reengineering	 the	 nuclease	 to	 have	 an	 overall	weaker	 PAM	binding	 (Figure	 2D)	 brings	 the	 system	 into	
region	 B,	 where	 the	 cleavage	 probability	 for	 the	 correct	 PAM	 (black)	 remains	 close	 to	 unity,	 while	 the	
probability	of	cleaving	with	the	incorrect	PAM	(gray)	is	drastically	lowered.	The	above	scenario	might	explain	
how	 PAM	mutant	 Cas9s	 are	 able	 to	 outperform	 their	wildtype	 counterparts	 (55,	 56)	 on	 specificity	without	
losing	efficiency.	

Sequence	 recognition:	 Another	 approach	 to	 gain	 specificity	 is	 to	 weaken	 the	 protein-DNA	 interactions	
effecting	the	bias	for	R-loop	extension	(54,	57).	In	Figures	2E	and	F	we	show	how	engineering	the	PAM-bound	
nuclease	in	this	way,	inducing	a	lower	gain	for	correct	base	pairing,	can	render	previously	cleaved	off-targets	
(gray	line	in	Figure	2E)	rejected	(gray	line	in	Figure	2F).	In	Figures	2E	and	2F	we	further	see	how	we	can	retain	
on-target	specificity	if	the	highest	transition	state	towards	cleavage	(rightmost	node	of	black	line	in	Figure	2E	
and	F)	remains	substantially	lower	than	the	transition	state	to	unbinding	(leftmost	node	of	black	line	in	Figure	
2E	and	F).	 The	above	 scenario	might	explain	how	mutant	Cas9s	 could	have	an	extended	 seed,	while	having	
negligible	reduction	in	on-target	cleavage	activity	(54,	57).		

Rule	(ii):	Seed	region	

PAM	proximal	mutations	abolish	cleavage:	Following	PAM	binding,	base	pairing	between	guide	and	target	is	
attempted	(Figure	1B;	middle	panel).	To	establish	if	the	experimentally	observed	dependence	on	the	position	
of	mismatches	within	the	guide-target	hybrid	(6,	8,	11,	12,	15,	27–34,	38,	46–48,	50,	51)	could	originate	from	
the	kinetics	of	the	targeting	process,	we	calculate	the	relative	cleavage	probability	on	a	sequence	with	a	single	
mismatch	positioned	at	𝑛,	compared	to	the	cleavage	probability	on	the	target	sequence.	In	the	Supplemental	
Information	we	show	that	this	relative	cleavage	probability	is	in	general	sigmoidal	

	
  
pclv (n) =

pmax

1+ e−(n−nseed )ΔC

	 (1)	
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with	𝑛3445	 the	 position	 where	 the	 cleavage	 probability	 is	 half	 that	 of	 its	 maximum	 	 𝑝789	 (Figure	 3A).	We	
identify	 𝑛3445	 as	 the	 length	 of	 the	 kinetic	 seed	 region,	 beyond	 which	 a	 mismatch	 will	 no	 longer	 strongly	
suppress	cleavage	(Figure	3A).	From	Equation	1	we	see	that	the	width	of	the	transition	from	seed	to	non-seed	
region	directly	reports	on	the	correct-match	bias	(Δ%,	see	Figure	1C,	and	Methods),	becoming	narrower	as	the	
bias	increases	(Figure	3A	and	S2A).		

The	 emergence	 of	 a	 seed-like	 region	 can	 be	 understood	 from	 considering	 the	 large-bias	 limit.	 When	 a	
mismatch	 is	 placed	 at	𝑛3445	 (Figure	 3B;	middle	 panel),	 the	 highest	 barrier	 to	 cleavage	matches	 the	 barrier	
towards	unbinding,	guaranteeing	a	near	equal	probability	 for	 cleavage	and	unbinding.	Placing	 the	mismatch	
closer	 to	 the	 PAM	 increases	 the	 highest	 barrier	 towards	 cleavage	 (Figure	 3B;	 top	 panel),	 increasing	 the	
probability	of	rejecting	such	off-targets.	Moving	the	mismatch	distally	from	the	PAM	will	gradually	 lower	the	
highest	barrier	 towards	cleavage	 (Figure	3B;	bottom	panel),	 increasing	the	probability	of	accepting	such	off-
targets.	Though	the	exact	form	of	the	parameters	of	Equation	1	are	given	in	the	supplemental	material,	 it	 is	
informative	to	also	give	the	kinetic	seed	length	in	the	large-bias	limit	(Methods,	S.I),	

	
  
nseed ≈

Δ I − ΔPAM

ΔC

+1.	 (2)	

From	this	we	see	 that	PAM	bias	and	 the	base	pairing	biases	all	 contribute	 to	 setting	 the	extent	of	 the	seed	
region	(Figure	3A,	S2B).	Weakening	the	PAM	or	correct-match	bias	extends	the	seed	region,	while	weakening	
the	bias	for	incorrect	matches	shrinks	it.	

After	PAM	recognition	and	R-loop	formation	are	completed,	cleavage	completes	the	targeting	process	(Figure	
1B;	 right	 panel).	 Tuning	 the	 final	 transition	 state	 allows	 us	 to	 toggle	 between	 different	 regimes	 of	minimal	
single-mutation	 specificity.	 Targets	 with	 a	 PAM	 distal	 mismatch	 get	 cleaved	 with	 near	 unity	 probability	
(𝑝789 ≈ 1)	 if	all	transition	states	towards	cleavage	(including	the	cleavage	step)	 lie	well	below	the	transition	
state	to	unbinding	(Figure	3B;	upper	panel,	S.I).	For	slow	enough	enzymatic	activity,	the	final	barrier	towards	
cleavage	never	goes	far	below	the	barrier	to	unbinding	(Figure	3C;	lower	panel),	limiting	the	maximal	cleavage	
compared	to	the	perfect	match	(𝑝789 < 1)	(Figure	3C;	lower	panel).	Consequently,	there	can	be	a	noticeable	
effect	on	off-target	activity	also	when	the	mismatch	is	outside	the	seed	region	(Figure	3A,	S2C).	Reversing	this	
logic	implies	that	a	𝑝789 < 1	is	indicative	of	a	relatively	slow	cleavage	reaction.	

Differential	 binding	 versus	 differential	 cleavage:	 Catalytically	 dead	 systems	 (for	 example	 dCas9	 or	 Cascade	
without	Cas3)	bind	strongly	to	sites	that	their	catalytically	active	counterparts	do	not	cleave	(14,	28,	33,	34,	36,	
59).	In	order	to	explain	this	effect,	we	model	inactive	systems	with	a	very	large	cleavage	barrier	(gray	in	Figure	
1B;	right	panel).	Figures	S3A	and	S3B	show	the	dissociation	constant	(Methods)	for	targets	harboring	a	single	
mismatch.	In	agreement	with	experimental	observations	(38),	our	model	predicts	a	dissociation	constant	that	
is	higher	when	a	mismatch	is	placed	closer	to	the	PAM.	

Similar	 to	 the	 cleavage	 efficiency	 in	 the	 kinetic	 regime,	 the	 equilibrium	 dissociation	 constant	 takes	 on	 a	
sigmoidal	form	(S.I).	However,	the	resulting	seed	length	(Figure	S3A)	 is	different	from	its	kinetic	counterpart	
resulting	 from	 Equation	 2	 (S.I.).	 Binding	 affinities	 therefore	 do	 not	 need	 to	 report	 on	 differential	 cleavage	
activities.	 In	 general,	 the	 gene	 editing	 (Cas9)	 and	 gene	 silencing	 (dCas9)	 capabilities	 should	 be	 seen	 as	 two	
separate	properties	of	 the	RGN.	For	example,	 the	most	 stable	configuration	of	 the	RGN	on	 the	mismatched	
target	shown	in	Figure	4A	 is	a	bound	state	with	a	partial	R-loop	(purple).	However,	a	catalytic	active	variant	
will	most	likely	reject	this	off-target	(gray)	as	the	barrier	to	cleavage	is	higher	than	to	unbinding.	Hence,	even	
though	 cleavage	 sites	 are	 strong	 binders	 (Figure	 4A;	 right	 panel),	 observing	 a	 long	 binding	 time	 on	 an	 off-
target	site	should	not	be	taken	to	 imply	that	 this	site	will	also	display	substantial	off-target	cleavage	 (Figure	
4A;	left	panel).		

Rule	(iii):	Mismatch	spread		
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Spreading	mismatches	over	non-seed	region	promotes	cleavage:	Next,	we	consider	more	complex	mismatch	
patterns,	starting	by	addressing	all	possible	dinucleotide	mismatches	(Figure	4B	and	5A).	The	overall	patterns	
obtained	 strongly	 resemble	 experimental	 observations	 (27,	 30,	 59).	 As	 expected,	 placing	 both	 mismatches	
within	 the	 seed	disrupts	 cleavage	 (Figure	5A).	However,	moving	both	outside	 the	 seed	does	not	necessarily	
restore	cleavage	activity.	With	the	first	mismatch	outside	the	seed	region,	a	second	mismatch	only	abolishes	
cleavage	if	it	is	situated	before	𝑛3445	 + 𝑛>8?@	(Figure	5B).	In	the	large-bias	limit	(Methods,	S.I):	

	
  
npair ≈

Δ I

ΔC

+1 .	 (3)	

The	general	 form	of	 the	 two-mismatch	seed	 region	 is	 shown	 in	Figure	5B,	where	only	off-targets	 in	 the	 red	
region	lead	to	cleavage.	In	the	dark	blue	region,	off-targets	are	rejected	due	to	the	first	mismatch,	and	in	the	
light	blue	region	they	are	rejected	due	to	the	second	mismatch.		

The	single-	and	double-	mismatch	rules	can	now	be	unified	and	generalized	(see	Figure	5D;	 left	panel)	into	a	
single	rule	for	any	number	of	mismatches:		

Off-targets	will	typically	be	rejected	if	any	mismatch,	say	the	𝑚:th	mismatch,	is	positioned	
closer	than	𝑛BCCD	 + (𝑚 − 1)𝑛EFGH	from	the	PAM.	

Note	that	for	systems	without	PAM,	𝑛3445	equals	𝑛>8?@	in	the	above	generalized	targeting	rule.	The	above	rule	
also	 captures	 the	extreme	 case	of	 a	 ‘block’	 of	𝐵	 consecutive	mismatches,	which	has	 also	been	 investigated	
experimentally	 (49,	 52).	 Placing	 such	 a	 block	 effectively	 acts	 as	 placing	 a	 single	mismatch	with	 the	 bias	∆&	
scaled	by	the	size	of	the	block	(Figures	5C,	5D	and	S4),	giving	a	block	seed	region	of	size	𝑛3445 + (𝐵 − 1)𝑛>8?@.	

Comparison	to	experimental	data	for	a	broad	class	of	RNA	guided	nucleases			

To	test	our	model,	we	acquired	published	datasets	acquired	for	different	RGN	systems,	and	fitted	Equation	1	
to	 singly	 mismatched	 targets	 and	 blocks	 of	 mismatches.	 The	 fitted	 sigmoid	 has	 only	 three	 effective	 fit	
parameters	(𝑝789	or	𝐾K,789	,	𝑛3445,	and	∆%),	so	we	can	unfortunately	not	get	an	estimate	for	all	microscopic	
parameters	 from	 the	 single-mismatch	 datasets	 (S.I)—for	 this,	 further	 experiments	 are	 required,	 as	 outlined	
below.	Details	of	the	fitting	procedure	and	additional	fits	can	be	found	in	the	Supplemental	Information.		

Perhaps	 the	 best	 characterized	 RGN	 system	 is	 the	 Type-II	 CRISPR	 associated	 Streptococcus	 Pyogenes	 Cas9	
(spCas9).	The	dataset	from	Anderson	et	al.	(31)	traces	out	the	sigmoidal	trend	particularly	well.	For	this	data	
set	we	 fit	out	a	kinetic	seed	of	about	11	nt	 (68%	conf.	 interval	 [11.0,11.4]),	and	an	average	bias	per	correct	
base	 pair	 of	 about	∆%= 1.7	𝑘Q𝑇	 [1.15,4.0)	 )	 (Figure	 6A,	 S5).	 This	 bias	 is	 about	 a	 factor	 two	 lower	 than	 the	
average	gain	per	correct	base	pair	for	RNA:DNA	hybrids	in	solution	(75,	76),	indicating	that	association	with	the	
RGN	destabilizes	 the	 hybrid.	 This	 is	 in	 line	with	 recent	 studies	 demonstrating	 that	 the	 protein	 has	 a	 strong	
contribution	 to	 the	energetics	of	 the	 resulting	bound	complex	 (53,	54,	57).	The	relative	cleavage	probability	
levels-off	around	𝑝789 = 0.74	 [0.72,0.77],	 indicating	that	spCas9	retains	some	specificity	even	against	errors	
that	are	outside	the	seed.		

Recently,	 the	 type	V	CRISPR	 associated	enzyme	Cpf1	has	been	 characterized	 as	 another	 single-subunit	 RGN	
(10).	Kleinstiver	et	al.	(11)	performed	in	vivo	(human	cells)	cleavage	assays	using	two	different	variants	named	
LbCpf1	 (Figure	6B,S6)	 and	AsCpf1	 (Figure	6C,S7).	Both	variants	exhibited	quantitatively	 similar	off-targeting,	
both	with	seed	lengths	(𝑛3445 ≈ 19	nt	,LbCpf1:[18.5,19.2],	AsCpf1:[18.7,19.3])	and	maximum	off-target	activity	
(𝑝789 ≈ 0.8,	 LbCpf1:[0.66,1.0],	 AsCpf1:[0.71,1.0]).	 Although,	 the	 stability	 of	 the	 RNA:DNA	 hybrid	within	 the	
enzymes	 (as	 measured	 by	 Δ%)	 differ	 in	 the	 two	 cases,	 which	 mainly	 affects	 their	 respective	 on-target	
efficiencies,	 the	 difference	 is	 not	 statistically	 significant	 given	 the	 data	 at	 hand	 (LbCpf1:[1.15,4.0),	
AsCpf1:[2.25,4..0)).	Compared	to	spCas9,	the	Cpf1s	are	much	more	specific	as	the	seed	region	is	significantly	
larger.		
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Single-molecule	 FRET	 experiments	 done	with	 hAgo2	 (52)	 utilized	 targets	with	 two	 consecutive	mismatches.	
Given	 that	 hybrid	 formation	 is	 not	 preceded	 by	 a	 PAM-like	 interaction,	 and	 that	 consecutive	 mismatches	
impose	a	combined	penalty	(Figure	5C	and	D),	the	estimated	half-saturation	point	is	approximately	twice	the	
kinetic	seed	length	for	a	single	mismatch	(𝑛3445 ≈ 10	nt	[9.5,9.9]).	The	hAgo2	data	thus	suggests	a	similar	seed	
length	 as	 that	 of	 spCas9	 (Figure	 6D,S8),	 consistent	 with	 the	 observation	 that	 hAgo2	 and	 spCas9	 display	
structural	similarities	within	their	respective	seed	regions	(41).	Our	fits	further	reveal	that	hAgo2	likely	exhibits	
a	substantially	lower	gain	per	correctly	formed	base	pair	(∆%≈ 0.7	𝑘Q𝑇	[0.63,0.92]).	

Unlike	the	aforementioned	RGNs,	the	Type	I	CRISPR	uses	a	multi-subunit	protein	complex,	termed	Cascade,	to	
target	invaders	(77).	Semenova	et	al.	(38)	measured	the	dissociation	constant	in	vitro	of	the	E.Coli	(subtype	I-
E).	Fitting	their	data,	we	find	that	mismatches	within	the	first	9	nt	of	the	guide	lead	to	rapid	rejection	(Figure	
6E).	 Interestingly,	 the	 energetic	 gain	 for	 a	match	 again	 suggests	 a	 large	 contribution	 of	 the	 protein	 to	 the	
overall	stability,	similar	to	the	other	CRISPR	systems	tested	(Δ% ≈ 3.7	𝑘X𝑇).	

	

DISCUSSION	AND	CONCLUSION	

We	have	presented	a	 general	 description	of	 target	 recognition	by	RNA	guided	nucleases	with	 a	progressive	
matching	 between	 guide	 and	 target	 (Figure	 1A)—describing	 both	 CRISPR	 and	 Argonaute	 systems.	 In	 its	
simplest	form,	our	model	contains	only	two	parameters	to	describe	the	R-loop	formation	process:	an	average	
bias	towards	 incorporation	beyond	a	match	(∆%)	and	an	average	bias	against	extending	the	R-loop	beyond	a	
mismatch	 (∆&)	 (Figure	 1B;	middle	 panel).	 Despite	 the	 simplifications	 going	 into	 this	minimal	model,	we	 can	
quantitatively	understand	 the	 targeting	 rules	 for	 these	RGNs	as	 resulting	 from	kinetics	 (specificity-efficiency	
decoupling,	Figure	2C-F;	seed	region,	Figure	3B;	and	mismatch	spread,	Figure	5D).	Moreover,	our	model	also	
explains	why	there	is	in	general	a	poor	match	between	cleavage	propensity	and	binding	propensity	for	these	
nucleases	(14,	28,	33,	34,	36,	59)	(Figure	4	D).	Based	on	our	model	we	have	been	able	to	establish	a	general	
targeting	rule:	Off-targets	will	typically	be	rejected	if	any	mismatch,	say	the	𝑚:th	mismatch,	is	positioned	closer	
than	𝑛BCCD	 + (𝑚 − 1)𝑛EFGH	from	the	PAM	(see	Equation	2	and	3).	

Although	 Figure	 6	 shows	 that	 our	 model	 can	 already	 describe	 experimental	 data	 from	 various	 RGNs,	 the	
number	of	microscopic	parameters	in	the	physical	model	(∆"#$,	∆%,	∆&,	and	∆'(),	see	Methods	and	Figure	1B)	
exceeds	the	number	of	fit	parameters	available	from	single-mismatch	experiments	(∆%,	𝑝789,	and		𝑛3445)	(S.I).	
It	 is	 therefore	 not	 possible	 to	 determine	 all	 the	microscopic	 parameters	 from	 single-mismatch	 experiments	
alone.	However,	Figures	5B	shows	that	with	two	mismatches,	we	could	also	fit	out	𝑛>8?@,	and	so	determine	all	
the	 microscopic	 parameters.	 Alternatively,	 we	 show	 in	 the	 S.I.	 that	 a	 combination	 of	 data	 from	 single-
mismatch	binding	and	cleavage	experiments	can	provide	all	four	microscopic	parameters	as	well.	It	should	be	
possible	to	directly	extract	all	four	microscopic	parameters	once	such	extended	datasets	become	available.			

Interestingly,	the	data	from	Cpf1	(Figure	6B	and	C)	shows	an	increased	tolerance	to	mismatches	of	nucleotides	
1,2,8	and	9	compared	to	our	minimal	model,	and	a	second	independent	study	shows	the	same	behavior	(12).	A	
recent	 structural	 study	 of	 LbCpf1	 mentions	 nucleotide	 9	 being	 solvent	 exposed,	 suggesting	 a	 lack	 of	
involvement	 in	 the	 interference	 process	 (39).	 However,	 the	 available	 crystal	 structure	 of	 AsCpf1	 does	 not	
suggest	 any	 similar	 feature	 (44).	 Additional	 work	 is	 presently	 underway	 to	 fully	 understand	 such	 non-
monotonically	increasing	cleavage	probabilities	from	a	physical-modelling	perspective.	

The	 great	 diversity	 of	 systems	 showing	 the	 same	 basic	 behavior,	 hints	 towards	 and	 overarching	 physical	
principles	governing	RNA/DNA	guided	RNA/DNA	targeting.	Still,	CRISPR	type	I-E	systems	have	been	observed	
to	exhibit	a	second	non-canonical	binding	mode	onto	targets	with	mutated	PAM	and	or	seed	sequences	(46,	
78),	 which	 enables	 rapid	 introduction	 of	 immunity	 to	 mutated	 sequences	 (24–26).	 Additional	 research	 is	
needed	in	order	to	couple	the	observed	PAM/seed	dependent	and	independent	binding	modes.	Also,	Type-III	
CRISPR	systems	do	not	use	PAM	recognition	to	discriminate	self	from	non-self.	Instead,	complementarity	with	
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the	direct	repeats	flanking	both	sides	of	the	spacer	sequence	 in	the	host	CRISPR	 locus	 is	used	(79).	Perhaps,	
such	systems	do	not	bind	their	targets	in	a	unidirectional	fashion.	Our	general	modeling	approach	could	still	be	
applicable,	and	it	should	be	possible	to	tie	dynamics	to	energetics	and	structure	also	for	these	systems.		

It	will	further	be	interesting	to	see	if	newly	discovered	CRISPR	and	Argonaute	systems	(81,	82)	use	the	same	or	
different	targeting	principles	to	the	systems	described	here.	 Intriguingly,	a	novel	bacterial	Argonaute	system	
(82)	seems	to	be	tolerant	to	mutations	of	the	first	few	nucleotides,	despite	having	part	of	its	guide	nucleotides	
arranged	in	a	similar	fashion	to	the	seed	region	of	a	known	Ago	variant.		

The	 current	 formulation	 only	 deals	 with	 the	 problem	 of	 recognizing	 a	 target	 once	 it	 is	 at	 hand.	 Under	
physiological	conditions,	the	target	sequence	must	first	be	located	amongst	the	large	pool	of	available	binding	
sites	within	the	cell.	This	 target	search	process	constitutes	a	 long	standing	problem	in	biological	physics	and	
the	precise	mechanism	of	 ensuring	 both	 speed	 and	 specificity	 is	 still	 under	 debate	 (80).	 Another	 effect	 not	
taken	into	account	thus	far	is	the	concentration	of	active	RGNs,	which	could	be	an	important	further	extension	
as	in	vitro	work	is	often	done	at	high	concentrations	compared	with	in	vivo	studies	(27,	32).	

In	conclusion,	our	kinetic	model	is	capable	of	explaining	the	observed	off-target	rules	of	CRISPR	and	Argonaute	
systems	in	simple	kinetic	terms.	After	having	established	the	general	utility	of	this	approach,	the	next	step	will	
be	 to	 move	 beyond	 our	 minimal	 model	 and	 allow	 for	 a	 dependence	 on	 both	 the	 nature	 of	
matches/mismatches	and	their	positions.	Fitting	such	a	generalized	model	against	training	data	could	improve	
on	present	target	prediction	algorithms,	as	it	uses	a	minimal	set	of	parameters	to	capture	the	basic	targeting	
rules	deduced	from	experiments.		

METHODS	

A	general	model	for	RGNs	with	progressive	R-loop	formation	followed	by	cleavage	

Given	 the	 observed	 dependence	 of	 cleavage	 activity	 on	 Cas9	 concentration	 (15,	 28,	 32,	 33),	 we	 here	 limit	
ourselves	to	the	regime	where	nuclease	concentrations	are	low	enough	that	all	binding	sites	are	unsaturated.	
The	unsaturated	regime	is	also	the	regime	with	the	highest	specificity,	and	should	therefore	be	of	particular	
interest	in	gene-editing	applications.	

We	 define	 the	 cleavage	 efficiency	𝑃'() 𝑠|𝑔 	 as	 the	 fraction	 of	 binding	 events	 to	 sequence	 𝑠	 that	 result	 in	
cleavage,	given	the	RGN	is	loaded	with	guide	sequence	𝑔.	If	we	in	the	unsaturated	regime	assume	the	binding	
rate	to	be	independent	of	sequence,	we	can	express	the	relative	rate	of	non-target	vs.	target	cleavage	as		

	
  
pclv (s | g) ≡

Pclv (s | g)
Pclv (g | g)

.	 (4)	

This	 relative	 efficiency	 is	 a	 direct	 measure	 of	 specificity,	 approaching	 unity	 for	 non-specific	 targeting	
(𝑃'() 𝑠|𝑔 ≈ 𝑃'() 𝑔|𝑔 )	and	zero	for	specific	targeting	(𝑃'() 𝑠|𝑔 ≪ 𝑃'() 𝑔|𝑔 ).		

In	our	model,	we	denote	the	PAM	bound	state	as	0	and	the	subsequent	R-loop	states	by	the	number	of	base	
pairs	that	are	formed	in	the	hybrid,	1, … , 𝑁.	Each	of	the	states	𝑛 = 1,… , 𝑁	are	taken	to	transition	to	state	𝑛 −
1/𝑛 + 1	 with	 backward/forward	 hopping	 rate	 𝑘` 𝑛 /𝑘a 𝑛 	 (Figure	 1A).	 The	 ratio	 between	 forward	 and	
backward	 rates	 sets	 the	 relative	 probability	 of	 going	 forward	 and	 backward	 from	 any	 state,	 and	 can	 be	
parametrized	 in	 terms	 of	 Δ 𝑛 ,	 the	 difference	 in	 the	 free-energy	 barrier	 between	 going	 backwards	 and	
forwards	from	state	𝑛	(see	Figure	S1A,	S.I),	

	
k f (n)
kb (n)

= eΔ(n) .	 (5)	
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Here	we	measure	 energy	 in	 units	 of	𝑘Q𝑇	 for	 notational	 convenience,	 and	we	will	 refer	 to	∆(𝑛)	 as	 the	 bias	
toward	cleavage.	The	model	(Figure	1A)	is	known	as	a	birth-death	process	(83,	84),	and	the	cleavage	efficiency	
is	given	by	the	expression	(S.I),	

	

  

Pclv (s | g) = 1

1+ e−ΔT (n)
n=0

N∑
, ΔT (n) = Δ(m)

m=0

n

∑ 	 (6)	

Here	Δ𝑇 𝑛 	 represents	 the	 free-energy	difference	between	the	 transition-state	 to	solution	 (Figure	S1A)	and	
the	forward	transition	state	from	position	𝑛	(Figure	S1A-B).	

For	systems	like	hAgo2,	there	is	no	initial	PAM	binding	(80,	85,	86),	and	the	sums	in	Equation	6	should	omit	the	
PAM	state	(𝑛,𝑚 = 0).	It	is	therefore	convenient	to	separate	out	the	bias	due	to	PAM	binding	(Δ"#$ 	= Δ(0)),	
and	describe	both	CRISPR	and	non-CRISPR	systems	explicitly	

	 Pclv(s | g) =

1
1+ e−ΔPAM + e−ΔT (n)

n=1

N∑
with PAM binding

1
1+ e−ΔT (n)

n=1

N∑
without PAM binding

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

	 (7)	

	

Building	intuition	by	using	the	transition	landscape	(large	bias	limit)	

As	the	cleavage	probability	 is	completely	determined	by	the	set	of	relative	transition-state	free-energies,	we	
can	simplify	the	free-energy	diagrams	by	omitting	the	metastable	states	and	draw	‘transition	 landscapes’	by	
connecting	the	transition	states	by	straight	lines.	A	downward	slope	(∆> 0)	of	such	a	connection	means	a	bias	
to	move	forward	(extend	hybrid),	while	an	upward	slope	(∆< 0)	means	a	bias	to	move	backward	(shrink	the	
hybrid)	(see	Equation	5	and	Figure	S1A).	

Though	we	will	 use	 the	 exact	 results	 of	 Equation	7	 for	 all	 calculations,	 it	 is	 useful	 to	 build	 intuition	 for	 the	
system	by	considering	the	case	of	large	biases.	In	this	limit,	the	term	(say	𝑛 = 𝑛∗)	with	the	highest	transition-
state	dominates	the	sum	in	Equations	6	and	7	(Figure	S1A-B),	and	the	cleavage	efficiency	can	be	approximated	
as	

	 Pclv(s | g) ≈
1

1+ e−ΔT (n*)
	 (8)	

Based	 on	 this	 we	 deduce	 the	 rule-of-thumb	 that	 cleavage	 dominates	 (𝑃'() > 1/2)	 if	 the	 first	 state	 of	 the	
transition	landscape	is	the	highest	(∆𝑇 𝑛∗ > 0)	(Figure	S1A).	Conversely,	a	potential	target	 is	 likely	rejected	
(𝑃'() < 1/2)	if	any	of	the	other	transition	states	lies	above	the	first	(∆𝑇 𝑛∗ < 0)	(Figure	S1B).		

A	minimal	model	for	RGNs	with	progressive	R-loop	formation	followed	by	cleavage	

Given	that	the	defining	feature	of	RGNs	is	their	programmability	to	target	any	sequence,	we	expect	the	major	
targeting	 mechanisms	 to	 depend	 more	 strongly	 on	 mismatch	 position	 than	 on	 the	 precise	 nature	 of	 the	
mismatches.	 With	 this	 in	 mind,	 we	 consider	 a	 sequence	 independent	 model	 with	 the	 aim	 of	 finding	 a	
description	that	captures	the	gross,	sequence	averaged,	features	with	a	minimal	number	of	parameters.	

Focusing	 first	 on	 how	 PAM	 binding	 effects	 the	 system	 (Figure	 1B;	 left	 panel),	 we	 see	 that	 ∆ 0 = Δ"#$	
controls	the	bias	between	initiating	R-loop	formation	and	unbinding.	A	canonical	PAM	(black)	promotes	R-loop	
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initiation,	while	a	non-canonical	PAM	lessens	(darker	gray)	or	reverses	(lighter	gray)	the	bias	towards	R-loop	
formation.	Note	that	PAM	independent	systems	omit	this	initial	step.	

Turning	to	the	bias	of	R-loop	progression,	we	represent	the	guide-target	hybrid	as	a	sequence	of	matches	(C,	
correct	 base	 pairing)	 and	mismatches	 (I,	 incorrect	 base	 pairing).	 Defining	 the	 average	 bias	 towards/against	
extending	the	R-loop	by	one	correct/incorrect	base	pair	as	Δ%/Δ&	(Figure	1B;	middle	panel),	we	take	Δ 𝑛 = Δ%	
or	Δ 𝑛 = −Δ&	depending	on	if	the	base	pairing	is	correct	or	incorrect	(S.I).	 In	the	middle	panel	of	Figure	1B	
we	show	a	transition	landscape	with	moderate	gains	for	correct	base	pairings	and	moderate	costs	for	incorrect	
base	pairings	(dark	gray).	The	black	transition	landscape	corresponds	to	an	increased	gain	for	matches,	while	
the	 light	gray	corresponds	to	an	 increased	penalty	for	mismatches.	Cleavage	activity	has	also	been	observed	
on	 off-targets	 with	 small	 insertions	 and	 deletions	 (37).	We	 can	 easily	 capture	 the	 effect	 of	 such	 indels	 by	
assuming	 that	 they	 induce	 bulges	 in	 the	 guide-target	 hybrid.	 Bulges	 come	 at	 an	 energetic	 cost,	 and	 can	
therefore	be	included	by	allowing	variable	mismatch	biases	Δ&.		

Lastly,	considering	the	bias	between	cleavage	and	unwinding	of	the	R-loop,	we	assume	that	an	incorrect	base-
pair	at	 the	 terminal	position	adds	 the	same	change	 in	bias	as	 it	did	 in	 the	 interior	of	 the	R-loop.	Therefore,	
introducing	 the	 cleavage	bias	Δ'(),	we	 take	Δ(𝑁) = Δ% − Δ'()	 and	Δ 𝑁 = −Δ& − Δ'()	 for	 the	 terminal	base	
being	 correct	or	 incorrect	 respectively	 (Figure	1B;	 right	panel).	 In	 the	 right	panel	 of	Figure	1B,	we	 show	an	
example	of	 the	 terminal	 bias	Δ(𝑁)	with	 a	 terminal	match	 (black),	 terminal	mismatch	 (dark	 gray),	 and	 for	 a	
catalytically	dead	nuclease	(light	gray).	

Dissociation	constant	for	catalytically	dead	nucleases	

Apart	 from	 examining	 cleavage	 propensity,	 many	 experiments	 have	 focused	 on	 the	 binding	 of	 catalytically	
dead	Cas9	(dCas9)	or	other	catalytically	dead	RGNs	(28,	33–35,	38,	51,	59)	 (Figure	1B;	 right	panel,	 light	gray	
line).	To	be	able	to	relate	pure	binding	experiments	to	cleavage	experiments,	we	also	calculate	the	dissociation	
constant	𝐾K	 for	our	minimal	model	when	describing	a	 catalytically	dead	 system	 (∆'()≈ ∞)	 (S.I.,	Figure	S1C)	
through	

	
  
Pbound =

[RGN ]
[RGN ]+ KD

	 (9)	

Here	𝑃 efg5,	 equals	 the	probability	 to	bind	a	 substrate	 in	any	of	 the	 (𝑁)	possible	R-loop	configurations	and	
follows	 from	 Equation	 7	 (S.I).	 Further,	 [RGN]	 denotes	 the	 concentration	 of	 effector	 complex.	 In	 the	
Supplemental	Information	we	show	that	we	can	describe	the	binding	of	dCas9	with	three	parameters,	out	of	
which	two	are	identical	to	R-loop	biases	(Δ%	and	as	Δ&)	for	the	catalytically	active	system.		
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Figure 1: Kinetic model for target recognition by RNA guided nucleases
(A)The RGN binds its substrate at the PAM (state 0) from which it can unbind with backward rate kb(0) (solution state 
is -1) or form the first base pair of the R-loop (state 1) with forward rate kf(0). Next, the R-loop can grow (rate kf(i)) or 
shrink (rate kb(i)) until the entire guide is bound (guide length N). Completion of the R-loop enables cleavage (rate 
kf(N)). In case of a non-PAM recognizing RGN, the solution state is given by state 0 and the RGN starts in state 1. 
(B)Our minimal model consists of, PAM recognition (red), who’s strength is set by ΔPAM.  Matches within the R-loop 
(blue) bias its extension (ΔC), whereas any incorporated mismatches bias shrinking it (ΔI). The intrinsic catalytic rate 
(green) is determined through tuning the final (transition) state (Δclv). 
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Figure 2: DNA-protein interactions affect target specificity
(A) Relative probability to cleave a target with a mismatched PAM, compared to one with a correct PAM, as a 
function of the average strength of PAM interactions and the difference in strength between the two PAMs. Inde-
pendent of the sequence following both PAMs, taken to be identical, one can identify three regimes (S.I). In regime 
A, the RGN’s specificity is tunable through an overall decrease in PAM stability. (B) On-target efficiency for the 
target with the correct PAM. In regime A, the RGN’s efficiency is not compromised. (C-D) Weakening interactions 
between Cas protein and PAM allows the enzyme to reject (D,grey) previously cleaved (C, grey) mismatched 
targets, while maintaining a high on-target cleavage efficiency (C-D, black). Similarly, weakening non-specific 
interactions (E-F) with DNA enhances the RGNs specificity (E-F, grey), without rendering the enzyme to be ineffi-
cient (E -F, black).
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Figure 3: Single-mismatch off-targets
(A) Probability to cleave a target with a single mismatch compared to the completely complementary target. The 
microscopic parameters entering our minimal model (ΔC, ΔI, ΔPAM, Δclv) result in a sigmoid with maximum off-target 
activity (pmax), seed length (nseed) and width of the seed to non-seed transition (ΔC). (B) A functional seed length 
emerges as the site that, once mismatched, causes the effective barrier to overcome the mismatch to equal the 
one that hinders dissociation (middle panel). Placing the mismatch closer to the PAM favors dissociation (top), 
whereas the situation is reversed for PAM distal mismatches (bottom). (C) Slowing down the cleavage reaction 
(final straight line segment) can promote dissociation from targets with a PAM distal mismatch (bottom), while 
maintaining a high on-target activity (top).
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Figure 4: Differential binding versus differential cleavage  
(A) When bound to the cognate target (right), a catalytically dead RGN (black) is most likely stably bound and has 
formed the complete R-loop (purple). It’s catalytically active counterpart will likely cleave this target (grey). 
However, on mismatched targets (left), a dCas9 protein (black) can be stably bound after forming a partial R-loop 
(purple) even though the catalytically active variant would likely reject this target (grey). 
(B) Dissociation constant for targets with any combination of two mismatches. Seed length indicated with dashed 
lines. (δPAM=7.5kBT, δI=8kBT,δC=1kBT).
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Figure 5: Multiple mismatches 
(A) Relative probability to cleave a target with two mismatches. Seed length (nseed) indicated with dashed 
lines. (ΔPAM=1kBT, ΔI=4kBT,ΔC=1kBT, Δclv=-100kBT). (B) Schematic view of probability to cleave a target with 
two mismatches. Placing both mismatches within the seed abolishes interference (dark blue). Placing 
both PAM distal restores interference (red). Placing one mismatch outside the seed restores interference 
if the second mismatch is placed beyond the indicated light blue area. Hence, if the first mismatch is 
placed at the seed’s border, a minimal distance of npair between mismatches is needed. (C) Probability to 
cleave a target with a stretch (‘block’) of mismatches (size B) as a function of the location of the first 
mismatch (ΔPAM=3.5kBT, ΔI=4kBT,ΔC=1kBT, Δclv=-100kBT). (D) Spreading the mismatches out (placing them 
npair apart) (left) favors cleavage compared to a stretch of mismatches (right). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2017. ; https://doi.org/10.1101/143602doi: bioRxiv preprint 

https://doi.org/10.1101/143602
http://creativecommons.org/licenses/by-nc-nd/4.0/


A     spCas9 (Type II CRISPR) B   LbCpf1 (Type V CRISPR)  C   AsCpf1 (Type V CRISPR) 
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Figure 6: Comparison to experimental data
Fit of sigmoid (Eqn 1) to experimental data from
(A) spCas9 (Anderson et al., ref 31)
(B) LbCpf1 (Kleinstiver et al., ref 11)
(C) AsCpf1 (Kleinstiver et al.,  ref 11)
(D) Human Argonaute 2 (Jo et al.,  ref 52)
(E) E.coli Cascade complex (Semenova et al., ref 38) 
Reported values corresepond to the median of 1000 bootstrap replicates (S.I, Figure S5-S8).
Reported intervals in the text correspond to 68% confidence intervals. 
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