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Abstract 
In recent work, we discovered that the presence of highly substoichiometric amounts (10-8 
molar ratio) of lipopolysaccharide (LPS) from Gram-negative bacteria caused fibrinogen 
clotting to lead to the formation of an amyloid form of fibrin. We here show that the broadly 
equivalent lipoteichoic acids (LTAs) from two species of Gram-positive bacteria have 
similarly (if not more) potent effects. Using thioflavin T fluorescence to detect amyloid as 
before, the addition of low concentrations of free ferric ion is found to have similar effects. 
Luminescent conjugated oligothiophene dyes (LCOs), marketed under the trade name 
AmytrackerTM, also stain classical amyloid structures. We here show that they too give very 
large fluorescence enhancements when clotting is initiated in the presence of the four 
amyloidogens (LPS, ferric ions and two LTA types). The staining patterns differ significantly 
as a function of both the amyloidogens and the dyes used to assess them, indicating clearly 
that the nature of the clots formed is different. This is also the case when clotting is 
measured viscometrically using thromboelastography. Overall, the data provide further 
evidence for an important role of bacterial cell wall products in the various coagulopathies 
that are observable in chronic, inflammatory diseases. The assays may have potential in 
both diagnostics and therapeutics. 
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Introduction 
In recent work, we have developed the idea that lipopolysaccharides (LPS) from the Gram-

negative cell envelope can be shed from dormant bacteria or from continual bacteria entry 

into the blood e.g. via a leaky gut, and serve to contribute to the chronic inflammation 

characteristic of a considerable number of diseases [1-6]. Coupled to iron dysregulation [7], 

this leads to various coagulopathies [8] and changes in the morphology [9] both of 

erythrocytes and of the fibrin formed following blood clotting. A particularly striking finding 

was the fact that this ‘anomalous’ fibrin (sometimes referred to by us as ‘dense matter 

deposits’ (DMDs), e.g. [10, 11]) could be induced by tiny amounts of LPS amounting to 1 

LPS molecule per 108 molecules of fibrinogen [12]. This kind of sub-stoichiometric or 

autocatalytic activity was reminiscent of prion-like or β-amyloid behaviour. Indeed the 

‘anomalous’ fibrin was found to be stainable by the amyloid-selective stain Thioflavin T 

(ThT), and hence amyloid in nature [12]. This provided a straightforward explanation for a 

number of elements of its biology, not least its resistance to degradation by the usual 

enzymes [8, 11]. 

This narrative could account for the role of Gram-negative bacteria, but not for that of Gram-

positives, as these do not possess LPS. By contrast, their cell walls contain lipoteichoic 

acids (LTA), soluble peptidoglycan and muropeptides. There is a general feeling [13], 

especially since LTA has been properly purified [14], that LTA is just as capable as is LPS of 

providing an inflammatory stimulus to cells. While LPS mainly interacts with toll-like receptor 

4 (TLR4) [2, 15-17], LTA stimulates target cells mainly by activating toll-like receptor 2 [13, 

18-28], and with the glycolipid anchor of LTA playing a central role, analogous to the lipid A 

of LPS [29]. This is reasonable, as from the host’s point of a view an invading microorganism 

is simply undesirable, whatever its reaction to the Gram stain. Indeed, modulo a few detailed 

differences [30], and certainly for our present purposes, it seems that LTA is indeed broadly 

equivalent to LPS in terms of its ability to stimulate an innate immune response [31-33].  

As well as the well-known ThT (e.g. [11, 34-50]), a considerable number of other fluorogenic 

stains have been shown to illuminate amyloids (e.g. [11, 51-67]). In particular, Nilsson and 

colleagues have developed a number of novel fluorescent amyloidogenic markers. Some of 

these are referred to as luminescent conjugated oligothiophenes (LCOs) [68-76] and are 

marketed as Amytracker™ 480 and 680 (derived, respectively, from HS163 and hFTAA 

HS169 in the literature [71, 74]), but proprietary structures that are not identical to them; (see 

Figure 1 for the chemical structures of HS163 and HS169). Although they too show strong 

selectivity for, and enhanced fluorescence when binding to, classical amyloid proteins, their 

staining properties clearly differ from those of ThT [68, 70, 77-79]. In some cases, their 
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binding affects prion formation itself [80, 81] (and even ThT has anti-ageing properties at low 

concentrations [82]). It was thus of interest to assess these too as amyloid markers of the 

fibrin(ogen) blood clotting system. 

Figure 1:  Chemical structures and SMILES [83] representation of (A) HS163  - SMILES 
(OC(=O)CC1=C(SC(=C1)C1=CC=C(C=C1)C1=CC(CC(O)=O)=C(S1)C1=CC=C(S1)C(O)=O
)C1=CC=C(S1)C(O)=O) and (B) HS169 - SMILES 
O=C(O)c1ccc(s1)c2sc(cc2CC(=O)O)c3ccc(c4nsnc34)c5cc(CC(=O)O)c(s5)c6ccc(s6)C(=O)O 
(structures taken from [84]). 

 

The question then arose as to whether LTA and unliganded iron (which is also almost 

always dysregulated during inflammation [7, 85, 86]), could display just as strong an ability to 

divert fibrinogen polymerisation from the normal to the amyloid form as could LPS. This was 

very much the case, and the present study shows the amyloid-forming nature of blood clots 

formed in plasma in the presence of low concentrations of iron, LPS from E. coli, and two 

LTAs from Staphylococcus aureus and Streptococcus pyogenes. These latter were chosen 

on the basis of coming from infectious, Gram-positive organisms. A preprint has been lodged 

at bioRxiv [87]. 
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Materials and Methods 
Ethical statement 

This study was approved by the Ethical Committee of the University of Pretoria (South 

Africa) and Stellenbosch University: ethics clearance number: 298/2016. We adhered strictly 

to the Declaration of Helsinki. A written form of informed consent was obtained from all 

healthy donors (available on request). Blood was collected and methods were carried out in 

accordance with the relevant guidelines of the ethics committee.  

Sample population 

40 healthy individuals were included in the study. Exclusion criteria for the healthy 

population were: known (chronic and acute) inflammatory conditions such as asthma, human 

immunodeficiency virus (HIV) or tuberculosis; risk factors associated with metabolic 

syndrome; smoking; and, if female, being on contraceptive or hormone replacement 

treatment. This population did not take any anti-inflammatory medication. Whole blood (WB) 

of the participants was obtained in citrate tubes. WB was used for thromboelastography 

(TEG) [8, 88]. and platelet poor plasma (PPP) was used for confocal and super-resolution 

analysis. 

Iron, LPS, LTA1 and LTA2 

The following concentrations of the various amyloid-inducing substances were used: 

• A final exposure iron concentration (FeCl3, MW 270.32) of 5 µM was used in all 

experiments. 

• The LPS used was from E. coli O111:B4 (Sigma, L2630). A final LPS exposure 

concentration of 0.4 ng.L-1 was used. 

• LTA1 was from Staphylococcus aureus (Sigma, L2515) and a final LTA1 exposure 

concentration of 1 ng.L-1 was used in all experiments. 

• LTA2 was from Streptococcus pyogenes (Sigma, L3140) and a final LTA1 exposure 

concentration of 1 ng.L-1 was used in all experiments. 

 
Confocal microscopy  

Platelet poor plasma (PPP) was prepared by centrifuging WB for 15 minutes at 3000 x g, 

followed by storage at -80°C. On the day of analysis, all -80°C-stored PPPs were brought to 

room temperature and incubated for one hour with the four candidate amyloidogenic 

molecules (either LPS, iron, LTA1 or LTA2 (final concentrations given in previous section)) 

before adding fluorescent markers. This pre-incubation was followed by an incubation of 30 
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minutes with ThT at a final concentration of 5 µM and Amytracker™ 480 and 680 (0.1 µL into 

100 µL PPP). Naïve PPP was incubated only with the 3 markers. Before viewing clots on the 

confocal microscope, thrombin was added in the ratio 1:2, (5 µL thrombin: 10 µL PPP) and 

to create extensive fibrin networks, created. Thrombin was provided by the South African 

National Blood Service, and the thrombin solution was at a concentration of 20 U/ml and 

made up in a biological buffer containing 0.2% human serum albumin. A coverslip was 

placed over the prepared clot, and samples were viewed using a Zeiss LSM 780 with 

ELYRA PS1 confocal microscope with a Plan-Apochromat 63x/1.4 Oil DIC objective. For 

ThT, the excitation laser used was 488 nm and emission measured at 508 to 570 nm; for 

AmytrackerTM 480 the 405 nm excitation laser was used with emission measured at 478 to 

539 nm; and for Amytracker TM 680 the 561 nm excitation laser was used for excitation with 

emission measured at 597 to 695 nm. A selection of micrographs of the prepared clots with 

and without the four molecules was captured. Gain settings were kept the same during all 

data capture and used for statistical analyses; however, brightness and contrast were 

slightly adjusted for figure preparation. We also prepared Z-stacks of clots where the 

candidate amyloidogenic molecules (iron, LPS, LTA1 and LTA2) were added to PPP.  

Thromboelastography 

Clot property studies 

Whole blood (WB) was incubated for 24 hours at room temperature with either iron, LPS, 

LTA1 or LTA2, or left untreated (naïve sample). Clot property studies using 

thromboelastography (TEG) were performed as follows: 340μL of naïve or treated WB were 

placed in a TEG cup and 20μl of 0.2M CaCl2 was added. CaCl2 is necessary to reverse the 

effect of the collecting tube’s sodium citrate and consequently initiate coagulation. The 

samples were then placed in a Thromboelastograph 5000 Hemostasis Analyzer System for 

analysis. Seven parameters, as shown in Table 1, were studied [88-90]. 

Table 1: TEG clot parameters for whole blood and platelet poor plasma (taken from [88]). 

PARAMETERS EXPLANATION 

R value: reaction time measured in 
minutes 

Time of latency from start of test to initial fibrin 
formation (amplitude of 2mm); i.e. initiation time 

K: kinetics measured in minutes Time taken to achieve a certain level of clot strength 
(amplitude of 20mm); i.e. amplification 

Α (Alpha): Angle (slope between 
the traces represented by R and K  
measured in degrees 

The angle measures the speed at which fibrin build 
up and cross linking takes place, hence assesses 
the rate of clot formation; i.e. thrombin burst 
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MA: Maximal Amplitude measured 
in mm 

Maximum strength/stiffness of clot. Reflects the 
ultimate strength of the fibrin clot, i.e. overall stability 
of the clot 

Maximum rate of thrombus 
generation (MRTG)  measured in 
Dyn.cm-2.s-1 

The maximum velocity of clot growth observed or 
maximum rate of thrombus generation using G, 
where G is the elastic modulus strength of the 
thrombus in dynes per cm-2 

Time to maximum rate of thrombus 
generation (TMRTG) measured in 
minutes 

The time interval observed before the maximum 
speed of the clot growth 

Total thrombus generation (TTG) 
measured in Dyn.cm-2  

The clot strength: the amount of total resistance (to 
movement of the cup and pin) generated during clot 
formation. This is the total area under the velocity 
curve during clot growth, representing the amount of 
clot strength generated during clot growth 

 

Statistical analysis 

TEG results were analysed using the STATSDIRECT (version 2.8.0) software using the 

paired t-test; notwithstanding its arbitrary nature [91-93], significance was taken as P ≤ 0.05. 

Confocal techniques are usually used only as qualitative methods. We captured the 

fluorescent signal of each of the three fluorescent markers as a composite.czi file in the 

Zeiss ZEN software and then used ImageJ (FIJI) to split the channels. Then we assessed 

the variance between (black) background and the presence of fluorescent pixels (binary 

comparison) for each of the three fluorescent markers in clots. For this, we used the 

histogram function in ImageJ (FIJI) and calculated the coefficient of variation (CV) (as 

SD/mean) as our metric to quantify and discriminate between clots of healthy naïve PPP and 

clots with the candidate amyloidogenic molecules. Sample analysis was performed with the 

Mann-Whitney U test, using the STATSDIRECT (version 2.8.0) software. 

 Raw data storage  

Raw data are stored on OneDrive that is an open access storage database: 

(https://1drv.ms/f/s!AgoCOmY3bkKHrx0mNYcZwf2i3Ow6) and on the first corresponding 

author’s ResearchGate profile, https://www.researchgate.net/profile/Etheresia_Pretorius 
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RESULTS 
Confocal microscopy  

Confocal analysis of healthy clotted naïve PPP, in the presence of ThT, Amytracker™ 480 

and 680, showed occasional small patches of fluorescence (see Figure 2A to C). However, 

when any of the four candidate amyloidogenic molecules were pre-incubated with healthy 

PPP prior to addition of thrombin, the fluorescence in all three channels was greatly 

enhanced. This suggests increased binding of ThT, as well as of the two Amytracker 

markers. Amytracker binding, in particular, is a confirmation that amyloidogenesis is 

promoted by exposure to the four molecules. Amyloidogenesis was most prominent in PPP 

exposed to the 2 LTAs, suggesting that there are increased β-sheet-rich amyloid areas in the 

LTA-exposed fibrin(ogen) (Figure 2J to O). Previously, we concluded that LPS binding 

causes the fibrinogen to polymerise into a form with a greatly increased amount of ß-sheet 

(in the presence of thrombin), reflecting amyloid formation [12]. This results in a strong 

fluorescence observable (when excited ca 440 nm) in the presence of ThT (see e.g. [11, 35, 

36, 49, 94]). Here we confirm that the LPS, iron and the 2 LTAs not only result in ThT 

binding, plausibly to open hydrophobic areas on fibrin, but that lipoteichoic acids can indeed 

initiate amyloidogenesis of fibrin(ogen) (as confirmed by the AmytrackerTM 480 and 680 

binding). The analysis of the micrographs suggest that the AmytrackerTM 480 and 680 and 

the ThT do not bind at identical molecular sites on the fibrin, but that they bind in the same 

molecular vicinity. We therefore suggest that ThT and AmytrackerTM binding do not interfere 

with each other. Figure 3A to D also show separate and composite z-stack figures of healthy 

PPP exposed to the 4 different molecules. These results suggest that the AmytrackersTM 

mainly bind on different parts of the proteins, and that their binding pattern differs between 

the amyloid formed in the presence of the four different amyloidogenic molecules. Videos of 

the z-stacks are stored with raw data on OneDrive (see supplementary information). 

Statistical (coefficient of variation, CV) data are plotted in Figure 4. Data from the three 

different markers of each of the four amyloidogenic molecules all differed significantly from 

that of the controls (P < 0.0001). CV analyses were done on over 1750 micrographs.  

 

Thromboelastography 

Table 2 shows demographic data of the sample (used for confocal and TEG analysis) and 

the TEG results of the naïve WB, as well as the results after 24-hour exposure with the 4 

different molecules. There is a significantly decreased R-value in the presence of LPS, 

suggesting that the LPS causes WB to clot faster [88]. This was also previously 

demonstrated with a lower LPS concentration.  
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Iron results show significant P-values for R, K, angle and TMRTG values, suggesting that 

the clot forms faster, the clot reaches its (20 mm) set point more slowly, there is more cross-

linking of fibrin fibres and there is a decreased time from clot initiation to maximum clot 

formation. Considering that iron affects more TEG parameters than does LPS, free iron 

therefore has a more profound effect on clot formation than does LPS at the concentrations 

used, causing whole blood to be more hypercoagulable [8].  When LTA2 was used, only the 

MA parameter (maximal amplitude measured in mm) of LTA2 was significantly different from 

the naïve MA. Overall, the TEG results provide further evidence that the type of amyloid 

formed differs between LPS, iron, LTA1 and LTA2 when they are used as inducers  
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Table 2: Demographics and thromboelastography results of naïve blood versus LPS, iron, LTA1 and LTA2. Data in table shows median ± STD 
for full dataset (n-value of sample size in table header) of TEG parameters for the particular exposure. p-values were calculated by a paired-T-
test using only the corresponding naïve sample.  

Healthy Individuals (N=40) 

Gender Age 

55% F; 45% M 32.5 (±18.8) 

TEG results naïve whole blood after 24 hour exposure to LPS, Iron, LTA1 and LTA2 

  Naïve (n=32) LPS (n=30) 
P-value 
(Naïve/LPS) Iron (n=27) 

P-value 
(Naïve/iron) 

LTA1 
(n=15) 

P-value 
(Naïve/LTA 1) 

LTA2 
(n=15) 

P-value 
(Naïve/LTA 2) 

R 9.7 ± 1.8 8.5 ± 1.6 0.02 7.1 ± 1.1 < 0.0001  9.2 ± 1.6  0.50  8.3 ± 1.6  0.25 

K 3.1 ± 0.9 3.4 ± 1.0 0.34 2.7 ± 0.8 0.003  2.7 ± 0.8  0.07  2.7 ± 0.9  0.14 

Angle 50.7 ± 7.8 47.6 ± 10.0 0.18 53.7 ± 7.8 0.0004  55.9 ± 8.3  0.11  54.2 ± 8.7  0.97 

MA 59.0 ± 7.9 57.9 ± 5.8 0.38 57.9 ± 6.0 0.61  59.4 ± 7.3  0.26  60.8 ± 6.2   0.007 

MRTG 4.22 ± 1.43 4.13 ± 1.26 0.29 4.39 ± 1.51 0.11  5.04 ± 2.60  0.16  5.49 ± 1.82  0.11 

TMRTG 13.42 ± 2.70 12.54 
±  2.72 

0.17 10.17 ± 1.67  < 0.0001  12.25 ± 
2.23 

 0.19  11.58 ± 
2.55 

 0.26 

TTG 729.8 ± 

247.68 

689.69±  16
3.71 

0.12 702.28 ± 
170.15 

0.36  729.95 ± 
246.81 

 0.40  779.91 ± 
205.04 

 0.014 
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Figure 2: A) Representative confocal images of 3 markers (cyan: Amytracker™ 480; red: 
Amytracker™ 680; green: ThT). The following micrographs are representative of the various 
exposures: A to C) naïve PPP; D to F) PPP exposed to LPS; G to I) PPP exposed to iron; J 
to L) PPP exposed to LTA1; M to O) PPP exposed to LTA2. 
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Figure 3: Z-stack projections were created with confocal microscopy and ZEN software by adding 
four candidate amyloidogenic molecules to naïve plasma.  From top left clockwise each figure shows 
AmytrackerTM 480 (cyan); AmytrackerTM 680 (red) and ThT (green). Bottom right shows the composite 
of the 3 markers. Note that in some instances the composite shows white areas; these areas are 
where all 3 markers overlap. A) Clots of PPP exposed to LPS; B) Clots of PPP exposed to iron; C) 
Clots of PPP exposed to LTA1; D) Clots of PPP exposed to LTA2. 
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Figure 4: Boxplot of the distribution of the coefficients of variation (CV) for the pixel intensities in the confocal clot images from the three 
different markers analysed (median coefficients of variation and STDs for each group are reported above the plots). A) Amytracker™ 480 B) 
Amytracker™ 680 C) ThT. Data from the 3 different markers of each of the 4 molecules all differed significantly from that of the controls 
(P < 0.0001).  
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DISCUSSION 
In previous work [11, 12], as part of a systems biology approach to understanding the 

dormant bacterial basis and aetiology of coagulopathies accompanying various inflammatory 

diseases (e.g. [2, 4, 5, 9, 95-97]), we demonstrated that exceptionally low (and highly 

substoichiometric) concentrations of LPS could induce the formation of an amyloid form of 

fibrin. A chief piece of evidence was the extensive fluorescence staining when ThT was 

added. This was an entirely novel and unexpected finding, although Strickland and 

colleagues have shown that fibrin(ogen) can interact with known β-amyloid-forming peptides 

and proteins (e.g. [98-103]). 

LPS is a component of Gram-negative bacteria, so an obvious question arose as to whether 

or not the equivalent molecules in Gram-positive organisms (especially lipoteichoic acid) 

would have similar effects. In addition, we wished to take the opportunity to assess the utility 

of various novel conjugated oligothiophene amyloid stains, now commercially available as 

the ‘Amytracker’TM series, to illuminate amyloids.   

In the present paper, we show that LPS, iron, and the 2 LTAs cause amyloid formation of 

plasma proteins, and in particular of fibrin(ogen) as blood is clotted. We confirmed 

amyloidogenesis by using small ligands identifying amyloid protein deposits [72]. 

Specifically, we used Amytracker™ 480 (related to HS163) and 680 (related to HS169) 

which are fluorescent amyloid ligands, also termed luminescent conjugated 

oligothiophenes (LCOs) [72, 84]. These two fluorescent markers bind rapidly and with high 

sensitivity to detect protein amyloid formation in fibrin(ogen). Previously we showed that ThT 

binds to areas of amyloidogenic fibrin(ogen) that are created by LPS exposure during 

clotting. Here we confirm that observation using LPS, and show further that iron and the 2 

LTAs all cause changes in fibrin(ogen) conformation to an amyloid(ogenic) nature, with the 

role of iron being recognised in assisting the regrowth of dormant bacteria that can then 

shed the inflammagenic cell wall materials [11].    

It is known that the AmytrackerTM dyes are spectrally richer, can discriminate different forms 

of amyloid, and that their staining properties clearly differ from those of ThT [68, 70, 77-79]. 

Comparison (e.g. Figure 2) of the staining with the three dyes (ThT and AmytrackerTM 480 

and 680) in the presence of the four candidate amyloidogenic molecules showed that this is 

also true for the amyloid form(s) of fibrin induced by the different agents. These clearly 

different staining patterns occur for each dye, with those of the two AmytrackerTM dyes 

showing greater staining and being more similar (but not identical) to each other. Because 

the stoichiometry is of the order of 10-8 LPS/LTA:fibrinogen, we have been unable to 

determine the bindings sites, though clear the fact that they differ is the underlying cause of 
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the different morphologies observed. As a referee pointed out, it is possible to view the 

binding of LPS/LTA by fibrinogen as a host-protective mechanism; however, the balance 

between the inflammatory potential of LPS/LTA and the amyloid forms of fibrin is, as yet, 

unknown. 

This becomes even clearer when we observe the staining in the z-stack projections (Figure 

3 and supplementary video information of the clots shown in Figure 3), with the 

AmytrackerTM 480 seeming to favour the larger fibres characteristic of LTA2. These 

differences were also observed in the TEG traces: while iron changed four of the TEG 

variables significantly (R, K, angle and TMRTG), LPS showed a significantly increased R-

value, LTA1 was without effect, while LTA2 affected only the MA (and that marginally).  

We conclude that lipoteichoic acids are even more potent and effective than is LPS in 

binding to fibrinogen and in affecting the manner in which it self-organises during blood 

clotting. Such findings have profound significance for our understanding of the aetiology of 

anomalous blood clots, and may have value in diagnosis, prognosis and treatment of 

chronic, inflammatory diseases. 

SUPPLEMENTARY MATERIAL 
Z-stack videos were created with Zeiss ZEN software and stored as supplementary material 
on OneDrive that is an open access storage database:  
(https://1drv.ms/f/s!AgoCOmY3bkKHrx0mNYcZwf2i3Ow6) as well as within the publisher 
link to the paper. When the video is played of each healthy clot where the LPS, iron, LTA1 
and LTA2 were added, different binding areas of the 3 markers are clearly visible.  
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TABLE AND FIGURE LEGENDS 

Table 1: TEG clot parameters for whole blood and platelet poor plasma (taken from [88]. 

Table 2: Demographics and thromboelastography results of naïve blood versus LPS, iron, 
LTA1 and LTA2. Data in table shows median ± STD for full dataset (n-value of sample size 
in table header) of TEG parameters for the particular exposure. p-values were calculated by 
a paired-T-test using only the corresponding naïve sample.  

Figure 1:  Chemical structures and SMILES [83] representation of (A) HS163  - SMILES 
(OC(=O)CC1=C(SC(=C1)C1=CC=C(C=C1)C1=CC(CC(O)=O)=C(S1)C1=CC=C(S1)C(O)=O
)C1=CC=C(S1)C(O)=O) and (B) HS169 - SMILES 
O=C(O)c1ccc(s1)c2sc(cc2CC(=O)O)c3ccc(c4nsnc34)c5cc(CC(=O)O)c(s5)c6ccc(s6)C(=O)O 
(structures taken from [84]). 

Figure 2: A) Representative confocal images of 3 markers (cyan: Amytracker 480; red: 
Amytracker 680; green: ThT). The following micrographs are representative of the various 
exposures: A to C) naïve PPP; D to F) PPP exposed to LPS; G to I) PPP exposed to iron; J 
to L) PPP exposed to LTA1; M to O) PPP exposed to LTA2. 

Figure 3: Z-stack projections were created with confocal microscopy and ZEN software by 
adding four candidate amyloidogenic molecules to naïve plasma.  From top left clockwise 
each figure shows amytracker TM 480 (blue); amytracker TM 680 (red) and ThT (green).  
Bottom right shows the composite of the 3 markers.  Note that in some instances the 
composite shows white areas; these areas are where all 3 markers overlap. A) Clots of PPP 
exposed to LPS; B) Clots of PPP exposed to iron; C) Clots of PPP exposed to LTA1; D) 
Clots of PPP exposed to LTA2. 

Figure 4: Boxplot of the distribution of the coefficients of variation (CV) for the pixel 
intensities in the confocal clot images from the three different markers analysed (median 
coefficients of variation and STDs for each group are reported above the plots). A) 
Amytracker™ 480 B) Amytracker™ 680 C) ThT. Data from the 3 different markers of each of 
the 4 molecules all differed significantly from that of the controls (P < 0.0001).  
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