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Estimation of model accuracy in CASP12 

Abstract 

Methods  for reliably estimating the quality of 3D models  of proteins  are essential drivers  for the wide 

adoption and serious  acceptance of protein structure predictions  by life scientists. In this  paper, the 

most successful groups  in CASP12 describe their latest methods  for Estimates  of Model Accuracy 

(EMA). We show that pure single model accuracy estimation methods  has  shown clear progress  since 

CASP11; the three top methods  (MESHI, ProQ3, SVMQA) all perform better than the top method of 

CASP11 (ProQ2). The pure single model accuracy estimation methods  outperform quasi-single 

(ModFOLD6 variations) and consensus  methods  (Pcons, ModFOLDclust2, Pcomb-domain and 

Wallner) in model selection, but are still not as  good as  those methods  in absolute model quality 

estimation and predictions  of local quality. Finally, we show that when using contact based model 

quality measures  (CAD, lDDT) the single model quality methods  perform relatively better. 

Introduction 

 

Estimates  of Model Accuracy (EMA) have been a part of protein structure prediction since its  infancy. 

It is  actually built into virtually all methods  as  the energy functions  that they optimize. Yet, these 

energy functions  provide only relative accuracy estimate, with moderate power in properly ranking 

models. Further, when one tries  to use models  from different methods, their associated energies  are 

not comparable. Thus, accurate posterior quality estimation methods  are essential for protein structure 

prediction to fulfill its  potential. 

 

Motivated by the intriguing experiment of Novotny et al.11 early model accuracy assessment methods 

focused on distinguishing wrong models  (or decoys) from the native structure2,3. Knowledge based 
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energy functions  were developed to solve this  problem and to guide protein folding and fragment 

assembly simulations  and for threading studies. Notably, the methods  by Sippl, which used a 

knowledge based energy function for threading, were quite successful in CASP1-34,5. However, in 

later CASP  experiments  threading methods  have not been able to keep up with methods  that use 

evolutionary information from the rapidly growing sequence databases. 

 

None of the energy functions  that were developed to distinguish native and non-native protein models 

showed any major success  in CASP. Instead, more successful methods, starting with ProQ6, that aim 

to predict the quality of a model have been more successful. One of the notable features  separating 

these methods  from the earlier knowledge based energy terms  were the use of compatibility with 

predicted structural features, such as  secondary structure. These methods  are nowadays  referred to as 

single model quality assessment methods  to distinguish them from methods  that use clustering (or 

consensus) of many models. Since the introduction of ProQ other methods  based on the same idea has 

been introduced, including QMEAN7  that has  performed on par with ProQ in earlier CASPs.  In 

earlier CASPs  the single methods  have not been as  successful as  the methods  that take into account 

structural similarity of models, i.e. consensus  based methods 8, but since CASP11 they perform at least 

on par with the consensus  methods  in at least some of the tasks 8. 

 

The first successful attempt of independent model quality estimation, in the context of CASP, was 

when the first meta predictor was  introduced in CASP49, where it was  shown that combining the 

results  from several servers  could provide better models  than any of the individual servers.  However, 

in CASP4 the model quality estimates  were done manually. From this  exercise it was  realized that a 

simple rule combining the predictions  from several servers  could outperform all individual servers. 

This  algorithm chose the most frequent fold predicted by all servers, i.e. choosing the consensus 9,10.  
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Estimation of model accuracy in CASP12 

Soon after CASP4, the first automatic consensus  method, Pcons, was  introduced11. This  was  later 

followed by a simpler (and more robust) method, 3D-Jury12. Later versions  of Pcons  are very similar 

to 3D-Jury13, the only difference is  in the details  of the superposition method. In CASP5 it was  clear 

that these methods  could be used to outshine all individual servers  if the results  were combined. In 

CASP7 model accuracy estimation became a category by itself for the first time 1414.  

 

Quasi-single model methods, such as  the latest ModFOLD servers 15,16 compare a model with models 

generated by a local prediction-pipeline using the consensus  approach. These methods, as  well as 

Pcomb13 that uses  the Pcons  consensus  approach, combine the consensus  score with one or several 

pure single model approaches. The performance of the best quasi-single approaches  often match the 

performance of the consensus  methods, but  with the ability to evaluate a single model at a time given 

that a set of external predictions  exist. 

 

Below, we will first describe shortly the methods  used by our groups  in CASP12. Thereafter, we will 

compare their performance and discuss  our insights  about their pros  and cons. 

Methods 

A summary of all methods  discussed in this  paper is  presented in Table 1. Below, each group presents 

their methods  briefly. 

Elofsson group 

We participated with several accuracy estimation methods  in CASP12. Here, we will highlight the 

two methods  that performed best; the single model accuracy estimation tool ProQ317 and our 

consensus  based method Pcons 11. Our other methods  included an early version of ProQ3D18 the deep 
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learning version of ProQ3. ProQ3_diso is  a version of ProQ3 where disordered residues  are ignored 

and RSA_SS  is  a simple quality assessment method that only utilizes  predicted secondary structure 

and surface area. For details  see the CASP  12 abstracts  at 

http://predictioncenter.org/casp12/doc/CASP12_Abstracts.pdf. 

  

ProQ317 is  the latest version of our single model accuracy estimation methods 6,19–21. In Table 2 we 

describe the most important developments  in the history of ProQ. In addition to using the same 

descriptions  of a model as  ProQ221 it also uses  Rosetta energy functions. All input features  are 

combined together to train a linear SVM. The training data set is  a subset of CASP9 with 30 models 

per target. We also tested a few developmental methods  of ProQ in CASP12, but none of these 

performed significantly better than ProQ3 and are therefore not discussed here. However, it can be 

noted that we have recently developed an improved version of ProQ3, ProQ3D that uses  a 

deep-learning approach but identical inputs  as  ProQ318. The final version was  not ready for CASP12 

and the preliminary version used did not perform better than ProQ3. ProQ3 is  available both as  source 

code from https://bitbucket.org/ElofssonLab/proq3, and as  a web-server at http://proq3.bioinfo.se/. 

  

Pcons 11 is  used with default setting. This  means  that the score is  calculated by performing a structural 

superposition using the algorithm described by Levitt and Gerstein22 of a model against all other 

models. To avoid bias, comparisons  between models  from the same method are ignored. After 

superposition, the “S-score” is  calculated for each residue in the model23. The average S-score for all 

residues  and pairs  of models  is  then used to calculate the final Pcons  score. For local predictions, the 

average S-score is  converted to a distance as  described before13. Pcons  is  freely available from 

https://github.com/bjornwallner/Pcons/. It should be noted that a number of heuristic optimizations 

have been implemented in Pcons  to enable the pairwise comparison of hundreds  of proteins  in a short 

time 24. 
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McGuffin Group 

We participated in CASP12 with three new quasi-single model method variants, ModFOLD6, 

ModFOLD6_cor and ModFOLD6_rank (Figure 1), and one older clustering method, 

ModFOLDclust2. 

 

ModFOLD6 

The ModFOLD6 server16 is  the latest version of our freely available public resource for the accuracy 

estimation of 3D models  of proteins 15,25,26. The ModFOLD6 server combines  a pure-single and 

quasi-single model strategy for improving accuracy of local and global model accuracy estimates. Our 

initial motivation in the development of ModFOLD6 was  to increase the accuracy of local/per-residue 

assessments  for single models 16. 

 

For the local/per-residue error estimates, each model was  considered individually using two new 

pure-single model methods, the Contact Distance Agreement (CDA) and the Secondary Structure 

Agreement (SSA) scores 16, as  well as  the best pure single method in earlier CASPs, ProQ221,27. 

Additionally, three alternative quasi-single model methods  were used to score models  including: the 

newly developed Disorder B-factor Agreement (DBA), the ModFOLD5_single (MF5s) and the 

ModFOLDclustQ_single scores  (MFcQs)16 - each of which made use of a set of 130 reference 3D 

models  that were generated using the latest version of the IntFOLD-TS 28,29 pipeline from the IntFOLD 

server30,31. The component per-residue scores  from each of the 6 alternative scoring methods, 

mentioned above, were combined into a single score for each residue using an Artificial Neural 

Network, which was  trained to learn the local S-score23 as  the target function16 (i.e. the same target 

function as  ProQ2, described below and in Table 2 was  used, but with d0  set to 3.9). 

 

 
 

6 
 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2017. ; https://doi.org/10.1101/143925doi: bioRxiv preprint 

https://paperpile.com/c/ZO2NJu/zmqI
https://paperpile.com/c/ZO2NJu/Wtvt
https://paperpile.com/c/ZO2NJu/ahEw
https://paperpile.com/c/ZO2NJu/I1qJ
https://paperpile.com/c/ZO2NJu/IzCU
https://paperpile.com/c/ZO2NJu/dGH4
https://paperpile.com/c/ZO2NJu/I1qJ
https://paperpile.com/c/ZO2NJu/0zrG
https://paperpile.com/c/ZO2NJu/PpHn
https://paperpile.com/c/ZO2NJu/dYsE
https://paperpile.com/c/ZO2NJu/I1qJ
https://paperpile.com/c/ZO2NJu/I1qJ
https://paperpile.com/c/ZO2NJu/Jh9i
https://paperpile.com/c/ZO2NJu/zbZY
https://paperpile.com/c/ZO2NJu/I1qJ
https://doi.org/10.1101/143925
http://creativecommons.org/licenses/by/4.0/


Estimation of model accuracy in CASP12 

For global scoring, in the ModFOLD6 variant we simply took the mean local score for each model 

(i.e. the sum of the per-residues  scores  divided by the target sequence length). However in our internal 

benchmarks, using CASP118  and CAMEO32 data prior to CASP12, we realized that simply taking the 

mean per-residue score from ModFOLD6 alone was  not optimal and performance differed depending 

on the intended use case, i.e. selecting the best models  or accurately reproducing the model-target 

similarity scores. Therefore we also exhaustively explored all linear combinations  of each of the 

alternative global scores, in order to find the optimal mean score (OMS) for each major use case16. 

 

ModFOLD6_cor 

The aim of developing the ModFOLD_cor global score variant was  to optimize the correlations  of 

predicted and observed global scores  i.e. the predicted global accuracy estimation scores  produced by 

the method should be close to linear correlations  with the observed global accuracy estimation scores. 

The OMS  for the ModFOLD6_cor global score was  found as: 

ModFOLDclustQ_single_global + DBA_global + ModFOLD6_global)/3 

 where the _global suffix indicates  that the mean local score was  taken for the scoring method 

indicated above.  

 

ModFOLD6_rank 

The aim of developing the ModFOLD6_rank global score variant was  to optimise for the selection of 

the best models  i.e. the top ranked models  (top 1) should be closer to the highest accuracy, regardless 

of the relationship between the absolute values  of predicted and observed scores. The OMS  for the 

ModFOLD6_rank global score was  found as: 

ModFOLD6_rank=ModFOLDclustQ_single_global + ProQ2_global + CDA_global + 

DBA_global + SSA_global + ModFOLD6_global)/6.  

 

 
 

7 
 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2017. ; https://doi.org/10.1101/143925doi: bioRxiv preprint 

https://paperpile.com/c/ZO2NJu/I1qJ
https://paperpile.com/c/ZO2NJu/1fiS
https://paperpile.com/c/ZO2NJu/UMnq
https://doi.org/10.1101/143925
http://creativecommons.org/licenses/by/4.0/


Estimation of model accuracy in CASP12 

Note that the local scores  submitted for each of the three ModFOLD6 variants  were identical and it 

was  only the global scores  (and therefore the ranking of models), which differed between the three 

ModFOLD6 variants. All three of the ModFOLD6 variants  are freely available at: 

http://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD6_form.html 

 

ModFOLDclust2  

The ModFOLDclust2 method33 is  a leading automatic clustering based approach for both local and 

global 3D model accuracy estimation assessment8,34,35. The ModFOLDclust2 server tested during 

CASP12 was  identical to that tested during the CASP9, CASP10 & CASP11 experiments. The local 

and global scores  have been previously described33 and are unchanged since CASP9. Thus, the 

ModFOLDclust2 method serves  as  a useful gold standard/benchmark against which progress  in the 

development of single model methods  may be measured. ModFOLDclust2 can be run as  an option via 

the older ModFOLD3 server 

(http://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD_form_3_0.html). The ModFOLDclust2 

software is  also available to download as  a standalone program 

(http://www.reading.ac.uk/bioinf/downloads/). 

Keasar Group 

We participated in CASP12 with two EMA methods, MESHI-score (implemented by the 

MESHI_server group) and MESHI-score-con (MESHI_con_server), the latter is  a slight variation on 

the former. Below we first present the general scheme, which is  used by both methods, and then 

conclude with the variations  tried in MESHI-score-con. 

 

While preliminary versions  of MESHI-score were used in CASP10 and CASP11, it has  reached 

stability only after CASP1136. The software architecture, however, is  modular, extendable by design, 
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and under continuous  development. Thus, the version that took part in CASP12 was  more advanced 

than the one presented earlier36. 

 

The MESHI-score pipeline (Figure 2) starts  with a regularization step that includes  sidechain 

repacking by SCWRL37,38  and restrained energy minimization (Figure 2 II ). This  step sharpens  the 

quality signal of structural features  by reducing noise, which is  due to peculiarities  of decoy 

generating methods. Features  are extracted from the regularized structures  (Figure 2 III ) and fed to an 

ensemble of 1000 independently trained predictors  (Figure 2 IV ). Each predictor outputs  ( ,a, )si wi  

pair of an EMA score and weight (Figure 2 VI ). The weighted median of this  set of pairs  is  the final 

MESHI-score (Figure 2 VII ). In addition, we also calculate the weighted interdecile range and entropy 

of the pairs  set: 

  entropy (S) = log (P )∑
100

j=1
P j

 
2

 
 j   

where S  is  the set of 1000 ( pairs  and, )si wi  

  ,  ,I (s )P j = ∑
1000

i = 1
Q
wi

j i Q = ∑
1000

i = 1
wi   

And 

  (s)  if f  0.01(j ) .01 j  otherwise I (s) I j = 1 − 1 ≤ s < 0 j = 0  

The larger these numbers  are the less  reliable is  the score, as  they suggest disagreement between the 

predictors. 

 

The feature set that was  used in CASP12 included 82 features  (for details  see 

https://www.cs.bgu.ac.il/~frankel/TechnicalReports/2015/15-06.pdf) 

These features  may be clustered into nine broad categories:  

1. Pairwise energy terms, which represent interactions  between atoms, adopted from the 

literature39–4139–41. 
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2. Compatibility of the decoy secondary structure and solvent accessibility with their PSIPRED42 

prediction. 

3. Standard bonded energy terms  (e.g., quadratic bond term). 

4. Torsion angle terms  (compatibility with Ramachandran plot and rotamer preferences 43)  

5. Hydrogen bond terms 44 

6. Solvation and atom environment terms  that quantify the cooperativity between hydrogen bond 

formation and atom burial. 

7. Radius  of gyration, and contact terms  that quantify the compatibility of decoys  with the expected, 

length dependent, ratios  between the radii of gyration and numbers  of contacts  in different 

subsets  of protein atoms  (e.g., polar and hydrophobic). 

8. Meta-features  that quantify the frustration within decoys  (native structures  tend to be minimally 

frustrated) by considering the distribution of the pairwise and torsion energies  within the decoys. 

9. Combinations  of the above features, which were developed in previous  studies  36. 

 

The predictors  (Figure 2 V ) are nonlinear functions  that get feature vectors  as  an input and output a 

pair of numbers: an EMA score, and a weight that represents  the reliability of the score. The 

parameters  of the predictor functions, as  well as  the subset of features  that they use, are learned by 

stochastic optimization. Each predictor is  trained to minimize a different objective function and thus 

tends  to be more sensitive in a specific GDT_TS  subrange. Scores  within the predictor’s  sensitivity 

region are considered more reliable and thus, have a higher weight. A more detailed description of the 

predictor’s  training may be found in Mirzaei et al36.  

 

MESHI-score-con is  a variant on the MESHI-score theme, which aims  to improve the consistency 

MESHI-score by a post processing step that takes  into account the similarities  between decoys. 

Ideally, after regularization (Figure 2 II ) very similar decoys  should produce similar feature vectors, 

and thus  have similar MESHI-scores. Yet, careful examination of MESHI-score results  indicates  that 
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this  is  not always  the case, and often very similar decoys  have quite different scores. 

MESHI-score-con aims  to alleviate this  problem by improving the agreement between the scores  of 

very similar decoys. To this  end, we associate the MESHI-score of each decoy with a weight, which is 

inversely proportional to the entropy of the score-weight pairs  (Figure 2 VII ). We also associate each 

decoy with a neighbors-set that includes  very similar (GDT_TS  >= 95) neighbors  as  well as  the decoy 

itself. MESHI-score-con is  a weighted average of the decoy’s  MESHI-score and the average score of 

its  neighbor-set. Thus, a low weight decoy (presumably a less  reliable one) with higher weight 

neighbors  is  strongly biased towards  the average score of its  neighbors. Yet the score of a decoy 

without neighbors  is  unaffected regardless  of its  weight. Thus, unlike consensus  methods 

MESHI-score-con may pick an exceptionally good decoy.  

Lee Group  

We participated in CASP12 with two methods, namely SVMQA and quasi-SVMQA (qSVMQA). 

qSVMQA augments  TM-score between GOAL_TS1 and the server model with an appropriate value 

of weight w  to the SVMQA score:  

qSVMQA = SVMQA + w *(TM-score between GOAL_TS1 and the server model).  

The value of w  was  set separately for stage1 models  (0.84) and  for stage2 models  (0.15). We 

determined the optimal value of w  using CASP11 single-domain targets. Below, we briefly describe 

SVMQA and highlight its  results  in the model selection of stage2 targets  in CASP12. 

  

SVMQA is  a support-vector-machine-based protein single-model global QA method. SVMQA 

predicts  the global QA score as  the average of the predicted TM-score and GDT_TS  score by 

combining two separate predictors, SVMQA_GDT and SVMQA_TM. For SVMQA we used 19 

features  (8 potential energy-based terms  and 11 consistency-based terms  between the predicted and 

actual values  of the model) for predicting the QA score (TM-score or GDT_TS  score). Among these 
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Estimation of model accuracy in CASP12 

19 features, 3 features  (orientation dependent energy, GOAP  angular energy and solvent accessibility 

consistency score) were not used in earlier versions, while the other 16 have been used in existing 

methods. The description of each feature along with the selection of the final set of SVM parameters 

and the final set of features  for these two predictors  have been published recently45. In short, 

SVMQA_TM uses  all of the 19 features  to predict TM-score of a given model, whereas 

SVMQA_GDT uses  only 15 features  to predict the GDT_TS  score.  

 

In CASP11, we used our old QA method, RFMQA46. The result of RFMQA on CASP11 targets  was 

quite successful but not as  good as  that of SVMQA on CASP12 targets. Prior to CASP12, we 

benchmarked the performance of SVMQA on CASP11 targets  and compared it to that of RFMQA, 

and we found that SVMQA significantly outperformed RFMQA in terms  of both ranking models  and 

selecting a more native-like model. The major updates  of SVMQA over RFMQA is  as  follow: (i) The 

choice of machine learning method was  different, an SVM (support vector machine) was  used in 

SVMQA while a random forest was  used in RFMQA; (ii) we used CASP8-9 domain targets  as  the 

training dataset for RFMQA, while CASP8-10 domain targets   were used in SVMQA; (iii) 19 input 

features  were used in SVMQA, whereas, only 9 of these features  were used in RFMQA; (iv) The 

objective function to train for RFMQA was  TMloss  (difference between the TM-score of the selected 

model and the best TM-score), while that for SVMQA was  the correlation coefficient between the 

actual ranking and the predicted ranking; and (v) SVMQA used two separate predictors  for TM-score 

and GDT_TS  score, while RFMQA used only a predictor for TM-score. 

Wallner group 

We participated with three EMA methods; ProQ221, Pcomb-domain, and Wallner. 
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Estimation of model accuracy in CASP12 

ProQ2 is  a single model accuracy estimation program based on a linear kernel support vector 

machine trained on a set of structural descriptors  of a model. ProQ2 is  trained to predict the local 

S-score23 : 

(d )Si i = 1

(1+( ) )di
d0

2  

where di  is  the local distance deviation for residue i in the optimal superposition that maximize sum of 

S  over the whole protein, and d0  is  a distance threshold put to 3.0 here. The global score is  the sum of 

local S i  divided by the target length yielding a score in the range [0,1]. Local S-scores, S i, were 

converted to local distance deviation using the formula:  

(S )  di i = d0 * √( )1
Si

− 1  

ProQ2 has  participated in CASP  since CASP10. Before CASP11 we implemented ProQ2 as  a scoring 

function in Rosetta27, enabling scoring and integration in any Rosetta protocol. ProQ2 was  top-ranked 

in both CASP10 and CASP11. This  inspired developers  of novel methods  including  SVMQA, 

MESHI-score and ProQ3. ProQ2 is  further included in several hybrid methods  incorporating ProQ2 

directly for improved model accuracy estimation, laying the foundation for the improvement we see in 

some of the top-ranked methods  in the current CASP12, e.g. Wallner, Pcomb, ModFOLD616 in QA 

predictions, and the BAKERROSETTA-SERVER47 and the IntFOLD4 server for TS  prediction. 

 

Wallner method in this  CASP  is  what was  called Pcomb in earlier CASPs 13,48 that combines  ProQ2 

and Pcons  using the linear combination : 

Pcomb=0.2*ProQ2+0.8*Pcons  

for global prediction20. For local prediction the same formula was  used to calculate weighted local 

S-scores, which then were converted to distances  using the di(S i) formula, described above. 

 

Pcomb-domain  method is  a new domain-based version of Pcomb. Traditionally, consensus  methods, 

including Pcons 1111  (https://github.com/bjornwallner/pcons), have always  used rigid-body 
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superposition for the full-length models, thereby selecting models  that overall have the highest 

consensus, ignoring the fact that smaller domains  from other models  could have higher consensus 

over that region. To try to overcome this  problem we developed a domain-based version of Pcons, 

which uses  an initial domain definition. The domain-based Pcons  scores  were combined with local 

predicted scores  from ProQ2. Two different methods  were used to predict the domain boundaries  of 

the target sequences, the first used the domain definitions  from the Robetta server and the second was 

based on spectral analysis  of the top ranking server models  according to the regular Pcomb method. 

The results  from these two methods  were manually evaluated to decide the final domain boundaries. 

In addition, the Pcons  and ProQ2 scores  were weighted in a slightly different way compared the 

regular Pcomb method; following a parameter optimization based on targets  released in the last two 

editions  of CASP  the relative weight for ProQ2 was  increased to 0.3 resulting in this  formula:  

Pcomb-domain=0.3*ProQ2-domain+0.7*Pcons-domain 

Furthermore, d0  was  increased from 3.0Å to 5.0Å as  it showed improved model selection on CASP11 

data, increasing the d0  shifts  the sensitivity to detect differences  for lower quality (higher RMSD) 

residues. As  for both ProQ2 and Pcons  all predictions  are performed in the S-score space, global 

scores  are sum of local scores, and the local S  scores  are transformed to distances  in the final step, 

using the di(S i) formula above. 

 

Results 

A detailed analysis  of CASP12 EMA methods  is  provided in the accompanying EMA assessment 

paper49. In this  section, we refer to the results  provided in this  paper pertaining to our methods  and 

also perform an additional analysis  based on the correlation between different scores  for different 

types  of methods. 
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Global accuracy estimations  in CASP12 

In the EMA assessment paper49 the accuracy of CASP12 methods  in selecting the best model 

according to the GDT_TS  score is  shown. Three single model accuracy estimation methods  are 

ranked at the top in terms  of identifying the best model with the average error (i.e., difference between 

the GDT_TS  of the selected model and the best GDT_TS) around 5 GDT_TS  units. The individual 

ranking of these methods  depends  on the evaluation criteria and according to the assessment paper49 

the difference between the top methods  is  not significant. The best consensus  and quasi-single 

methods  are only slightly worse than the pure single methods  using these criteria. However, this  is  a 

significant progress  since last CASP. 

 

In the Figure 5 of the accompanying paper49 the ability to distinguish between good and bad models  it 

is  clear that the best methods  use consensus  or quasi-single methods  and combine them with single 

model approaches, at least when using GDT_TS  for evaluation. The top three methods  are using the 

single model method ProQ2 as  part of the their scoring. Wallner and Pcomb-domain scores  are 

weighted sums  of ProQ2 and Pcons  scores, while ModFOLD6_rank uses  ProQ2 together with many 

other scores. Still, even though the top methods  are statistically better49, the much simpler pure 

consensus  methods  Pcons  and ModFOLDclust2 are not far behind ranked 6th and 9th when using 

S-score and even better than ModFOLD6 when using lDDT.  

 

The ability of methods  to rank the top models  for each target was  evaluated using the per target 

correlation, i.e. the correlation of estimated and observed accuracy for each target.  In Figure 3, the 

distribution of per target correlation for the methods  studied here and the three different model 

accuracy estimation measures  are shown. The distributions  are sorted by the median. It can be seen 

that the individual rankings  of the methods  are quite different depending on which accuracy measure 

that is  used. When using GDT_TS 50, consensus  and quasi-single based methods  clearly outperform 
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Estimation of model accuracy in CASP12 

the single model accuracy estimation methods. In contrast when using CAD51 or lDDT52 the best 

correlation is  obtained with ProQ3 and all the top methods  are single model accuracy estimations. A 

similar difference in ranking can be seen in the AUC analysis  on the CASP  homepage 

(http://predictioncenter.org/casp12/qa_aucmcc.cgi). Here, ProQ3 is  ranked 20th when using GDT_TS 

but 7th when using CAD. In contrast Pcons  is  ranked as  4th using GDT_TS  and as  12th using CAD. 

Interestingly, it can be seen that the “pure” consensus  methods  (Pcons, MODFOLDClust2) show only 

a modest per target correlation with CAD or lDDT, see Figure 3. 

 

Comparison of  global accuracy  estimation predictions 

How similar are the different model accuracy estimation scores  produced by the different methods? 

To answer this  we calculated the correlation between predictions  from all methods, see Figure 4, and 

clustered methods  using the Weighted Pair Group Method Centroid (WPGMC) with the median 

correlation as  linkage. It can be seen that all methods  (except qSVMQA) that use some sort of 

consensus  (quasi-single or consensus) are clustered. Within this  group the separation is  primarily not 

between quasi-single methods  and consensus  methods, but rather between the methods  that primarily 

use consensus  and those who combine the consensus  score with ProQ2. Pcomb-domain, 

ModFOLD6_rank, Wallner, and ModFOLD6 all use ProQ2 as  part of their scoring and they all cluster 

together, while ModFOLD6_cor is  more similar to the pure consensus  methods  (Pcons  and 

ModFOLDclust2) than the other combined methods  as  it does  not use ProQ2 global scores  directly in 

its  classification. Since the combined methods  include single methods  they are also more similar to all 

the single methods  than the pure consensus  methods. 

 

Single model accuracy estimation methods  show the largest performance diversity. SVMQA is  the 

least similar to the others, being more similar to the consensus  methods  than to any other single model 

accuracy estimation method. The other three methods  are more correlated, with the newer methods 
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ProQ3 and MESHI showing the highest correlation. It can also be noted that in general ProQ2 is  the 

outlier, showing the lowest correlation with the consensus  methods.  

 

When comparing the three different quality measurements  (GDT_TS, CAD and lDDT) it can be seen 

that they do not correlate with each other better than the correlation between the predicted values  from 

the consensus  methods  and GDT_TS. The correlation between the quality measures  of CAD and 

GDT_TS  is  0.88 while the correlation of the predicted values  from the consensus  methods  show a 

correlation to the GDT_TS  values  of 0.92 or higher, see Figure 4. As  mentioned above some of the 

problems  might origin from domain division, but it is  clear that the model quality estimation accuracy 

is  rivaling the ability to accurately measure the true quality of a model. 

 

Local accuracy estimation in CASP12 

In terms  of estimation of local accuracy, the best performance is  obtained by the pure consensus 

methods  followed by quasi-single model approaches 49. In Figure 5 a heat map of the correlation 

between all local predictions  by the methods  discussed in this  paper is  shown. Unfortunately, of the 

single predictors  evaluated here only ProQ2 and ProQ3 produce local predictions, nevertheless  the 

trend is  similar as  for the global methods. All the consensus  and quasi-single methods  provide very 

similar accuracy estimates, while the two single model methods  are outliers. It is  clear from this 

analysis  that the consensus  methods  correlate better with S-score (cc~0.85 vs   ~0.65 for the ProQ 

methods) but less  so with lDDT (cc 0.77 vs. 0.71). As  the consensus  methods  are based on a 

superposition algorithm this  might not come as  a surprise.  Interestingly both ProQ2 and ProQ3 

correlate better with lDDT than with S-score. It can also be noted that ProQ3 correlates  better than 

ProQ2 with both lDDT and S-score, highlights  the improvements  made in single model quality 

estimates  since CASP11. 
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Discussion 

For the first time single model quality estimators  can challenge the consensus  based methods  when it 

comes  to ranking of targets. However, the consensus  based estimators  are still superior when it comes 

to local quality estimation, at least when using the CASP  defined criteria. Below we will continue the 

CASP  style of presentations  by summarizing what each group learned during CASP12.  

What the Elofsson group learned 

An interesting trend in CASP12 is  that ProQ3 is  better than our consensus  method, Pcons, at picking 

up the best model  (see EMA assessment paper49). In earlier CASPs  this  was  not the case and until 

CASP10 it was  clear that consensus  based methods  were superior even in this  aspect. We do believe 

that the main reason for this  is  that single model accuracy estimation methods  have improved in the 

last few years. 

 

However, still consensus-based methods  such as  Pcons  are superior at separating correct and incorrect 

models 49. Interestingly, when using CAD, ProQ3 performs  slightly better than Pcons  even on this 

measure, see Figure 3, indicating that some part of the superior performance of consensus  methods 

might be due to multi-domain properties  of the targets  or the choice of target function. 

 

One issue at CASP  is  that the definition of the target function for local prediction used in CASP  might 

not be ideal. The goal is  to predict the error in distance for a particular residue. However, this  is 

dependent on the superposition used, which can be problematic for multi-domain targets. It could 

therefore be useful in future CASPs  to consider changing the target function to one of the 

non-superposition based quality evaluations, such as  CAD or lDDT. The stated goal in CASP12 is  to 

predict the distance after superposition and for this  consensus  methods  are better. However, the 
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performance of ProQ3 is  getting closer to the performance of the consensus  methods  when using 

lDDT for model quality estimation, see Figure 3 and 5. 

What the Keasar group learned 

The major rationale behind the design of MESHI-score pipeline (Figure 2) is  to keep the feature set 

painlessly extendable. To this  end we employed an ensemble-learning scheme, in which the feature 

selection is  part of the training of each predictor (i.e. ensemble member). This  way each feature has  a 

“fair chance” to be included in some of the predictors  and provide its  unique contribution to the 

overall score. Overfitting at the single predictor level is  avoided by restricting the number of selected 

features. Combining the set of predictor scores  to form the single ensemble score (MESHI-score) does 

not require any adjustable parameters  and thus, does  not introduce overfitting at the ensemble level. In 

this  experiment we put to test the modularity of our ensemble learning approach. Indeed, in this 

experiment we were able to get better results  than before, simply by adding more features  to the same 

machinery, with neither considerable computational burden nor overfitting. This  encourages  us  to 

work on the development and adoption of more informative features. 

 

In CASP12 we also tested MESHI-score-con for the first time, and its  performance was  a bit superior 

to that of MESHI-score. We take this  as  a proof of concept and wish to extend it in two directions: 

have a data-driven less  restricted definition of the neighbors  set, and apply the same idea also to 

decoys  of high score. High scores  to two dissimilar decoys  must imply that at least one of them (often 

both) is  wrong. 
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What the Lee group learned 

According to the CASP12 assessment, SVMQA is  one of the best methods  for selecting good quality 

models  from a set of given decoys  in terms  of GDT-LOSS. The newly implemented features  (five 

potential energy-based terms  and consistency-based terms 45) a systematic benchmarking approach on 

the selection of the final set of features, the optimization of machine learning parameters  on a 

balanced training and testing dataset, and the usage of two separate predictors  made SVMQA to 

perform significantly better than our old method used in CASP11 (RFMQA) when benchmarked on 

CASP11 targets. Additionally, SVMQA made valuable contribution to our tertiary structure 

prediction server (GOAL) and human predictors  (LEE and LEEab) of CASP12 in terms  of model 

selection. In terms  of the model selection, SVMQA performed well, however, in term of assigning 

proper absolute global accuracy value to a model it didn’t perform as  desired49. We believe that one 

way to improve on estimating the absolute score of a given model is  to consider other types  of 

objective functions  to train separately for absolute global accuracy, which is  one of the goals  that we 

should work on for the next CASP. 

What the McGuffin group learned 

The ModFOLD6 series  of methods  (ModFOLD6, ModFOLD6_rank and ModFOLD6_cor) perform 

particularly well in terms  of assigning absolute global accuracy values. As  expected the 

ModFOLD6_cor variant is  the best of these as  it was  optimised for this  task. The ModFOLD6 series 

of methods  also perform competitively with clustering approaches  for differentiating between good 

and bad models; the ModFOLD6_rank method being the best of these, which is  only outperformed by 

two clustering groups  (Wallner and Pcomb-domain). Furthermore, as  we anticipated, the 

ModFOLD6_rank variant is  better at selecting the top models  than the ModFOLD6 and 

ModFOLD6_cor variants, however it is  outperformed by the latest pure-single model methods. 
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Overall, in terms  of global scores, the ModFOLD6 variants  rank within the top three methods  for 

nearly every global benchmark according to lDDT and CAD scores, as  well as  ranking within the top 

10 according to other scores. 

 

It is  gratifying to see progress  in CASP12 from many groups  in both pure-single and quasi-single 

model approaches  to estimate model accuracy. However, it is  also clear there is  still room for 

improvement of our methods. For instance, we are outperformed in terms  of model selection by the 

newer pure single model methods.  Further integration of methods  is  probably needed. Different 

methods  are clearly better suited for different aspects  of model accuracy estimation, therefore all 

approaches  to the problem are still important to pursue. Perhaps  the most difficult problem faced by 

all groups  is  how to optimize a global score for all aspects  of model accuracy estimation, as  there 

seems  to be no one-size-fits-all solution presently. One potential solution to this  might be to use a 

deep learning approach that outputs  multiple scores  depending on the intended use case. A global 

score for ranking models  on a per-target basis, irrespective of the observed model-target similarity 

scores, is  clearly very useful, if it can consistently select the better models. On the other hand a global 

score that can produce a near 1:1 mapping between predicted and observed scores, that is  consistent 

across  all targets, will allow us  to assign accurate confidence scores  to individual models  (which is 

arguably more useful to an experimentalist than a top ranked, but nevertheless  poor quality, model). 

Of course, as  model accuracy estimation methods  continue to improve and approach perfect 

optimisation for each use case, eventually the scores  will converge on a single answer. 

What the Wallner group learned 

Wallner and Pcomb-domain were the top two best method for differentiating between good and bad 

models  (see assessment paper49). We were disappointed with the performance of Pcomb-domain, 

since in our benchmarks  before CASP  it would perform significantly better than Wallner.  However, 

the true advantage of Pcomb-domain can only be seen if the assessment is  performed based on 
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domains  or using superposition independent evaluation measures  like lDDT52 and CAD-score51,52. We 

calculated the per residue correlation of local predicted S-scores  transformed using S-score formula 

(see above) based on either full-length target or target domains  (Figure 6). For full-length assessment, 

methods  based on global structural superposition (Wallner, Pcons, and ModFOLDclust2) for single 

domains  are indeed superior. Also the performance based on multi-domain targets  seems  to be better 

for these methods  (Figure 6a). However, the reason for this  seemingly good performance for 

multi-domain targets  is  an artifact of the full-length assessment on multi-domain proteins  that will 

only superimpose on one domain, if the domain-domain orientation is  wrong. In effect, assigning high 

quality scores  to the residues  from one domain (usually the larger), and relatively low quality scores 

to the residues  from other domains. This  effect accentuates  the performance for prediction methods 

using global superposition, which will also predict high quality scores  for one domain and low scores 

for the others. If instead performance is  measured using the official CASP  domain definitions, this 

artifact can be avoided, and then Pcomb-domain performs  better for multi-domain targets, and better 

than other methods  when it uses  a correct domain prediction (Figure 6b). Unfortunately, correct 

domain prediction was  only achieved for 6 out of 21 multi-domain targets. Still, it pinpoints  that there 

should be clear room for improving Pcomb-domain by improving the domain prediction algorithm. 

Conclusions 

It is  our belief that the most important insight from the QA groups  in CASP12 is  the progress  in single 

model accuracy estimations. Three new methods, SVMQA, MESHI and ProQ3, are all better than the 

best single model method in CASP11 (ProQ2).  It is  now clear that these methods  are best at selecting 

the top-ranked model. However, quasi-single method and consensus  methods  are still superior when it 

comes  to distinguishing correct and incorrect models  and for local predictions. In those targets  that 

have a wide spread of quality there is  a clear distinction between the correlations  of single and 

consensus  methods  with the later performing better. These are typically subunit of protein complexes, 

for which templates  are available. Here, estimating the accuracy of a single model might not make 
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sense without taking the entire complex into account.  In CASP12 this  is  most dramatic with target 

T0865, where correlations  for consensus  based methods  are high and correlations  for all single model 

methods  are negative. By comparing the predictions  to each other it is  seen that all consensus  and 

quasi-single methods  actually are very similar, while there is  larger variation between the single 

methods, i.e. combining them might provide additional value in the future.  

 

During this  evaluation we noted issues  for the multi-domain targets  where predictors  are successful at 

modeling the individual domains  but not their relative arrangement. Here, the GDT_TS  score (and any 

superposition based score) is  based on the superposition of the largest domain. For CASP  in general 

this  has  not been a problem as  the evaluation is  domain based, but for estimation of model accuracies 

the task is  to evaluate the quality of an entire model and not of domains, as  the domain division is  not 

known at the time of predictions. This  is  most notably when evaluating local quality assessments. It 

could therefore be useful in future CASPs  to consider changing the evaluation function for estimations 

of model accuracy to one of the non-superposition based quality evaluations, such as  CAD51 or 

lDDT52. Interestingly, when studying per target correlation single model estimations  methods  perform 

relatively better when assessed with CAD or lDDT compared to using GDT_TS, see Figure 3 and 5. 

Probably for the same reason, the difference between consensus  methods  and single model estimation 

methods  is  smaller in domain-based than in full-length assessment, see Figure 6. 
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Figure Legends 

Figure 1: Flowchart outlining the principal stages  of the ModFOLD6 server prediction pipeline. The 

initial input data are the target sequence and a single 3D model. The output data are the 

local/per-residue scores  from the ModFOLD6 NN and the global score variants  - ModFOLD6, 

ModFOLD6_rank and ModFOLD6_cor. The ModFOLD6 pipeline is  dependent on the following 

methods  PSIPRED42, DISOPRED53 and MetaPSICOV54. 

 

Figure 2: The MESHI-score pipeline starts  with a regularization step that includes  sidechain 

repacking by SCWRL37,38  and restrained energy minimization. Features  are extracted from the 

regularized structures  and fed to an ensemble of independently trained predictors. Each predictor 

outputs  a pair of values: an EMA score and weight, and the weighted median of this  set of pairs  is  the 

final MESHI-score.  

 

Figure 3: Boxplots  of per target correlation for the methods  presented in this  paper for GDT_TS, 

CAD, and lDDT, (a)-(c) global evaluations, (d)-(e) local evaluations. To avoid bias  from bad models 

only models  with Z>0 are included in the global analysis. Single methods  (blue), quasi (green), 

clustering (light grey)2 and combination models  (dark grey). It is  clear that using GDT_TS  the 

consensus  based methods  are slightly better than the single-model predictors, while this  is  not the case 

using alternative measures. Clustering methods  benefit a lot from having low quality models  in the 

pool while the single model methods  appear better at ranking higher quality models. For local 

correlation CAD values  were not available so only the distances, turned into S-scores, and lDDT 

values  are compared. Here, for both measures  the single evaluation methods  are less  good than the 

superposition based ones, but the difference is  smaller when using lDDT. 
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Figure 4: Pairwise correlations  between predicted global accuracy scores  from different  methods  and 

actual accuracy scores  according to three measures. The methods  are clustered hierarchically using 

WPGMC algorithm with the median correlation as  similarity measure. Methods  are colored as 

follows. Dark grey - pure consensus  methods, light grey - combined single/consensus  methods, green 

- quasi-single methods  and blue pure single methods. It can be noted that (i) both quasi, pure and 

combined consensus  methods  are very similar (cc>0.94), while the single model quality methods  are 

more different (cc<0.90 between the groups). ProQ2 is  the real outlier only having a cc>0.82 to ProQ3 

and the consensus  methods  that uses  ProQ2 as  a part of their score. In fact ProQ2 and ProQ3 are less 

similar to each other than any pair of consensus  based methods. It can also be noted that the combined 

methods  are more similar to the single-model methods  than the pure consensus  methods  (Pcons, 

ModFOLDClust2).  

 

Figure 5: Pairwise correlation between local predicted S-scores  calculated from the predicted distance 

using S-score formula (see above) with d0=5 and local lDDT values  (unfortunately local CAD scores 

were not available). Only methods  that predicted local quality are included. As  the ModFOLD6 

methods  only differ in their global scores  and provide identical local estimates  they were all 

represented by the ModFOLD6 method. Methods  are colored as  follows. Dark grey - pure consensus 

methods, light grey - combined single/consensus  methods, green - quasi-single methods  and blue pure 

single methods.  

 

Figure 6: Per residue correlation of local predicted S-scores  transformed using S-score formula with 

d0=5; based on full-length targets  (A) and target domains  (B) for selected methods  and targets  divided 

into multi and single domain targets. For full-length assessment methods  based on superposition are 

superior. However, Pcomb_domain performs  better than other methods  when (and only when) it gets 

the domain prediction correct.  
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Tables 

 

Table 1. Summary of the best performing QA methods  in CASP12 and comments  about their strength 

and weaknesses. Methods  basically identical have been merged 

 

Methods Type Comment about Global 
performance 

Comment about Local 
Performance 

MESHI36  Single Top model selection  N/A 

MESHI_con36  Single* Top model selection  N/A 

ProQ221 Single Good model selection  Acceptable local scores 

ProQ317 Single Top model selection  Good local scores 

SVMQA 45 Single Top model selection  N/A 

ModFOLD616 Quasi-single Balanced performance 
 

Good assignment of local scores 

ModFOLD6_rank16 Quasi-single Acceptable model selection Identical to ModFOLD6 

ModFOLD6_cor16 Quasi-single Best absolute but suboptimal 
model selection  

Identical to ModFOLD6 

qSVMQA 45 Quasi-single Assignment of the absolute 
score is  not accurate. 

N/A 

ModFOLDclust225 Clustering Good assignment of absolute 
global scores  but suboptimal 
model selection 

Top assignment of local scores 

Pcons 11 Clustering Good assignment of absolute 
global scores 

Top assignment of local scores 

Pcomb-domain13 Combined Good assignment of absolute 
global scores, requires  good 
domain prediction 

Top assignment of local scores 

Wallner  Combined Good assignment of absolute 
global scores 

Top assignment of local scores 

* = MESHI_con is  not pure single methods  but requires  multiple models  to average the predictions 
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Table  2. Description of  the evolution  of  ProQ  methods used  in CASP  and their relative 

performance. 

Method Major Novelty Correlation 
global/local 

ProQ6 First method trained to predict “quality” of 
a model. Using a combination of structural 
descriptions  and agreement with predicted 
secondary structure. 

0.71A/- 

ProQres 20 Predicting local  qualities  - global quality is 
sum of local quality. 

-/0.56B 

ProQ221 Global agreement with predicted RSA and 
SS  plus  profile weighting. Uses  a linear 
kernel SVM. 

0.80/0.71B  
0.84/0.72C 

ProQ317 Added rosetta energies  to the inputs. 0.87/0.74C 

ProQ3D18 Linear kernel SVM is  replaced by a 
two-layer perceptron. 

0.91/0.77C 

A  from original ProQ  publication 6 
B  from ProQ2 publication 21  
C  on CASP11 dataset trained on CASP9 and CASP10 
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Figure 2.  
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Figure 3:  

Global Correlations 

(a) (b) (c)  

Local Correlations 

(d) (e) 
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Figure 4: .
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Figure 5:  
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Figure 6: 

A) B) 
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