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This manuscript represents a redrafting of an earlier paper posted at BioRxiv following two rounds of 5 

review at Evolution and Human Behaviour. This redrafting will require further changes and review 6 
before being resubmitted elsewhere. 7 

The current draft MS contains significant changes from the earlier draft. Valuable feedback provided 8 
by previous reviewers suggested the original article was likely to be of interest to readers and, 9 

therefore, worthy of eventual publication, but was too wide-ranging, contained sections of excessive 10 

speculation, and required further clarification of hypotheses and testable predictions. I acknowledge 11 

these concerns and have continued to develop this line of research.  12 

In response to reviewers’ comments: 13 

1. The previous MS will now be treated via three separate texts. These will: 14 
i. Explore links between masculinity and the human self-domestication process, 15 

including mechanisms of selection on masculine behaviour and morphology (the 16 

present draft MS). 17 

ii. Explore possible influences of the self-domestication process upon human beards, i.e. 18 
the operation of neural crest cells in the formation of the facial dermis of human 19 

males. 20 

iii. Outline links between female preferences for neural crest cell-derived signals of 21 

masculinity and vertebrate immunity due to their contributions to the thymus and 22 
other immune system components.    23 

2. The present MS, therefore, has had several sections of the earlier draft removed, including the 24 

section on beards, which prompted a change of title.  25 

3. A key mechanistic hypothesis of the present MS is that changes to human masculinity, as 26 
related to human self-domestication, are likely to involve interaction between testosterone and 27 

neural crest cell-derived tissues [a combination of hypotheses provided by Cieri et al. (2014) 28 

and Wilkins et al. (2014)]. Existing observational and experimental research is used here to 29 

demonstrate the influence of testosterone on growth and development in several key features 30 
of domestication syndrome. 31 

4. The counterintuitive observation that males of domesticated non-human species display 32 

relatively diminished ‘masculinity’ but also show relatively elevated testosterone levels, 33 

prompts the suggestion that lower androgen receptor density within neural crest cells may 34 
drive domesticated reductions in masculinity.  35 

5. These hypothesised interactions between testosterone and neural crest cell-derived tissues 36 

require further elaboration and will be a primary avenue for productive future investigation. 37 

6. The next draft of this MS will include a more detailed presentation of previous findings on 38 
relevant human evolutionary changes, including: reduced sexual dimorphism; skeletal 39 

gracility; brain and tooth size reductions, and altered cranial morphology (brow ridges, jaw 40 

size, and the evolution of the human chin).   41 

  42 
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Abstract 16 

Recent fossil analysis points to ‘feminisation’ of human cranio-facial morphology as 17 

evidence of human self-domestication leading to the emergence of behavioural modernity. 18 

Research regarding the biophysical nature of the domestication process more generally, 19 

suggests that traits associated with domestication syndrome emerge via hypoplasia of neural 20 

crest cell (NCC) derived features. The present article offers an integration of these insights by 21 

showing that multiple traits indicative of human masculinity are commonly either directly 22 

derived from embryonic NCCs, or are significantly influenced by structures with NCC 23 

origins. Based on this observation, a logical expectation is that differential selection on 24 

indicators of relative masculinity may moderate processes of human self-domestication. I 25 

present a model of human self-domestication based on reductions in mean masculinity and 26 

review selective pathways that might achieve this reduction using existing research on 27 

selection for or against human masculinity. I suggest female mate choice trade-offs between 28 

masculine traits and elevated paternal investment may be a primary driver of human self-29 

domestication, but also show how self-domestication might relate to other theories of recent 30 
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human evolution—especially regarding increased human sociability and cooperative 1 

capacity. Finally, I discuss potential limitations to the hypothesis and suggest avenues for 2 

further empirical investigation of links between masculine traits and the physiology of human 3 

self-domestication.  4 

Keywords  5 

Masculinity; Neural Crest Cells; Human Self-domestication; Testosterone; Sexual Selection.  6 

1. Introduction  7 

Recent research concerning domestication syndrome and related human evolutionary change 8 

suggests influential roles played by both neural crest cells (NCCs) (Wilkins, Wrangham, & 9 

Tecumseh Fitch, 2014) and prenatal exposure to testosterone (Cieri, Churchill, Franciscus, 10 

Tan, & Hare, 2014). Based on an integration of these insights, and following further review 11 

of related evidence, I hypothesise that testosterone provides an elevated regulatory influence 12 

on the proliferation of NCC-derived masculine tissues in various taxa, possibly via enhanced 13 

densities of androgen receptors within this cell lineage. Multiple male secondary sexual 14 

characteristics, previously identified as signals of physiological masculinity, consist of, or are 15 

strongly influenced by, structures derived from embryonic neural crest cells (NCCs) (Section 16 

4). It follows, therefore, that since domestication—a physiological process, involving a 17 

recognised syndrome of traits—consists of correlated hypoplasia of features composed from 18 

NCCs (Wilkins et al., 2014), selection for or against NCC-derived masculine traits should 19 

moderate the expression of domestication syndrome within a given lineage. If so, this effect 20 

offers substantial physiological insight into previously-described processes of human self-21 

domestication (Brüne, 2007; Cieri et al., 2014; Fischer, 1914; Franciscus, Maddux, & 22 

Schmidt, 2013; Groves, 1999; Hare, 2017; Leach, 2003; Lorenz, 1940; Wrangham, 2014, 23 

2018). 24 

Given this link to masculinity, female preferences in favour of moderately masculine males 25 

due to enhanced pair bonding and paternal investment potential (Kruger, 2006) provide one 26 

potential impetus for human self-domestication (Cieri et al., 2014). However, generalisable 27 

advantages of increased cooperation may also have promoted this process by dampening 28 

male aggression and competition thereby helping to limit intra-group conflict in favour of 29 

collaborative intergroup hostilities (Alexander, 1990; Flinn, Geary, & Ward, 2005; 30 

Wrangham & Glowacki, 2012). In addition, socially-oriented coalitions may have selected 31 
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against excessively-aggressive masculine individuals using group ostracism and capital 1 

punishment (Boehm, 2012, 2014; Pinker, 2011; Wrangham, 2014, 2018).  2 

In effect, the present article proposes and describes a biophysical mechanism consistent with 3 

several existing theories of recent human evolution, especially regarding the widely noted 4 

emergence of human hyper-sociability and cooperative capacity (Burkart et al., 2014; 5 

Burkart, Hrdy, & Van Schaik, 2009; Hawkes, 2013; Hrdy, 2011; Sterelny, 2011). I begin 6 

with a presentation of existing research that links vertebrate NCCs and the domestication 7 

process. Following this, I provide evidence for a common association between NCCs and the 8 

secondary sexual traits of male vertebrates; including those previously associated with human 9 

masculinity. I then explore published observations concerning the interaction of testosterone 10 

and NCC-derived tissues and structures and consider this influence as a mechanism in both 11 

domestication and varied expressions of masculinity across multiple taxa. Next, I outline 12 

some of the implications of these mechanisms with reference to sexual selection and self-13 

domestication in human evolution. Finally, I conclude by highlighting some apparent 14 

limitations of the proposed mechanism and provide suggestions for further research and 15 

empirical investigation of this topic.  16 

2. NCCs and the domestication process  17 

NCCs are a transient and pluripotent lineage of cells involved in the formation of the 18 

vertebrate neural tube. Following the neural tube’s formation, these cells disperse along 19 

predetermined pathways throughout the developing embryo, providing cellular progenitors 20 

for various neural, endocrine, pigment, cardiac, skeletal and dental cells (Gilbert, 2010; B. K. 21 

Hall, 2008; J. E. Hall, 2010; Schoenwolf, Bleyl, Brauer, & Francis-West, 2008). They 22 

contribute to the production and patterning of a wide variety of structures and tissues, 23 

including: the bones, connective tissues, muscles, and dermis of the craniofacial region; the 24 

bones of the middle-ear; the teeth; the hyoid and the larynx; the pigmented melanocytes of 25 

vertebrate skin, hair, and feathers; various glands including the thymus, the anterior pituitary, 26 

the adrenal medulla and associated autonomic nerve structures; as well as parts of the 27 

vertebrate heart (Gilbert, 2010; B. K. Hall, 2008; J. E. Hall, 2010; Matsuoka et al., 2005; 28 

McGonnell, McKay, & Graham, 2001; Schoenwolf et al., 2008; Ueharu et al., 2017). Due to 29 

these diverse contributions, NCCs exert a considerable influence on the morphology, 30 

physiology and behaviour of all vertebrate taxa, prompting the suggestion they be considered 31 

a ‘fourth germ layer’ in embryonic development (B. K. Hall, 2000). 32 
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[Figure 1 here] (in development) 1 

Figure 1. Embryonic neural crest cell migration pathways and destinations.  2 

Domestication syndrome consists of a diverse suite of traits which domesticated animal 3 

populations tend to share in common when compared to their wild relatives or ancestors 4 

(Hemmer, 1990; Leach, 2003, 2007; Sánchez-Villagra, Geiger, & Schneider, 2016; L. N. 5 

Trut, 1999; Wilkins et al., 2014; Zeder, 2015). The underlying cause of correlated variation in 6 

these traits has long been a subject of scientific interest and speculation (Darwin, 1859, 1868; 7 

Hemmer, 1990; Jensen, 2006; Zeder, 2015). Recognised symptoms of domestication 8 

syndrome include: reduced prognathism; diminished craniofacial cartilage and bone; smaller 9 

teeth; smaller crania; diminished size and function of sensory organs; changes in 10 

pigmentation; dampened fight or flight responses (i.e. less reactive aggression); elevated 11 

docility and sociability towards humans; lessened sexual dimorphism; paedomorphism 12 

(generally shifted ontogenic timing); and changed reproductive behaviour and fertility 13 

regimes (Hemmer, 1990; Leach, 2003; Sánchez-Villagra et al., 2016; L. N. Trut, 1999; 14 

Wilkins et al., 2014; Zeder, 2008, 2015). Based on the observation that most of these traits 15 

involve features either directly derived from NCCs, or likely to be affected by NCC-16 

influenced processes, Wilkins et al. (2014) recently proposed that the domestication 17 

syndrome emerges in response to heritable alteration in the functioning of embryonic NCCs, 18 

and consequent hypoplasia of NCC-derived features—effectively a ‘mild neurocristopathy’.  19 

Long-running experiments using captive silver foxes (Vulpes vulpes) have demonstrated that 20 

breeding selection in favour of increased sociability (or against aggressive reactivity, or ‘fight 21 

or flight’ type responses) induces a range of traits typical of domestication with a given 22 

population (Belyaev, 1979; L. Trut et al., 2006; L. Trut, Oskina, & Kharlamova, 2001; L. N. 23 

Trut, Oskina, & Kharlamova, 2009). This selection is thought to operate by inducing a 24 

heritable tendency to a smaller and less responsive adrenal system (Wilkins et al., 2014; but 25 

see Kruska, 1988, p. 221 regards reduction in brain limbic structures), a trait long recognized 26 

among domesticated populations (Hemmer, 1990). Hypoplasia of the adrenal medulla, along 27 

with other components of the autonomic nervous system—also formed from NCC 28 

progenitors—is likely to dampen natural levels of behavioural reactivity driven by the 29 

Hypothalamic-Pituitary-Adrenal (HPA) axis (Gilbert, 2010; J. E. Hall, 2010; Wilkins et al., 30 

2014). As such, selection for sociability appears to operate via heritable changes in 31 

embryonic NCC behaviour and, according to Wilkins et al. (2014), since NCCs provide 32 
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progenitors for multiple other features, this change promotes the broader collection of altered 1 

characteristics, as associated with domestication syndrome (Figure 2).  2 

 3 

Figure 2. Proposed chain of influence in mammalian domestication from Stimulus (selection for less 4 
reactive behaviour) to Indirect Effect (Domestication Syndrome) (based on L. Trut et al., 2006, 2001; 5 
and Wilkins et al., 2014). 6 

Wilkins et al. (2014) argue that this shift in NCC functioning occurs in domesticated animals 7 

via either: reduced initial quantities, reduced migration, or reduced in-situ proliferation of 8 

NCCs, or their cellular derivatives. They propose dampened migration as the most likely 9 

primary mechanism, and expect this effect to result from pleiotropic and epistatic genetic 10 

interactions, which could explain noted trait variability between domesticated populations 11 

and species (Hemmer, 1990; Sánchez-Villagra et al., 2016; Wilkins et al., 2014). Contra to 12 

this emphasis on dispersal, however, documented effects of testosterone on the growth of 13 

multiple NCC-derived tissues (discussed further at Section 4) may suggest changes in 14 

testosterone-mediated NCC proliferation and growth as a more likely underlying cause.  15 

With regard to pre-historic selection on sociable behaviour, Charles Darwin (1859, 1868) 16 

originally suggested that a period of ‘unconscious selection’ of domesticated animals would 17 

have preceded any deliberate selection in favour of desirable traits. Following from this, it 18 

seems obvious, for reasons of self-preservation, that human domesticators would naturally, 19 

and unconsciously, have selected against particularly dangerous or aggressive animals that 20 

would have been exceptionally difficult to handle. Since these behaviours are more often 21 
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associated with males of many species, we should expect initial selection for less reactively 1 

aggressive responses would disproportionately affect the inheritance of associated male traits 2 

(Helmer, Goucherin, Monchot, Peters, & Sana Segui, 2002; Kruska, 1988; Zeder, 2012). 3 

Given demonstrated correlations seen under selection for non-aggressive behaviour (Belyaev, 4 

1979; L. N. Trut, 1999; L. N. Trut et al., 2016), this male biased selection may have been 5 

enough to induce domestication syndrome across many species of domesticated animals and 6 

would explain why reduced sexual dimorphism is a common feature of domestication. This 7 

suggestion—that domestication syndrome initially emerges primarily due to unconscious 8 

selection against male aggression—is supported by observations of relatively little selection 9 

on females, as evidenced by investigation of mtDNA across multiple domesticated taxa 10 

(Marshall, Dobney, Denham, & Capriles, 2014).  11 

3. Self-domestication 12 

Accepting that selection for sociable behaviour originally stimulated the recognised array of 13 

correlated traits seen in traditional domesticates, it appears plausible to expect, as some have 14 

suggested (Hare, Wobber, & Wrangham, 2012), that mammalian populations in general will 15 

undergo a process of physiological domestication wherever socioecological conditions 16 

promote selection for lower reactive aggression and relative sociability. For example, 17 

numerous previous authors have documented the contrasting sociosexual behaviour and 18 

elevated female social status of bonobos (Pan paniscus) when compared to their close 19 

relative, the chimpanzee (P. troglodytes) (Furuichi, 2011; Tokuyama & Furuichi, 2016; 20 

White, 1996; White, Waller, & Boose, 2013; White & Wood, 2007). These social conditions 21 

are believed to have limited the reproductive benefits of male-male competition, effectively 22 

selecting for lower male aggression and allowing for increased sociability in this species 23 

(Furuichi, 2011; Hare et al., 2012; Surbeck, Deschner, Schubert, Weltring, & Hohmann, 24 

2012; Wobber, Hare, Lipson, Wrangham, & Ellison, 2013). In response to this selection, and 25 

in line with experimentally demonstrated changes in captive foxes (L. N. Trut et al., 2006, 26 

2009), wild bonobos appear to have ‘self-domesticated’ since, when compared to 27 

chimpanzees, they show multiple morphological, behavioural and physiological 28 

characteristics associated with domestication syndrome (Hare et al., 2012).  29 

Based on observations of similar characteristics in our own species, multiple previous authors 30 

have proposed that ancestral humans also underwent a process of self-domestication (Brüne, 31 

2007; Cieri et al., 2014; Fischer, 1914; Franciscus et al., 2013; Groves, 1999; Hare, 2017; 32 
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Leach, 2003; Lorenz, 1940; Wrangham, 2014, 2018). In relation to earlier Homo sapiens, 1 

evidence for this suggestion includes: smaller body sizes and increased skeletal gracility 2 

(Frayer, 1980; Frayer & Wolpoff, 1985; Kappelman, 1996; Ruff, Trinkaus, & Holliday, 1997; 3 

Ruff, 2002; Ryan & Shaw, 2015); less-masculine facial morphology and reduced 4 

prognathism (Groves, 1989; Cieri et al., 2014; Carrier & Morgan, 2015); less sexual 5 

dimorphism (Brace & Ryan, 1980; Frayer, 1980; Frayer & Wolpoff, 1985); relative 6 

paedomorphism (Gould, 1966, 1977; Alberch, Gould, Oster, & Wake, 1979; Shea, 1989); 7 

smaller cranial capacity (Henneberg, 1988; Henneberg & Steyn, 1993; Kappelman, 1996; Liu 8 

et al., 2014); tooth size reduction (Brace & Ryan, 1980; Brace, Rosenberg, & Hunt, 1987; 9 

Calcagno & Gibson, 1988); and increased sociability (Pinker, 2011; Sterelny, 2011, 2012; 10 

Cieri et al., 2014; Hare, 2017). 11 

Whilst some authors have assumed comparable evolutionary shifts seen in both human and 12 

non-human domesticates resulted from shared adaptation to the same modified domestic 13 

environment and altered foods (e.g. Brüne, 2007; Leach, 2003), others have proposed 14 

behavioural selection in favour of sociability (similar to that applied in the fox experiments) 15 

provides a more likely common cause (Cieri et al., 2014; Hare, 2017; Wrangham, 2014, 16 

2018). In support of this suggestion, recent expansion in human cultural complexity and 17 

technological innovation has been widely proposed to result from enhanced in-group 18 

sociability, and an elevated capacity for cooperative interaction (Boehm, 2014; Burkart et al., 19 

2009; Cieri et al., 2014; Flinn et al., 2005; Hare, 2017). Although proposed evolutionary 20 

explanations for these changes vary between authors, any increase in sociability would 21 

logically imply some form of selection in favour of that sociability. Based on long-standing 22 

observational and experimental evidence (Belyaev, 1979; Hemmer, 1990; L. Trut et al., 2006, 23 

2001; L. N. Trut, 1999; L. N. Trut et al., 2009; Wilkins et al., 2014), it seems reasonable to 24 

expect such selection to stimulate aspects of domestication syndrome as a natural biophysical 25 

response.  26 

4. NCCs and male secondary sexual traits 27 

The role of NCCs in the emergence of domestication syndrome is of singular significance to 28 

research regarding selection on human masculinity since many previously identified 29 

masculine traits involve structures that are either produced, or strongly influenced, by 30 

embryonic NCCs and their various cellular derivatives (Table 1). As a principle example, 31 

NCCs provide embryonic progenitors for all of the vertebrate craniofacial region, including: 32 
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the frontal bone and associated brow ridges, the mandible and maxilla, the nasal bone and 1 

cartilage, and the zygomatic arches, as well as influencing the patterning of overlying facial 2 

muscles (Cordero et al., 2011; Gilbert, 2010; Knight & Schilling, 2013). As such, cranial 3 

NCCs provide the cellular foundations for all structural indicators of facial masculinity as 4 

widely discussed in relation to human sexual selection (e.g. Carré, McCormick, & Mondloch, 5 

2009; Carrier & Morgan, 2015; Feinberg, DeBruine, Jones, & Little, 2008; Lefevre, Lewis, 6 

Perrett, & Penke, 2013; Mitteroecker, Windhager, Müller, & Schaefer, 2015). NCCs also 7 

form the dermis of the face and neck, along with associated hair follicles thereby contributing 8 

progenitor tissues for human facial hair, especially the male beard (Jinno et al., 2010; Krause 9 

et al., 2014; Schoenwolf et al., 2008) which is also a particularly masculine trait and thought 10 

to be a focus of sexual selection (Dixson & Brooks, 2013; Dixson, Rantala, Melo, & Brooks, 11 

2017).  12 

Table 1: Several important masculine traits and their relation to NCCs. 13 

Masculine trait 
Previously discussed 

by… 
Influence of NCCs 

Facial 

dimensions, 

including width 

to height ratio  

Mitteroecker et al. 

(2015); Carré et al. 

(2009); Lefevre et al. 

(2013), Hodges-Simeon 

et al. (2016). 

NCCs form all of the facial skeleton, including 

the frontal bone, mandible, maxilla, zygomatics, 

and nasal structures, as well as associated 

cartilage and connective tissue (Bhatt, Diaz, & 

Trainor, 2013; Cordero et al., 2011; Santagati & 

Rijli, 2003; Schoenwolf et al., 2008). 

Large brow 

ridges 

Dixson (2016); Cieri et 

al. (2014). 

NCCs provide cellular progenitors of the frontal 

bone including the supra-orbital region of the 

skull (Mishina & Snider, 2014; Santagati & Rijli, 

2003; Schoenwolf et al., 2008). 

Thick facial 

hair 

Dixson and Brooks 

(2013); Dixson et al. 

(2017); Dixson et al. 

(2017). 

NCCs produce the dermis of the face and neck, 

including associated hair follicles (Jinno et al., 

2010; Krause et al., 2014; Schoenwolf et al., 

2008). 

Lower vocal 

pitch 

Feinberg et al. (2008); 

Puts et al. (2016); Puts 

et al. (2006). 

NCCs provide progenitor cells of the hyoid, 

larynx, and styloid process (Bhatt et al., 2013; 

Mishina & Snider, 2014; Wilkins et al., 2014). 

Shoulder width, 

and shoulder to 

hip ratio 

Lee et al. (2015) 

Windhager et al. (2011). 

NCCs provide progenitors for parts of the 

shoulder girdle and their connective tissues, and 

pattern the development of associated muscles 
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(Matsuoka et al., 2005; McGonnell et al., 2001; 

Noden, 1986; Valasek et al., 2010). 

Elevated 

testosterone 

levels 

Alvergne et al. (2009); 

Burnham et al. (2003). 

NCCs contribute to the adrenal and pituitary 

glands (Ueharu et al., 2017) influencing the 

Hypothalamic-Pituitary-Adrenal and 

Hypothalamic-Pituitary-Gonadal axes, both of 

which contribute to testosterone production 

(Gilbert, 2010; J. E. Hall, 2010). 

 1 

Further, NCCs form the larynx and hyoid (Gilbert, 2010; Schoenwolf et al., 2008), as well as 2 

the styloid process (Bhatt et al., 2013)—an attachment site for muscles that control the tongue 3 

and larynx. These contributions suggest altered NCC proliferation, as associated with 4 

domestication syndrome, would substantially influence vocal qualities, including voice pitch, 5 

another recognized indicator of relative masculinity (Feinberg et al., 2008; Puts et al., 2016; 6 

Puts, Jones, & DeBruine, 2012). NCCs also contribute to the development of the vertebrate 7 

shoulder region, influencing its relative size and robusticity by forming sections of the 8 

clavicle and scapula bones whilst providing connective sites and tissues, and directing 9 

developmental patterning of major neck and shoulder muscles (Ericsson, Knight, & 10 

Johanson, 2013; Matsuoka et al., 2005; McGonnell et al., 2001; Noden, 1986; Valasek et al., 11 

2010). Assuming no associated change in the (non-NCC-derived) pelvis, these contributions 12 

suggest varied NCC proliferation should influence both shoulder width and the shoulder-to-13 

hip-ratio, which have also been proposed as indicators of relative masculinity (Lee et al., 14 

2015; Windhager et al., 2011). 15 

Many non-human taxa also show conspicuous NCC-derived masculine structures associated 16 

with sexually dimorphic physiology and display. In non-human primates, masculinity 17 

regularly occurs as sexually dimorphic craniofacial features. Relevant structures include: 18 

brow ridges, teeth (especially canines), cheek flanges, and sagittal crests, each of which are 19 

derived from embryonic NCC progenitors. Interestingly, male cheek flanges and exaggerated 20 

sagittal crests emerge at sexual maturity, or even later in adulthood (Balolia, Soligo, & 21 

Lockwood, 2013; Balolia, Soligo, & Wood, 2017). This delayed developmental timing 22 

demonstrates both stem-cell-like extended potency of the NCC-derived cells involved, as 23 

well as interactions with androgen hormones and related social signalling. For instance, male 24 

orangutans (Pongo spp.) can subsist for years as adult sub-dominants without cheek flanges, 25 

but flanges develop upon achieving relative social dominance (Dunkel et al., 2013; 26 
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Thompson, Zhou, & Knott, 2012). As a further example, antlers, which grow annually on 1 

males of the Cervidae in response to seasonal testosterone fluctuation, are another NCC-2 

derived masculine feature (Davis, Brakora, & Lee, 2011).  3 

Aside from these pronounced structural traits, varied colouration of hair, skin, and feathers in 4 

many vertebrate often relies on melanocytes which are also derived from NCCs (B. K. Hall, 5 

2008; J. E. Hall, 2010). These colours are commonly sexually differentiated, are 6 

predominantly darker or more colourful in males of a given taxa, and regularly act as 7 

ornaments in intersexual selection (Darwin, 1871; Dubuc, Allen, Maestripieri, & Higham, 8 

2014; Evans, Goldsmith, & Norris, 2000; Heck, 1951; Vandenbergh, 1965). As with 9 

masculine structures, male colourations are often absent in youth, but emerge at sexual 10 

maturity in response to elevated testosterone circulation. In male mandrills (Mandrillus 11 

sphinx) adult NCC-derived colouration of the face, rump, and genitalia also fluctuates in 12 

association with the testosterone shifts accompanying changed social status (Setchell & 13 

Dixson, 2001). Note, that the structurally-derived blue colouration in mandrills requires an 14 

underlying melanocyte layer in the rump which is not present within the NCC-derived blue 15 

facial dermis (Prum & Torres, 2004).   16 

NCCs may also be associated with masculine behaviour in many species. As mentioned, 17 

these cells compose multiple components of the peripheral nervous system, including 18 

sympathetic and parasympathetic ganglia, and the adrenal medulla (Gilbert, 2010; J. E. Hall, 19 

2010; Schoenwolf et al., 2008; Wilkins et al., 2014). As such, relative proliferation of 20 

embryonic NCCs should directly moderate the propensity for autonomic reactivity effected 21 

by the Hypothalamic-Pituitary-Adrenal (HPA) axis (Wilkins et al., 2014), especially the so-22 

called ‘fight or flight’ response. Additionally, NCCs contribute to the development of the 23 

anterior pituitary and its various hormone-secreting cells (Ueharu et al., 2017) suggesting 24 

they may influence levels of HPA axis reactivity via contributions to both the adrenal and the 25 

pituitary glands. Further, NCC contributions to the pituitary suggest potential to moderate 26 

other male endocrine functions, including the regulation of testosterone, as well as growth 27 

and thyroid hormones.    28 

5. Testosterone and NCC-derived masculine features 29 

Whilst Wilkins et al. (2014) compellingly highlight associations between NCCs and the 30 

majority of traits seen in mammalian domestication syndrome, Cieri et al. (2014) focussed 31 

specifically on the potential influence of self-domestication in humans and used ancestral 32 
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decline in the masculinity of the (NCC-derived) craniofacial region to infer prehistoric 1 

reductions in prenatal testosterone exposure. Their observations imply either reduced 2 

maternal circulating testosterone, or relatively lessened androgen receptor densities, across 3 

the populations studied (Cieri et al., 2014). Here, I employ a logical integration of these 4 

studies to suggest that the proliferation of NCCs, or their derived cells and tissues, is often 5 

particularly responsive to testosterone.  6 

This hypothesis is supported by evidence from multiple previous studies involving NCC-7 

derived masculine traits and features. For example, recent research has confirmed a link 8 

between levels of prenatal testosterone exposure and hypermasculinised human faces 9 

(Whitehouse et al., 2015) as was inferred by Cieri et al. (2014) in relation to human self-10 

domestication. Circulating testosterone has also been shown to correlate with facial 11 

masculinity among both adolescents (Marečková et al., 2011), and in adult men (Hodges-12 

Simeon et al., 2016; Lefevre et al., 2013; Penton-Voak & Chen, 2004). Aside from these 13 

comparative studies, experimental work by Verdonck et al. (1999) showed testosterone 14 

treatment in boys with unusually delayed puberty led to increased upper and total facial 15 

height. In addition, administration of anabolic steroids in young rats has been shown to cause 16 

increased length of the craniofacial skeleton, especially the midface, maxilla, and mandible 17 

(Barrett & Harris, 1993). Conversely, neonatal and prepubertal castration in rats causes 18 

diminished craniofacial growth, especially with regard to anterior length (Verdonck et al., 19 

1998).  20 

As described in Section 3, numerous masculine signals in wild non-human taxa—including 21 

sagittal crests, cheek flanges, antlers, and various colourations—are NCC-derived and 22 

conspicuously responsive to fluctuations in circulating testosterone. In humans, the effects of 23 

elevated pubertal testosterone are also well established; involving various NCC-derived 24 

masculine traits, including: growth and development of the larynx leading to altered vocal 25 

pitch; the growth of thick facial hair from the dermis of the face and neck; and increased 26 

structural masculinity of the facial region; among other testosterone-mediated changes 27 

(Gilbert, 2010; Widmaier, Raff, Strang, & Vander, 2010). 28 

Interestingly, recently described NCC contributions to the anterior pituitary (Ueharu et al., 29 

2017) suggest a circular relationship between testosterone production and NCC proliferation 30 

since it implicates NCCs in the function of the Hypothalamic-Pituitary-Gonadal (HPG) axis, 31 

the principal regulatory system for male testosterone production (Gilbert, 2010; J. E. Hall, 32 
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2010). Wilkins et al. (2014) also hypothesised a connection between altered NCC behaviour, 1 

domestication syndrome, and the HPG axis in their discussion of the shifted timing of 2 

reproductive physiology among domesticated female foxes. However, these authors do not 3 

consider the potential effect of suppressed NCC activity upon the HPG axis of male foxes, 4 

nor upon the subsequent production of testosterone.  5 

Aside from small quantities produced by the (NCC-derived) adrenal medulla, most male 6 

testosterone is produced within the Leydig cells of the testes, a process triggered by the 7 

release of luteinizing hormone from the anterior pituitary (Gilbert, 2010; J. E. Hall, 2010). 8 

Therefore, the fact that this important gland receives significant input from NCC lineages 9 

appears to suggest a functional link between decreased proliferation of NCCs, lower 10 

production of pituitary luteinizing hormone as part of the HPG axis, and generally lower 11 

levels of testosterone production in less-masculine males. If this description were accurate, 12 

we would expect both less-masculinised individuals and domesticated populations in general, 13 

to show lower circulating testosterone levels than their more-masculine, or non-domesticated, 14 

ancestors and relatives.  15 

However, whilst this relationship appears to have been demonstrated with regard to variation 16 

in masculinity among modern humans (Lefevre et al., 2013; Penton-Voak & Chen, 2004), 17 

available research does not support the same relationship in domesticated versus non-18 

domesticated animal comparators. Researchers comparing adolescent guinea pigs with wild 19 

cavies (the nearest non-domesticated relative) (Künzl & Sachser, 1999; Zipser, Schleking, 20 

Kaiser, & Sachser, 2014), and wild mouflon sheep with 10 domesticated breeds and 21 

crossbreeds (Lincoln, Lincoln, & McNeilly, 1990), actually found higher testosterone 22 

concentrations in the domesticated forms.  23 

These counterintuitive contrary results may be a logical (though unexplained) aspect of 24 

changes to the feedback systems of endocrine regulation under domestication syndrome, or 25 

may result from directional human selection in favour of elevated reproductive performance 26 

in domesticated male animals (e.g. see Katz, 2007). Either way, it suggests that hypoplasia of 27 

NCC-derived masculine features does not result simply from reduced testosterone levels, and 28 

supports Cieri et al.’s (2014) alternative inference (in relation to humans) that androgen 29 

receptor densities are the point of difference between domesticated and non-domesticated 30 

comparators. Following from this proposal, the specific mechanistic hypothesis presented in 31 
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the current paper is that domesticated hypoplasia of masculine features relies on a lower 1 

density of androgen receptors, particularly within NCC-derived cells and tissues.  2 

6. Human self-domestication via selection against masculinity  3 

Accepting there has been an evolutionary trend toward human self-domestication and given 4 

the proposal that this occurred primarily as selection for sociability which led to mean 5 

reductions in NCC-derived masculinity, it remains to consider what evolutionary pressures 6 

are likely to have promoted this socialisation process. Recent research explicitly describing 7 

human self-domestication has identified three primary mechanisms; these are: (1) general 8 

social benefits, whereby improved sociability would provide enhanced survival and 9 

Darwinian fitness via cooperative exchange (Cieri et al., 2014; Hare, 2017); (2) group 10 

ostracism, where groups naturally ostracise, or exact capital punishment upon, excessively 11 

aggressive and dominant individuals (Wrangham, 2014, 2018); and (3) female mating 12 

preferences, whereby women would preferentially select for more sociable and less-13 

masculine male reproductive partners who are more inclined to paternal investment strategies 14 

(Cieri et al., 2014).  15 

With regard to the latter proposal, previous research examining women’s preferences for 16 

men’s masculine traits has suggested these vary depending on menstrual cycling and whether 17 

long or short-term relationships are sought (DeBruine, Jones, Frederick, et al., 2010; 18 

Gangestad & Thornhill, 2008; Little, Saxton, et al., 2010; Little, Jones, & Burriss, 2007; 19 

Penton-Voak et al., 1999; but see Harris, 2013; and Wood, Kressel, Joshi, & Louie, 2014). 20 

Further, such preferences appear to be enhanced under conditions of high pathogen presence 21 

(DeBruine, Jones, Crawford, Welling, & Little, 2010; Little, DeBruine, & Jones, 2010) and 22 

elevated social inequality (Brooks et al., 2010). These observations conform to expectations 23 

that women are adaptively predisposed to making context-dependent mating choices between 24 

males with either ‘good genes’ (and elevated masculinity), or those with a higher propensity 25 

for pair-bonding and paternal investment (Kruger, 2006; Little, Connely, Feinberg, Jones, & 26 

Roberts, 2011; Quist et al., 2012; Trivers, 1972). 27 

Boothroyd et al. (2017) recently showed a significant non-linear correlation between facial 28 

masculinity and offspring survival in two traditional human groups. In this study, moderately 29 

masculine fathers had lower offspring mortality than those with both relatively low and 30 

relatively high masculinity (Boothroyd et al., 2017). Combined with existing sexual selection 31 

theory (Kruger, 2006; Trivers, 1972), this result appears to indicate the relatively limited 32 
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survival of offspring from either theoretical extreme on the continuum between ‘low 1 

masculinity, but higher inclination to paternal investment’, and ‘high masculinity, but low 2 

paternal investment’. It suggests a centralised optimum of masculinity regards offspring 3 

survival, and a degree of stabilizing selection with implications for the adaptiveness of female 4 

preferences toward either extreme (Boothroyd et al., 2017).  5 

Though not explicitly addressing human self-domestication, the work of several other authors 6 

supports potentially related evolutionary mechanisms more reminiscent of the ‘social 7 

benefits’ (Cieri et al., 2014) and ‘ostracism’ (Wrangham, 2014, 2018) hypotheses. For 8 

example, multiple influential contributions address the evolutionary benefits of enhanced 9 

human sociability and collaborative capacity (Sterelny, 2011, 2012), especially via 10 

cooperative reproductive efforts (Burkart et al., 2014; Hawkes, 2013; Hrdy, 2011). 11 

Additionally, the nature of human intersexual selection provides a flourishing field with 12 

numerous contributors (Archer, 2009; Brooks et al., 2010; DeBruine, Jones, Crawford, et al., 13 

2010; Feinberg et al., 2008; Kruger, 2006; Lee et al., 2015; Thornhill, Chapman, & 14 

Gangestad, 2013). The proposal that group ostracism and punishment could act as selection 15 

for domesticated sociability (Wrangham, 2014, 2018) mirrors work by Boehm (2012, 2014) 16 

and Pinker (2011), among others. And, finally, the suggestion that cooperative male 17 

sociability followed selection for reduced in-group rivalry to support collaborative 18 

competition and inter-group hostility (Alexander, 1990; Flinn et al., 2005; Wrangham & 19 

Glowacki, 2012) provides another potentially domesticating influence.  20 

From the Middle Pleistocene, human evolution has involved reduction, or significant change, 21 

in several biophysical indicators of masculinity, including skeletal robusticity, upper-body 22 

strength, and body size sexual dimorphism (Carrier & Morgan, 2015; Frayer & Wolpoff, 23 

1985; Hill, Bailey, & Puts, 2017; Lindenfors & Tullberg, 2011; Ruff, 2002; Ryan & Shaw, 24 

2015), as well as craniofacial robusticity and prognathism (Carrier & Morgan, 2015; Cieri et 25 

al., 2014). These physical changes coincide with an expansion of cultural and technological 26 

complexity, widely thought to indicate increased social tolerance and cooperative capacity 27 

(Boehm, 2014; Burkart et al., 2014; Cieri et al., 2014; Flinn et al., 2005; Hare, 2017; Hawkes, 28 

2013; Hrdy, 2011; Sterelny, 2011). Whilst several hypotheses have been proposed to explain 29 

these evolutionary changes (Boehm, 2014; Burkart et al., 2014; Carrier & Morgan, 2015; 30 

Flinn et al., 2005; Frayer, 1980; Frayer & Wolpoff, 1985; Hill et al., 2017; Hrdy, 2011; 31 

Pinker, 2011), each is limited by the absence of specific biophysical mechanisms aside from 32 
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disparate selection for unspecified genes which might promote each trait in relative isolation. 1 

Contrastingly, the correlated behavioural, physiological, and morphological changes 2 

associated with domestication syndrome have been experimentally demonstrated, and 3 

repeatedly confirmed across different species over a significant period (Belyaev, 1979; L. 4 

Trut et al., 2006; L. N. Trut, 1999; L. N. Trut et al., 2009). As such, the self-domestication 5 

process may offer a mechanistic foundation for multiple lines of research on selective 6 

processes and change in recent human evolution. 7 

One aspect of human evolution that must have significantly benefited lower levels of 8 

masculinity, is the increasing altriciality of human infants (van Schaik, 2016; Zollikofer & 9 

Ponce de León, 2010). This trend would inevitably increase the relative fitness of capable 10 

parental investors, certainly among cooperative female kin, and, to some extent, among males 11 

as well (Hrdy, 2011). Reduced sexual dimorphism is a recurrent trait among cooperatively 12 

breeding species (Clutton-Brock et al., 2006; Rubenstein & Lovette, 2009) suggesting this 13 

trend in humans might reflect increasing paternal investment. Coincident increase in human 14 

social and communication complexity might also have enhanced the fitness of more sociable 15 

paternal investors via group sanctions against particularly masculine reproductive behaviours, 16 

including: extra-pair copulation, violent sexual coercion, and unwanted mate guarding. 17 

Varying levels of female social status would also moderate the efficacy of the latter two 18 

mating strategies, limiting their relative fitness wherever women exercised relative sexual 19 

autonomy.  20 

However, any intersexual selection operating in favour of more sociable, less-masculine, 21 

males must have occurred in tandem with intra-sexual selection (forms of male-male 22 

competition) often likely to exert a contrasting influence. Despite our noted trajectory of de-23 

masculinisation, humans remain a sexually dimorphic species in several characteristics, and 24 

multiple traits indicate past and continuing male competition (Carrier & Morgan, 2015; Fink, 25 

Weege, Manning, & Trivers, 2014; Hill et al., 2017; Scott, Clark, Boothroyd, & Penton-26 

Voak, 2013; Sell, Hone, E, & Pound, 2012). Hill et al. (2017) have argued that apparent 27 

reduction in human sexual dimorphism is consistent with changes in intrasexual selection 28 

leading to enhanced same-sex intimidation, or ‘formidability’, instead of actual combat. 29 

Certainly, moderation of in-group male-male competition would be a necessary precondition, 30 

if, as has been suggested, increased human sociability required more collaborative forms of 31 
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competition (Flinn et al., 2005; Hill et al., 2017), especially as violent intergroup hostility 1 

(Wrangham & Glowacki, 2012).  2 

Considering all of the above, Table 3 provides a summary of mechanisms that might 3 

influence processes of human self-domestication based on selection for decreased masculinity 4 

and increased social and cooperative capacities. These are presented in the form of positive 5 

and negative feedback which emphasises the interactions between multiple selective 6 

pressures that must have varied across our evolutionary history.  7 

Table 2: Selective feedbacks affecting human sociability, masculinity, and self-domestication. 8 

Types of feedback Relevant influences 

Positive Increasing altriciality 

 Female preference for paternal investment 

 High population density and increased reliance on a sociocultural niche 

 Ostracism of aggressive individuals 

 Group collaboration in inter-group hostilities 

Negative Direct male-male competition 

 Female selection in favour of masculine ‘good genes’  

7. Limitations, key questions, and directions for further research 9 

A potential limitation to any empirical study of human self-domestication is the identification 10 

of suitable comparators. Whilst this issue has been solved in the case of previous animal 11 

breeding experiments, it almost goes without saying that such experiments are ethically, 12 

morally, and practically impossible among humans. It follows that any study of human self-13 

domestication must rely on observational and comparative research of existing populations 14 

alone. This should not be problematic since comparative research is easily as robust as 15 

experimental work so long as suitable statistical controls are applied for potentially 16 

confounding influences (Thornhill & Fincher, 2013). In association with existing 17 

experimental research on domesticated animals, comparative research on past and present 18 

humans should adequately support further empirical study.  19 

It must be noted, however, that comparisons may be problematic for other reasons. Since 20 

unique evolutionary selection and drift tend to operate on various traits in any given 21 

population, increasing phylogenetic distance means potential comparators should show many 22 

changes unrelated to the mechanisms of domestication syndrome. For this reason, only 23 

closely-related comparator lineages are likely to prove useful. In humans, comparisons 24 

between distantly ancestral and modern populations indicate long-term directional change 25 
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suggestive of domestication syndrome (Cieri et al., 2014). These results demonstrate that all 1 

modern humans are relatively self-domesticated in comparison with earlier people. However, 2 

simple comparison of features known to vary between distantly-related modern populations 3 

will involve numerous confounding influences due to interceding cultural norms and 4 

environmental factors. Further, as with most comparisons of distant human groups, variation 5 

within populations is likely to exceed that observed via interpopulation comparisons, this is 6 

certainly true of relative masculinity, and is also likely regarding self-domestication. As such, 7 

temporal, socioeconomic, and cultural comparisons of closely related human lineages offer 8 

the most productive and rigorous comparisons for future investigation of this topic. 9 

Possibly the most outstanding inconsistency raised by the hypothesis proposed in this article 10 

relates to the difference in relative testosterone level between less-masculine human males 11 

and domesticated male animals. The question is, if masculine traits are influenced in the same 12 

way as domesticated ones, why would testosterone tend to be lower in less-masculine men, 13 

but higher in domesticated animals? If domestication syndrome is effectively an expression 14 

of relatively dampened physiological masculinity, it seems we would expect lower 15 

testosterone in both less-masculine men and in domesticated taxa as compared to more 16 

masculine and non-domesticated comparators. As proposed earlier, it may be that levels of 17 

testosterone production are determined separately to the other, more structural, features of 18 

masculinity and that androgen receptors in NCC-derived tissues are the primary mode of 19 

variance in both masculinity and in domestication. However, whilst this possibility de-20 

emphasises the direct role of testosterone in human self-domestication, it remains a curiosity 21 

that testosterone levels would not appear to shift in the same direction in less-masculine self-22 

domesticated humans as they do in domesticated animals.  23 

Another outstanding issue involves the regular lack of precise correlation across masculine 24 

traits in men. That is, if trait expression is reliably correlated in NCC-derived features, why 25 

would men show varying levels of masculinity in different features? For instance, why do 26 

some men have deep voices but not large jaws, and vice versa? Why do some show a facial 27 

dermis with potential for dense facial hair, but no propensity for reactive behaviour? This 28 

lack of correlation may well indicate a fundamental flaw in the hypothesis or might simply 29 

demonstrate that perfect correlation is unlikely in biology. It may be that costly production of 30 

androgen receptors necessitates optimised distributions and that different lineages invest in 31 

different masculine signalling strategies. This issue would require further study. 32 
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To expand empirical investigation of human self-domestication, further research into the 1 

activity of NCCs, and the genetic, or epigenetic, factors that regulate their proliferation, are 2 

likely to prove insightful. A range of recent sources have considered the genetics of 3 

domestication syndrome and these may be utilised as foundations for further investigation 4 

(Benítez-Burraco, Lattanzi, & Murphy, 2016; Benítez-Burraco, Pietro, Barba, & Lattanzi, 5 

2017; Benítez-Burraco, Theofanopoulou, & Boeckx, 2016; Theofanopoulou et al., 2017; 6 

Wilkins et al., 2014; Wright, 2015). Note though that the findings of this present review 7 

suggest value in an expanded focus on genetic regulatory mechanisms associated with 8 

masculinity in general, and on androgen receptor densities in NCC-derived cells and tissues 9 

in particular. Due to the ubiquitous nature of vertebrate NCCs, useful investigation might 10 

initially progress via non-human research since the mechanisms involved in male secondary 11 

traits should influence embryonic NCCs across most vertebrate taxa.  12 

Whilst Wilkens et al. (2014) drew links between the domestication process and pathological 13 

features common to various forms of neurocristopathy, other researchers have investigated 14 

similarities between domestication and pathologies associated with variation in the language 15 

centres of the human brain. These suggest that both autism spectrum disorder and 16 

schizophrenia could occur in response to physiological activity related to mechanisms of self-17 

domestication (Benítez-Burraco, 2017; Benítez-Burraco, Lattanzi, et al., 2016; Benítez-18 

Burraco et al., 2017). Recent demonstration of craniofacial hypermasculinisation associated 19 

with autism spectrum disorder (Tan et al., 2017)—a syndrome disproportionately associated 20 

with human males—may prove directly relevant in light of the relationship between 21 

domestication and masculine phenotypes proposed in the present article. These connections 22 

might suggest productive investigation of testosterone-moderating developmental 23 

interventions targeted towards several autism related symptoms. Apart from facial 24 

hypermasculinisation, a link between self-domestication and autism would predict for other 25 

correlated symptoms including larger brains and adrenal systems in autistic individuals. 26 

A further useful focus for expanded research in domestication and human self-domestication 27 

would be to conclusively demonstrate underlying mechanisms causing noted hypoplasia of 28 

NCC-derived tissues in domesticates. If moderated in-situ proliferation or growth of NCCs in 29 

response to testosterone presence were the general mechanism of domestication, then further 30 

work is required to determine exactly why, and by what means, this interaction occurs. Based 31 

on combination of suggestions provided by Wilkins et al. (2014) and Cieri et al. (2014), this 32 
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article has hypothesised inherited modification of androgen receptor densities within NCCs, 1 

or NCC-derived tissues, as an influential mechanism. Having said this, endocrine interactions 2 

involved in the regulation and metabolism of testosterone are highly complex, and further 3 

investigation of these relationships will be required. The specific influence of NCC-derived 4 

cells in the pituitary upon the operation of the HPG axis and its active role in testosterone 5 

production also remains to be considered and thoroughly explored, especially in light of the 6 

inconsistencies between masculine men and male domesticates, noted above.  7 

The observations presented in this article offer potential for further productive research by a 8 

range of methods appropriate to multiple fields of investigation. Table 4 specifies several 9 

initial predictions that might stimulate further examination and testing of domestication-10 

related mechanisms. 11 

Table 3: Six predictions derived from hypothesised mechanisms presented here. 12 

1) Androgen receptor densities within NCC-derived tissues should vary between relatively 

domesticated and non-domesticated lineages and between high and low masculinity 

individuals, with the domestic/low state showing relative reduction. 

2) Whilst the introduction of exogenous testosterone has been shown to enhance masculine 

trait expression, natural testosterone levels should provide only an imprecise predictor of 

masculine morphology and behaviour (meta-analyses could be used to examine this logical 

expectation). 

3) Relative sizes of male adrenal gland should correlate with behavioural reactivity and other 

NCC-derived or influenced masculine traits and features.  

4) Selection against a range of masculine traits or features in vertebrate species (e.g. against 

species-specific masculine behaviour, colourations, or ornaments) should promote correlated 

changes in other NCC-derived features, as apparent under domestication syndrome. 

5) Reduced colouration and low territorial aggression in island populations (Mayr, 1966; 

Stamps & Buechner, 1985), are likely indications of ‘island self-domestication’ as proposed by 

Hare et al. (2012), and should correlate with other indicators of altered NCC function in 

comparison to mainland relatives. 

6) NCC-derived structures (e.g. the hyoid, see: Torimitsu et al., 2017) should prove 

particularly useful for accurate sex determination within populations of related individuals.  

8. Conclusion 13 

Across multiple taxa, numerous signals of masculinity result from embryonic neural crest cell 14 

progenitors. Since domestication syndrome occurs as a biophysical response to selection for 15 

sociability and involves correlated change in numerous NCC-derived tissues, correlations 16 

between NCCs and masculine traits should help to link existing sexual selection research 17 
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with longstanding interest in the processes of domestication, and human self-domestication. 1 

These connections might help to inform further investigation of varying female preference for 2 

masculine features in multiple vertebrate taxa (i.e. by extending ‘handicap’ and ‘costly 3 

signalling’ studies). In a wider sense, the mechanisms of testosterone-mediated NCC 4 

proliferation and growth may promote a range of further investigation and discussion around 5 

masculine morphology, physiology and behaviour.   6 

The self-domestication of Homo sapiens has been characterized as a necessary process in our 7 

evolution towards a more cooperative and sociable form; promoting the development of 8 

human culture, knowledge sharing, and dramatic technological advance (Cieri et al., 2014; 9 

Hare, 2017). The increased collaborative capacity and cooperation enabled by this process 10 

allowed for the emergence of humanity’s complex and constructed ‘social-niche’-based mode 11 

of existence (e.g. see: Ellis, 2015; Odling-Smee, Laland, & Feldman, 2003; Sterelny, 2011). 12 

Given the relatively recent increase in social and technological complexity accompanying the 13 

emergence of human civilizations, the strongest impacts of this process have emerged only 14 

lately in our evolution. This might imply human self-domestication is a continuing (even 15 

accelerating) process. However, the complex range of influential biological, cultural, and 16 

environmental factors occurring within modern society make any overall trend difficult to 17 

predict. Further research regarding selection on human masculinity should proceed with an 18 

enhanced paradigmatic foundation via reference to testosterone-mediated NCC proliferation, 19 

and a broader understanding of its effects upon human biology and behaviour, as individuals, 20 

and as a society. 21 
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