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Abstract   

Genome sequences for hundreds of mammalian species are available, but an understanding of 
their genomic regulatory regions, which control gene expression, is only beginning. A 3 

comprehensive prediction of potential active regulatory regions is necessary to functionally 
study the roles of the majority of genomic variants in evolution, domestication, and animal 
production. We developed a computational method to predict regulatory DNA sequences 6 

(promoters, enhancers and transcription factor binding sites) in production animals (cows and 
pigs) and extended its broad applicability to other mammals. The method utilizes human 
regulatory features identified from thousands of tissues, cell lines, and experimental assays to 9 

find homologous regions that are conserved in sequences and genome organization and are 
enriched for regulatory elements in the genome sequences of other mammalian species. 
Importantly, we developed a filtering strategy, including a machine learning classification 12 

method, to utilize a very small number of species-specific experimental datasets available to 
select for the likely active regulatory regions. The method finds the optimal combination of 
sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. 15 

Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for 
prioritizing variants associated with multiple production and climate change adaptation traits, 
and identifying potential genome editing targets.  18 
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Background 

Predicting functional features of the genome beyond protein-coding regions has been the 
primary focus of the post-genome sequencing era [1, 2]. More than 90% of common genetic 3 

variants associated with phenotypic variation of complex traits are located in intergenic and 
intronic regions that regulate gene expression but do not change protein structure [3-5]. 
Moreover, SNPs associated with diseases such as autoimmune diseases, multiple sclerosis, 6 

Crohn’s disease, rheumatoid arthritis, and type one diabetes are strikingly enriched in 
promoters and enhancers [4, 6, 7]. Annotation of functional regions of the genome that 
harbour SNPs identified by genome-wide association studies (GWAS) to be significantly 9 

associated with variation in phenotype will contribute to the identification of functional SNPs 
and causative mutations, thereby suggesting genetic targets and markers for numerous 
applications in human health care and agricultural livestock production [8-11].  12 

However, in mammalian species other than human and mouse, there is little data available at 
the genome level for discovery of regulatory elements. The recently established Functional 
Annotation of ANimal Genomes (FAANG) consortium has begun to address this deficiency 15 

in a coordinated fashion [12, 13]. It is expected that core assays identifying regulatory 
elements for key tissues in a number of production animals will be produced by the FAANG 
consortium and collaborators. However, the information generated in the foreseeable future 18 

for livestock is likely to remain far less comprehensive for coverage of tissues, sampling 
conditions and breadth of annotation of regulatory elements compared to human and mouse. 
The deficiency in the genome-wide prediction of regulatory elements is far greater for most 21 

other mammalian species. We have developed a computational method to utilize thousands of 
human regulatory datasets to predict regulatory elements in important mammalian species. 

Transcriptional regulatory DNA elements (RDEs) are defined as genomic regions that are 24 

binding sites for one, or usually a combination of, transcription factors (TFs) and 
transcriptional coregulators [14-16]. Across distant species from C. elegans to D. 
melanogaster to humans, the architecture of gene regulatory networks, organization of 27 

chromatin topological domains, chromatin context at enhancer and promoter regions, and 
nucleosome positioning are remarkably conserved [17, 18]. For example, the majority of co-
associations of transcription factors (i.e. combinations of different transcription factors 30 

binding to the same genomic region) at proximal transcription start site regions in human 
remain proximal in worm (80 %) and fly (100 %). Large-scale comparisons between humans 
and mouse (M. musculus) in the ENCODE project found a high level of conservation of 33 

binding motifs and activities, including: TF binding to different chromatin states (r = 0.9), 
proportion of enhancers in TF binding regions (r = 0.7), DNA methylation preferences within 
TF occupied regions (hypomethylated regions in both species), and TFs sharing conserved 36 

primary binding motif sequence (~94% of studied TFs) [19]. The human ENCODE, 
FANTOM, ROADMAP and related projects have generated large volumes of data relevant to 
the identification of promoters, enhancers and other RDEs [6, 20, 21]. However, these data 39 

have not been utilized for predicting regulatory genomic regions in other mammalian species 
– a strategy that can produce more comprehensive predictions than alternative options using a 
small set of experimental assays to identify a part of the regulatory repertory in the targeted 42 

species. We recognise that species specific regulatory elements may be underrepresented in 
this process. However, we note that the fundamental biology of, for example, that 
encompassing developmental programs, response to stimuli, reproduction, energy 45 

homeostasis, and many other systems show considerable conservation of components and 
processes across species [17, 19, 22]. 
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In the current research, we developed the Human Projection of Regulatory Regions (HPRS) 
method to utilize results from thousands of biochemical assays in human samples to 
computationally predict equivalent information in other mammalian species. The method 3 

exploits the conservation of regulatory elements at the DNA sequence and genome 
organizational levels to map these elements to other mammalian species. It then uses species-
specific data to filter these mapped sequences, which are enriched for regulatory sequence 6 

features, to predict a set of high confidence regulatory regions. We selected cattle as the 
target species to build the HPRS pipeline and then used the pig as a test species to validate 
the pipeline. The two species are important agricultural ruminant and non-ruminant species, 9 

respectively, with genomes sequenced but with little information available about genomic 
regulatory regions [12]. We also applied the method to the genomes of eight additional 
mammals. We demonstrated that the predicted regulatory dataset produced by the HPRS 12 

pipeline is useful for selecting more likely functional SNPs before (e.g. for SNP chip design) 
and after (e.g. for prioritising significant SNPs) GWAS analysis, genomic prediction models, 
and the understanding of biological mechanisms underlying non-coding genomic variant 15 

effects to potentially identify regulatory targets for genome editing. 

 

Results and Discussion 18 

A pipeline for the projection of human genomic features to other mammals 

The four key elements of the HPRS pipeline (Fig. 1) include: (1) selection of suitable 
regulatory datatypes (biochemical assays) and tissues in humans; (2) mapping the selected 21 

features to the target species by utilizing conservation of genome organization and sequence 
identity to maximize coverage without compromising specificity; (3) first round filtering of 
the mapped regions to retain high-confidence mapped features, which had strict one to one 24 

forward and reciprocal mapping and where human features have multiple mappings to the 
target genome keeping only those with high sequence identity, and; (4) second round filtering 
by applying a pipeline to utilize available (often limited in scale and coverage) species-27 

specific data to prioritize regions likely to be functional in the target species.  

Optimizing parameters for mapping sequence features across genomes 

To identify regions that were likely to be orthologous between genomes we deployed the 30 

liftOver tool [23] and the precomputed alignment files available from the UCSC to map 
regulatory regions in the human genome to the cattle genome based on sequence similarity 
and genome location. First, we optimized the minMatch mapping threshold of the liftOver 33 

tool, which is the minimum proportion of bases to the total length of a region mappable to 
contiguous aligned segments in the target genome. The minMatch parameter was thoroughly 
tested with a range from high stringency 0.95 down to 0.1 (Fig. 2). The minMatch parameter 36 

values were assessed using seven diverse datasets (Fig. 2, Table 1).  

The percentage of regions mappable to the target genome was compared to the total number 
of elements in the human regulatory databases (Fig. 2a). For cattle, mappable regions were 39 

defined as: 1) a small sequence segment (SSS) that can be mapped from the human to the 
bovine genome; 2) the resulting SSS can be mapped back (reciprocally mapped) from the 
bovine to the human genome; and 3) the boundaries of the reciprocally mapped SSS were 42 

within 25 bp of the boundaries of the original SSS in the human genome.  
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In all five enhancer datasets tested as shown in the Fig. 2a, the ratio of mapped regions 
increased steadily when the minMatch parameter was reduced from 0.95 to 0.55, with a much 
slower increase when the minMatch was reduced from 0.55 to 0.10 (Fig. 2a). The accuracy of 3 

the sequence projection was assessed as the percent of mapped regions that overlapped with a 
feature present in a reference cattle liver enhancer dataset, identified experimentally by 
histone 3 lysine 27 acetylation (H3K27Ac - a marker for active enhancers) and histone 3 6 

lysine 4 trimethylation (H3K4me3 – a marker for active promoters near transcription start 
sites) assays (hereafter referred to as the Villar reference datasets) [22] (Fig. 2b). The 
coverage of the relevant reference datasets (Villar reference promoters, Villar reference 9 

enhancers and UCSC exons) also increased when the minMatch was reduced for some, but 
not all databases (Fig. 2b). Importantly, the reduction in mapping threshold did not lead to a 
loss of specificity, which is defined as the percentage of predicted enhancers that matched 12 

Villar reference enhancers (true positive for the reference dataset) compared to the total 
number of enhancers predicted using the particular input dataset (Fig. 2c). The combined 
results shown in Fig. 2a and Fig. 2b suggest that reducing minMatch to lower than 0.55 still 15 

increases (at a slower rate) the number of mapped regions (for the ROADMAP, ENSEMBL, 
FANTOM and ENCODE datasets – Fig. 2b) and increases the chance of detecting more 
reference enhancers (for the ROADMAP, ENSEMBL and ENCODE datasets (Fig. 2a). No 18 

significant difference was observed when lowering the minMatch from 0.2 to 0.1, but a slight 
gain in the percent of mappable regions was obtained when decreasing the minMatch from 
0.3 to 0.2. Therefore, the parameter testing indicated that the optimal minMatch threshold 21 

was 0.2.  

We also developed the method to detect regions possibly from gene duplication events 
(Supplementary Methods). To identify regions possibly resulted from duplication events (Fig. 24 

S1a), the HPRS mapping pipeline pooled unmapped regions in the human datasets (with 
minMatch=0.2) and mapped regions with no exact reciprocal matches for a second round 
mapping with different parameters (allowing multiple mappings and keeping only results 27 

with similarity higher than 80%) to rescue regions with multiple map targets. 

Optimised use of human regulatory datasets 

Regulatory regions can be active or quiescent, depending on the cell type and the biological 30 

state, and therefore prediction using a single tissue/cell line, or a single assay type, is unlikely 
to produce a high coverage of all possible regulatory sequences of a species [24]. Therefore, 
we investigated the effect of using different databases on the predictive capacity of HPRS. 33 

First, we compared the mapping coverage of enhancers from 42 human ROADMAP datasets 
[21] to the reference liver enhancer datasets, which were experimentally identified (by 
H3K27Ac assay for liver tissues) for 10 mammalian species reported in Villar et al. [22] (Fig. 36 

3a, 3b and Tables 1 and 5). Figure 3a shows the percentage of Villar reference enhancers (e.g. 
enhancers detected in liver tissues in cat) that overlap with HPRS predicted regions by 
mapping each of the original 42 human tissues to the targeted species (e.g. to the cat 39 

genome). Figure 3b shows the percentage overlapping with the results from using the 
combined 42 tissues. Comparing results from each tissue, or from combined tissues in each 
species, enabled assessment of variation due to evolutionary distance or tissue specificity. 42 

Second, we evaluated the predictions from human to bovine based on different datatypes, 
including: promoter databases (FANTOM), enhancer databases (FANTOM and 
ROADMAP), and transcription factor binding site databases (ENCODE proximal and distal 45 

TFs) (Fig. 3c, 3d). Each of the datatypes has unique sequence features that define different 
types of regulatory regions, for example those that are specific for promoters or enhancers. In 
general, species with closer evolutionary distance to humans had more HPRS predicted 48 
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enhancers matching the relevant Villar reference liver datasets (Fig. 3a). For each tissue, the 
relative mapping rates were similar between species. Between different tissues across the 42 
ROADMAP datasets, thymus enhancers having the lowest mapping rate and liver enhancers 3 

the highest mapping rate in most species (Fig. 3b).  Notably, the tissue specificity effect, 
exemplified by the higher mapping rate for ROADMAP liver datasets to the relevant species 
Villar reference datasets than for other ROADMAP tissues (Fig. 3b), was reduced 6 

substantially if the two primates more evolutionarily related humans (macaque and 
marmoset) were removed from the comparison. 

Since the coverage of the reference cattle liver enhancer dataset was not significantly 9 

higher with human liver enhancers, than with enhancers from many of the other human 
ROADMAP tissue enhancer datasets [21], we asked whether combining tissues would 
increase coverage. By combining the predictions from the 42 ROADMAP datasets, 2 to 4-12 

fold higher coverage could be obtained than from one tissue alone (at least 60% total 
coverage) across a variety of species could be obtained, with coverage lowest for rat and 
highest for macaque (Fig. 3a, b). Furthermore, we found that separate databases constructed 15 

using different models and biochemical assays were complementary, and combining them 
significantly increased coverage compared with a single database alone (Fig. 3c, d). For 
example, prediction using the ENCODE distal TF dataset and the ROADMAP enhancer 18 

dataset covered the highest number of Villar cattle reference enhancers, while prediction 
using the FANTOM promoter and the ENCODE proximal TFBS databases covered more 
Villar cattle reference promoters, and each dataset could add a number of unique regulatory 21 

regions not found in other datasets (Fig. 3c, d). The combination of 88 ROADMAP datasets 
[21], the FANTOM enhancer and promoter datasets [25], and the ENCODE distal and 
proximal TF datasets [26] generated a maximum enhancer coverage of 95% (for macaque) 24 

and promoter coverage of 98% (for marmoset). Therefore, we selected an optimal 
combination of human input databases for the HPRS pipeline on the basis that they represent 
promoters, enhancers and TFBSs from a large combination of human tissues and primary 27 

cells and were generated by different methods (Table 1).  

Predicting promoters 

One of the most comprehensive human promoter datasets is the FANTOM5 promoter atlas 30 

generated experimentally by CAGE data from almost one thousand tissues and cell lines [20]. 
CAGE is a sensitive methodology for the detection of transcription start sites (TSSs) and 
hence defines core promoter regions where there is binding of the transcriptional machinery 33 

[27]. Promoters generally have a high concentration of TFBSs, typically within 300 bp 
upstream and 100 bp downstream of the TSSs [20]. Promoter sequences are more 
evolutionarily conserved than enhancer sequences, and therefore a larger proportion can be 36 

mapped from human to other mammal genomes [22].  

Of 201,802 CAGE transcription initiation peaks in the FANTOM5 human promoter 
atlas [20], 154,377 (76.5% of the total) were mappable to the bovine genome (Table 2). The 39 

HPRS using CAGE predicted new TSSs not present within the existing bovine genome 
annotation (Ensembl Build 85). Although a promoter dataset for cattle can be inferred by 
defining upstream sequences of genes with annotated TSSs, this indirect inference results in a 42 

small number of promoters. Approximately 26,740 cattle genes (coding, lncRNAs, miRNAs 
etc.) in the reference dataset used (Ensembl Build 85) have annotated TSSs. This dataset is 
far from comprehensive because the expected underrepresentation of non-coding genes and 45 

of alternative promoters (AP). The one gene-one promoter and one gene-one protein concepts 
are no longer appropriate to describe the diverse transcriptome [28]. AP are common and are 
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functionally important. A number of APs were found associated with complex traits [29].  
While 51% of the Ensembl cattle TSSs are covered by mapped human CAGE transcription 
initiation peaks (3.7 Mb),  only 38.4% are covered by the  experimentally defined promoters 3 

(32.9 Mb) in Villar et al. [22], suggesting that HPRS predictions based on human CAGE data 
could enrich promoter coverage in the cow by more than 12 times compared to the standard 
promoter assay (H3K4me3 ChIP-Seq) (Table 2). Active TSS regions from 88 human tissues 6 

in the ROADMAP were mapped to 81,892 putative promoters in cattle [21], with a total 
length of 135.6 Mb. Noticeably, the average number of Ensembl reference TSSs overlapped 
to every 1 Mb of predicted promoters based on the ROADMAP database was 37-fold lower 9 

than those based on the CAGE database (Table 2). 

HPRS using the CAGE dataset can predict many TSSs at single-nucleotide resolution 
and can accurately predict transcriptional orientation. TSSs are presented in the Ensembl 12 

database as single nucleotide genomic positions. HPRS predicted promoters based on CAGE 
had exact overlap to the 7,191 Ensembl TSSs for cattle. While promoter prediction by using 
histone marks (such as those used by ROADMAP) cannot directly define transcriptional 15 

orientation, this information predicted by HPRS using human CAGE data is highly accurate 
[20]. Consistently, we found that of 13,676 genes that have TSSs within 500 bp of mapped 
CAGE peaks, 96.9% (13,257) genes had the same transcriptional orientation in the Ensembl 18 

annotation and predicted by human CAGE data. We therefore assigned promoter orientation 
using the predictions from the CAGE dataset.  

Mapping enhancer datasets 21 

Prediction of enhancers is likely to be more challenging than predicting promoters because: 
1) enhancers are less conserved in DNA sequence; 2) enhancer locations evolve faster [19, 
22], and 3) enhancer effects are usually independent of the distance, orientation, and relative 24 

location (upstream or downstream) of gene targets [14]. To predict a broad set of sequences 
in a species that are active in one or more tissues or conditions, we expanded the human 
enhancer datasets to include: 88 tissues, primary cell lines and primary cell cultures generated 27 

by the ROADMAP project [21] (Table 1); all human active enhancers defined by CAGE data 
from hundreds of tissues and cell lines in the FANTOM project [6], and; all the Villar 
experimentally defined reference cattle liver enhancers [22] (Table 1). Cumulatively, the 30 

HPRS pipeline mapped over 9.1 million human enhancer sequences to over 5.9 million 
regions in the bovine genome, which were then merged into 542,756 non-overlapping regions 
(Table 3). The merged dataset (Universal Dataset) covered 86% (excluding merged regions 33 

resulting from the original Villar reference enhancers) of the Villar enhancer reference 
dataset (Table 3). The term “Universal” reflects the initial pooling of all relevant human 
regulatory datatypes and datasets to form a large collection of genomic regions to be mapped 36 

to the target species. Regulatory sequences are often active in certain conditions, and remain 
inactive in most other cases. Therefore, pooling active regulatory regions from a large 
number of datasets can likely cover most active and inactive regulatory sequences, thus 39 

enabling the prediction of a Universal Dataset.  

The HPRS mapping of the enhancer datasets predicted a large set of homologous 
regions that are potentially regulatory regions in cattle (the Universal Dataset). We noted that 42 

alignability of DNA sequence does not automatically imply functionality [22], and therefore 
we applied a filtering pipeline to incorporate other types of cattle-specific data to prioritize 
regions more likely to have transcription regulation functions. The filtering pipeline used a 45 

combination of sequence features and epigenetics marks to enrich for likely regulatory 
enhancers and promoters, as discussed in the filtering section.  
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Mapping transcription factor binding site datasets 

To include potential regulatory regions beyond typical promoter and enhancer classifications, 3 

we performed HPRS mapping of human experimentally defined ENCODE TFBSs (ENCODE 
annotation version 2) to the bovine genome. The ENCODE TFBS database contains binding 
sites for 163 key TFs, some of which represent additional types of regulatory regions other 6 

than enhancers and promoters [30] (Table 1). The use of these TFBS datasets not only 
supported predictions from using the enhancer and promoter datasets, but more importantly 
added other regulatory categories into the combined prediction of regulatory regions. For 9 

example, the binding targets of the CCCTC-binding factor (CTCF) are likely insulator 
regions [31], while enhancer of zeste homolog 2 (EZH2) binding sites may mark polycomb 
repressor complex 2 (PRC2) regions [32]. These ENCODE TFBSs were identified as binding 12 

regions of TFs to nucleosome free regions (~151 bp per region), which are more biologically 
relevant than de novo scanning of genome sequence for TFBSs based on short position 
weight matrices (PWMs, typically 6-12 bp) because the later method only uses DNA 15 

sequence and does not take into account the biological chromatin context, which is essential 
for transcription factor binding [33, 34]. In total, from the ENCODE TFBS dataset [26, 34], 
298,554 proximal TFBSs (total 47.97 Mb), and 749,572 distal TFBSs (total 132.04 Mb) were 18 

projected by HPRS onto the bovine genome. We also show that the HPRS prediction using 
ENCODE transcription factor datasets was supported by two other independent prediction 
approaches (Supplementary Methods).  21 

 

The filtering pipeline for a high-confidence regulatory region dataset  

The predictions produced by HPRS were optimized so that they occupied a relatively small 24 

part of the whole genome, but can universally predict regulatory regions in different cell 
types and tissues. Applying HPRS for selected datasets (Fig. 3 and Table 1), we first 
produced a preliminary Universal Dataset then refined it to generate a Filtered Dataset (Table 27 

3). To remove redundancies, overlapping mapped ROADMAP enhancers (initially mapped 
separately for each of the 88 ROADMAP datasets) were merged (Table 3). Similarly, all 
mapped regions for promoters, merged enhancers and TFBS with overlapping coordinates 30 

were merged into larger regions to form the final Universal Dataset (UD), containing 542,756 
non-overlapping regions. These regions covered 937.4 Mb (35.1%) of the bovine genome. 
The high coverage (35.1%) of the UD was due to the large collection of human datasets used 33 

as inputs for mapping to bovine (37.2% of the human genome) so that the UD covered almost 
all possible promoters, enhancers and TFBS (Table 3). Importantly, the HPRS pipeline 
improves the specificity of the UD by applying a filtering step, which incorporates the power 36 

of cattle specific data to predict a small set of potential transcription regulatory genomic 
regions in the bovine genome (Fig. 4, Table 4). 

The filtering pipeline reduced the UD to the much smaller Filtered Dataset (FD, the 39 

same as filtered UD) which covered a smaller part of the whole genome, but which still 
predicted most active enhancers and promoters (Table 4 and Figure 4). Detailed discussion on 
rationale for selecting each filter is in the Supplementary Materials and Methods. Briefly, the 42 

pipeline utilized both biological data in the target species (86 RNA-Seq datasets representing 
79 cattle tissues [35], cattle H3K27Ac signal [22], and DNA sequence conservation scores) 
and computationally estimated criteria (gapped k-mers support vector machine (gkm-SVM) 45 

scores, number of overlapping annotations and number of CB-predicted TFBS ) (Fig. 4a).  
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Before filtering, the Universal Dataset had approximately 2.84 times higher RatioE 

(Number of Villar reference enhancers by predicted regions divided by the length in Mb of 
predicted regions) and 2.82 higher RatioP (Similar to RatioE, but for promoters) than the total 3 

genome baseline and each filtering step in the pipeline increased RatioE and RatioP compared 
to the baseline (Fig. 4b, Table 4). At the end of the pipeline, a set of high-confident 
regulatory regions (the FD), containing 245,384 sequences (with total length 356.1 Mb, 6 

equivalent to 13.3% of the whole genome) was obtained. The filtering reduced the number of 
regions by 2.2 times and the genome coverage by 2.6 times (Table 3, Fig. 4a), while still 
including most of the cattle liver reference enhancers and promoters (73.5% and 95.0% 9 

respectively) (Table 4, Fig. 3a). Importantly, the filtered dataset had a 5.5 and 7.1 times 
higher RatioE and RatioP, respectively, than the genome baseline (Fig. 4). The size and 
coverage of the bovine genome (356.1 Mb, 13.3%) by HPRS predicted regulatory regions 12 

was comparable to the published figure for mouse, which is 12.6% of the mouse genome, as 
predicted by ENCODE DNAse I accessibility data and transcription factor ChIP-Seq (using 
antibodies for 37 TFs on 33 tissues/cell lines) and histone modification ChIP-Seq data [2]. 15 

Similarly, applying the HPRS pipeline to the mouse genome, without using mouse-specific 
datasets from ENCODE or other sources (except for the reference Villar dataset), predicted 
potential regulatory regions that occupy 11.3% of the whole mouse genome.  18 

 

Validating and extending the HPRS pipeline in nine other mammalian species 

The performance of the HPRS pipeline was evaluated using the porcine (pig) genome 21 

(susScr3) [36]. HPRS had been developed based on the bovine genome, and the pig was then 
selected as a species for step-by-step comparison throughout the pipeline because of the 
availability of experimentally defined porcine promoter and enhancer reference datasets [22] 24 

and because the pig is an evolutionarily divergent non-ruminant production animal. We 
obtained similar results in pig compared to cattle on: numbers of putative regulatory regions, 
percent to total genome length, coverage of the reference datasets (Table 3 and Table 4). 27 

Importantly, we extended the application of the HPRS mapping data from human to 8 
additional mammalian species, which had reference promoter and enhancer datasets from the 
Villar et al study. We generated HPRS mapped unfiltered UDs and observed consistently 30 

high coverage of the reference enhancer and promoter datasets and the coverages were 
comparable between all 10 mammalian species (Table 5). Thus, the pipeline appears to have 
general utility, not just for livestock species, but also for mammals in general. 33 

 

SNPs in regulatory regions are enriched for significant GWAS SNPs  

Over 90% of significant GWAS SNPs lie outside gene-coding regions, and for those within 36 

the gene-body (from the start to the termination site of the complete transcript, including 
introns), over 92% are within intronic regions [3, 5]. To test the enrichment of potential 
causal SNPs within predicted regulatory regions in cattle, we explored the overlap between 39 

SNPs in regulatory regions and pleiotropic SNPs, which are SNPs significantly associated 
with multiple traits. The pleiotropic SNPs were identified by an independent GWAS study for 
32 cattle feed intake, growth, body composition and reproduction traits [37]. The GWAS 42 

used 10,191 beef cattle, with data (including imputed data) for 729,068 SNPs (Fig. 5). We 
observed a substantial fold enrichment (~2-4 times) of SNPs with –log(P-value) from 3 to 20 
in the Filtered Dataset compared to all other sets of commonly classifying SNPs in different 45 

genomic regions, including the set of SNPs 5 kb upstream of protein coding genes. We also 
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observed higher counts (for 6 out of 10 traits) of associated SNPs within regulatory regions in 
a study on ten climatic adaptation traits in 2,112 Brahman beef cattle [38] (Fig. S1). Similarly 
we found enrichment of regulatory SNPs in a study of five major production and functional 3 

traits in 17,925 Holstein and Jersey dairy cattle (p < 0.05 for 3 out of 5 traits) [39] (Table S1). 
These observations are consistent with the pipeline identifying regulatory SNPs from millions 
of SNPs in the genome and suggest that the predicted regulatory database is useful for 6 

prioritizing SNPs likely to be contributing to phenotypic variation of complex traits.  

 

The regulatory region datasets can be used to guide identification of potential causative 9 

SNPs and their gene targets 

As examples of the application of our resources to identify likely causative mutations from a 
large list of significantly associated SNPs, we applied the HPRS approach to analyse two 12 

well studied genetic variants in cattle, which were known to contribute to phenotypic 
variation, but their mechanisms of action were not known because they were located within 
non-coding regions.  15 

The bovine Pleomorphic adenoma gene 1 (PLAG1) locus has been identified in the 
control of stature (weight and height) by several independent GWAS studies in cattle [40, 
41]. The study by Karim et al. [40] fine-mapped 14 SNPs associated with stature. The 14 18 

SNPs are in the vicinity of PLAG1 and the Coiled-coil-helix-coiled-coil-helix domain 
containing 7 (CHCHD7) gene, which are 540 bp apart (Fig. 6a). The 14 candidate SNPs are 
shown in Fig. 6a with coordinate locations relative to HPRS-predicted regulatory regions. 21 

The HPRS database suggests a strategy for further filtering these fine-mapped SNPs in two 
ways, first to prioritize gene targets and second to prioritize SNPs. The design of the 
validation experiment by Karim et al [40] did not separate the two SNPs (rs209821678 and 24 

rs210030313) in the promoter region because both the long and short fragments used for 
activity assays in the study contained both SNPs. The HPRS prediction separates the two 
SNPs into two core CAGE peaks (Fig. 6b). The two peaks suggest two potentially separate 27 

binding sites of the transcriptional machinery. HPRS resolves the shared 540 bp promoter 
region into separate core promoter regions and suggests a new validation design, in which 
three short, directional fragments focusing more specifically on core CAGE regions (two near 30 

PLAG1 and one near CHCHD7 gene) can be used for functional assays of SNP genotype. 
Measuring promoter activity of these three constructs by using the similar promoter luciferase 
assay and transcription factor binding assay employed by Karim et al [40] may confirm 33 

which of the two SNPs is causative and which gene is affected.  

Furthermore, by applying a scoring model for regulatory variants, we generated 
deltaSVM score for each of 97 million known bovine SNPs (see Supplementary Materials 36 

and Methods). The SNP rs209821678 had a deltaSVM score of -5.99. The score was beyond 
the 95th percentile range of SVM scores for 97 million SNPs, suggesting that it may play an 
important regulatory role. Notably, the rs209821678 deletion of the (CCG)x11 to (CCG)x9  39 

trinucleotide repeats lies in a predicted G-quadruplex and may cause changes in its structure, 
an event that could alter transcriptional activity [42]. In contrast, the SNP rs210030313 and 
rs109815800 did not have significant deltaSVM scores (0.51 and 3.2, respectively). 42 

We then asked if the regions containing the SNPs interact with additional genes 
distant from the PLAG1 locus. We applied HPRS for mapping interactions defined by 
chromatin conformation capture data (5C and Hi-C in the ENCODE human datasets) to 45 

predict distal targets of the promoter regions in the PLAG1 locus [43, 44], we found that 
rs209821678 and rs210030313 are within the anchor A_447043 (chr14:25,044,319-
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25,054,287, UMD3.1) with a predicted target region (chr14:25,478,861-25,497,096) near the 
IMPAD1 (Inositol Monophosphatase Domain Containing 1). Variants within IMPAD1 have 
been implicated in short stature and chondrodysplasia (Table S2). Interestingly, the leading 3 

SNP identified in an analysis of pleiotropic genes affecting carcase traits in Nellore cattle, 
rs136543212 at chr14: 25,502,915, is slightly closer to IMPAD1 [45]. The rs109815800 SNP, 
on the other hand, does not lie in any mapped Hi-C region. Together, the HPRS predicted 6 

results strongly suggest that the rs209821678 variant is the causative SNP among the 14 
candidates fine-mapped by Karim et al [40].  

Another example of applying the HPRS databases for analysis of non-coding 9 

mutations is for the case of the “Celtic mutation”, which causes the polled phenotype. The 
mutation is a 202-bp-indel, where the duplication of a 212 bp region (chr1:1705834-
1706045) replaces the 10 bp (chr1:1706051-1706060)[46, 47] [48] (Fig. 7). The mechanism 12 

for the Celtic mutation is unknown, although it may affect the expression of OLIGO1, 
OLIGO2, CH1H21orf62 and two long non-coding RNAs (lincRNA1 and lincRNA2) [46, 47]. 
We found that the whole 10 base deletion, but not the upstream 212 base duplication, is 15 

within an HPRS predicted enhancer sequence (chr1:1706046-1706182, UMD3.1). A detailed 
transcription factor binding motif analysis of the polled mutation site suggests that a binding 
site for the TF HAND1 (Heart And Neural Crest Derivatives Expressed 1) is lost due to the 18 

10 bp deletion in animals containing the Celtic mutation (Fig. 7c). The neural crest cells give 
rise to the craniofacial cartilage and bone [49], suggesting that the loss of the HAND1 
putative binding site is a plausible explanation for the altered craniofacial development in 21 

Polled animals. Additionally, using information from Hi-C in the human genome [44], we 
found the mutation is within a mapped interaction targets of the regions Hi-C A_264635 
(chr1:1706078-1714122, UMD3.1) and A_264636 (chr1:1698252-1706077, UMD3.1) and 24 

interacts with genes 100s of Kb away (Fig. 7: bottom panel, and Table S2). Although, the 
above hypothesis requires experimental validation, it shows that applying HPRS approach 
could lead to biological hypothesis for underlying effects of causative mutations within non-27 

coding regions. 

Therefore, from the two examples described above (and from the Callipyge example 
described in the supplementary section), we found that the HPRS regulatory database can be 30 

used to prioritize SNPs and genetic variants that were identified by GWAS studies and to 
draw hypotheses about biological mechanisms of a causative SNP.  

 33 

Limitations of the methods 

The main aim of the HPRS pipeline is to predict as many regulatory regions and as accurately 
as possible, so that the dataset could be applied for functional SNP analysis in the target 36 

species. However, given the uncertain nature of promoter and enhancer identification, the rate 
of false positives and negatives by HPRS is difficult to determine. In our analysis, all of the 
reference cattle liver enhancers were included in the initial unfiltered datasets, although 39 

~25% were lost during the filtering process. Similarly, 96% of reference cattle liver dataset 
promoters were covered by the unfiltered dataset, with less than 3% lost in the filtering 
process. A limitation of the HPRS filtering process is the requirement to use a species-42 

specific data set. Nevertheless, compared to the large number of datasets and biochemical 
assay types that are required to create a comprehensive coverage of regulatory regions, the 
number of species-specific datasets needed for HPRS is small. In this paper, for each of the 45 

three species (mouse, cattle and pig), we used data from only three biological replicates of 
H3K27Ac assay, which was generated within a scope of one project as reported in Villar et al 
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[22], to successfully filter the Universal Dataset. In addition, the approach cannot predict 
promoters and enhancers that are unique to the species, for example promoters and enhancers 
that are present in the cow, but not present in humans. These unique promoters/enhancers are 3 

likely to be a small proportion of the total promoter/enhancer set. Indeed, the lineage specific 
promoters and enhancers across 20 mammalian species were around 5 % of the total 
promoters and enhancers [22]. Of note, relevant human input datasets can be integrated 6 

depending on the aim of an analysis. For example, if the focus is to study milk production, 
the HPRS pipeline can be applied for more relevant tissues, such as the mammary gland. 
Future cattle-specific datasets can be incorporated into the HPRS pipeline to address the 9 

tissue and species specificity issues.  

In contrast to the HPRS pipeline prediction of regulatory regions, the prediction of 
causative genetic variation within regulatory regions is much more challenging. The current 12 

approach relies on the enrichment of sequence motifs within regulatory regions relative to 
non-regulatory regions. At least some of the motifs are TFBSs, but there are likely to be other 
types of motifs, such as G-quadraplexes, present in regulatory regions. While the predicted 15 

datasets can be useful for generating relevant hypotheses, the identification of causal variants 
still requires considerable future refinement and validation. 

 18 

Conclusions 

We have developed the HPRS pipeline using a large collection of existing human 
genomics data and a limited number of cattle specific datasets to predict a database of cattle 21 

regulatory regions that covers a large number of active promoters, enhancers and TFBSs. The 
database generated here is not a final product because HPRS is capable of readily integrating 
new cattle-specific datasets into its mapping and filtering pipeline to expand, refine and 24 

validate the databases. Moreover, the HPRS pipeline can be applied to data of other 
mammalian species and by scientists without computer programming skills. We anticipate 
that the pipeline will be used to integrate large-scale datasets from the FAANG consortium, 27 

when they become available, with complementary data from human research. The immediate 
application of the regulatory database is to complement the current species specific GWAS 
analysis by (1) discovery of potential regulatory mechanisms of SNPs lying outside gene 30 

coding regions, (2) prioritising SNPs that are statistically significant at a genome-wide level 
but located within regulatory regions, (3) prioritising SNPs that are at low allele frequency 
but have potential for large effects, and (4) suggesting possible causative SNPs as targets for 33 

precise genome editing or selective breeding practices. 

 

Methods 36 

The complete HPRS pipeline is divided into three modules: mapping, filtering, and 
SNP analysis. The whole pipeline and documentation are available from the CSIRO 
BitBucket [50].  39 

 

HPRS mapping pipeline 

We developed a mapping strategy based on four elements: (1) selecting a suitable 42 

combination of human databases as HPRS inputs; (2) finding an optimal sequence identity 
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threshold in the target genome; (3) finding options to remove less confident mapped results, 
and; (4) adding multiple mapped regions that meet a high sequence similarity threshold. 
Depending on the species, targeted tissues or regulatory categories of interest, users can 3 

select suitable human databases using the following suggested criteria: types of regulatory 
regions (promoters, enhancers, and TFBSs), biochemical assays, computational models for 
combining data, and data sources (tissues, cell lines, traits). Second, by applying the UCSC 6 

liftOver tool [23], regions that were aligned at genome-scale (by LastZ pair-wise genome 
alignment [51]) were fine-mapped to identify target regions with proportion of sequence 
identity to the original regions (minMatch) higher than a selected cut-off.  We recommend an 9 

optimal minMatch=0.20 and not allowing multiple mapping for this step. Users can vary 
input parameters (minMatchMain and minMatchMulti) in the HPRS mapping script 
(Main_Mapping_Pipeline.py) to optimize the minMatch suitable to specific datasets that may 12 

have different features such as sequence length and conservation. Third, mapped regions 
resulting from using a low minMatch cut-off (0.20) were filtered to retain only regions with 
exact reciprocal mapping back to human genome, with the condition that both the left and 15 

right borders of the reciprocally mapped regions were within 25 bp windows of the original 
regions. Fourth, to accommodate regions possibly resulting from duplication events, the 
HPRS mapping pipeline added a step to remap regions that are unmapped or are not 18 

reciprocally mapped by allowing multiple mapped results to be included while setting a high 
sequence similarity threshold (specified by the minMatchMulti parameter, ≥ 0.80).  Fig. S1a 
shows some of the expected mapping scenarios.  21 

In addition to the customized minMatchMain and minMatchMulti parameter inputs, 
the Main_Mapping_Pipeline.py script also takes user-specified chain files for target species, 
which can be any of the mammalian species with chain files available from the UCSC 24 

databases or generated in-house. The HPRS mapping pipeline enables fast mapping of as 
many databases as necessary. The script 
PostHPRSMapping_MergeDifferentDatabaseTypes.py (available in the CSIRO BitBucket 27 

[50]) can be used to combine resulting datasets into one dataset containing non-overlapping 
regions. For example, we merged enhancer databases from 88 ROADMAP tissues/primary 
cell lines, and five additional promoter, enhancer and TFBS databases. The script also 30 

collapses names of overlapping regions into a comma separated field that can be used to 
count the total number of annotations for each merged region.    

 33 

HPRS filtering pipeline 

Detailed description of the seven filters is presented in the Supplementary Materials 
and Methods section. Briefly, the HPRS filtering pipeline was written in R and contains 36 

seven filtering steps (Fig. 4, Table 4). The input file is a merged metadata file, in which each 
region was calculated for the number of CAGE peaks mapped, the RNA-Seq signal from 86 
cattle RNA-Seq datasets, the Villar H3K27Ac signal, the SVM enhancer scores (enhancer 39 

activity predicted by a machine learning classification method, gkmSVM) [52], the number 
of overlapping annotations, the conservation score based on the UCSC 100 way vertebrate 
alignment [53], and the number of TFBSs based on Cluster-Buster scanning [54]. The main 42 

filtering pipeline was HPRS_Filtering_pipeline.Rmd. We tested a range of parameters and 
recommend using the parameters set in the script. In addition, prior to running this main 
script, users can choose to optimize parameters suitable to specific datasets using the script 45 

HPRS_Filtering_optimize_FilterOrder.Rmd, which calculates RatioP and RatioE (average 
number of enhancers and promoters per Mb of the total length of all predicted enhancers and 
promoters) for each filter and for a range of filter parameters so that the optimal parameters 48 
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are used in the main filtering pipeline. The filtering pipeline was written in a way that it is 
simple to add or remove filter layers depending on availability of species-specific data. 

 3 

Methods to apply HPRS dataset for regulatory SNP analysis 

The HPRS dataset can be applied for the selection of top candidate SNPs in regulatory 
regions which are present in existing genotyping SNP chips. The selected SNPs form a small 6 

set of SNPs that are more likely to be causal or associated to phenotypes. Using these SNPs 
for GWAS analysis may reduce noise compared with using a large number of non-causal but 
in high linkage disequilibrium to causal SNPs. The top candidate SNPs can be selected by the 9 

identification of SNPs belonging or not belonging to the following categories: the Universal 
Dataset; the Filtered Dataset; the TFBSs of the predicted regulatory regions; and regulatory 
regions active in tissues related to the trait of interest. In addition, deltaSVM scores can be 12 

used as one of the indicators for potential SNP effects, as discussed in the supplementary 
method section. Alternatively, the dataset can be used for post-GWAS analysis, in which 
significant SNPs in non-coding regions that are identified from GWAS can be assessed for 15 

potential effect on gene regulatory activity. We have discussed examples of applications for 
the cases of pleiotropic SNPs, climatic adaptation associated SNPs, and associated SNPs 
milk-production traits (Fig. S1, Table S1), and of post-GWAS analysis for the stature 18 

phenotype and callipyge phenotype (Fig. 6 and Tables S2, S3).   

We developed an implementation pipeline of the gkm-SVM model to estimate SNP 
effects on enhancer activities in cattle by adapting the model to the case where very limited 21 

species-specific ChIP-Seq data are available for model training (See Supplementary Materials 
and Methods).  

Data availability 24 

We have made all HPRS Python, R and Shell scripts publically available with usage 
instruction from the CSIRO BitBucket [50]. These codes can be used to perform all steps 
from mapping, to filtering and scoring regulatory SNPs. Supporting data and scripts to run 27 

the HPRS pipeline are also available via the GigaScience database, GigaDB [51]. 

All human databases used for prediction are publically available (Table S5). Results 
of predicted regulatory regions, including the Universal Datasets and the filtered datasets, for 30 

cattle and pig are available as Supplementary Materials of this article. For cattle, we provide 
deltaSVM scores for ~97 million SNPs, which can be used as one of the parameters for 
assessing potential SNP effects. Additionally, we share predicted Universal Datasets (not yet 33 

filtered) for ten other mammalian species in a format compatible for uploading to the UCSC 
genome browser (Table 5 and Fig. S7). These 10 additional datasets can be useful for 
exploring potential regulatory effects from non-coding genomic regions.  36 
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Table 1. Summary information for the optimised set of human regulatory datasets used for HPRS mapping1.  1 

 Dataset Tissues/cell lines Total number of 
regions  

Region types Mean length (bp) 

ENCODE Distal TFs 
[19, 26] 

0/91 1,122,364 Binding sites for163 
TFs 

151.2 

ENCODE Proximal 
TFs [19, 26] 

0/91 384,343 Binding sites for163 
TFs 

151.4 

ROADMAP2  
[21] 

24 primary cells (e.g. blood cells, immune cells, and 
breast myoepithelial cells), 14 primary culture (e.g. skin, 
muscle satellite, neurosphere, bone marrow), and 50 
primary tissues (e.g. thymus, spleen, lung, fetal stomach) 

9,102,278 
 

Enhancers 970.8 

FANTOM Enhancers 
[6, 25] 

135/673 43,011 Enhancers 289 

FANTOM Promoters 
[20, 25] 

152/823 201,802 Promoters 21.5 

1Information on data types and models is described in Table S3. 2 

2See Table S5 for sample source details 3 

 4 
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 1 

Table 2. Summary of promoter predictions. 2 

Dataset Total Regions in Cattle1 
Overlap with 
Villar2 dataset 

Fold enrichment 
of Villar dataset 

Number within 200 
bp of TSSs3 

Fold enrichment of 
TSSs  

Total number CAGE regions 154,377 (3.68 Mb, 0.138%) 11,606 (84.1%) 609 13,676 (51.0%) 370 
Filtered set CAGE regions 145,912 (3.46 Mb, 0.129%) 11,203 (81.2%) 629 13,011 (48.7%) 377 
Total all regulatory regions 
(Universal Dataset) 542,756 (937.39 Mb, 35.11%) 13,329 (96.6%) 3 20,759 (77.6%) 2 
Filtered regulatory regions 
(Filtered Dataset) 245,384 (356.1 Mb, 13.33%) 13,104 (95.0%) 7 17,715 (66.2%) 5 
Villar reference promoters 13,796 (32.90 Mb, 1.23%) 13,796 (100%) NA 10,212 (38.2%) 31 

ROADMAP promoters 81,892 (135.6 Mb, 5.08%)  12677 (91.9%) 18 14,388 (53.8%) 11 
1 The total number of regions with liftOver at minMatch 0.2 and exact reciprocal matches, combined with regions that had multiple matches (no 
one-to-one relationship) but had high conservation (80% identity). The original human regions are from the FANTOM promoter dataset. The 
percent was calculated for total genome size. 
2Villar promoter dataset for cattle [22] 

3Promoter count within 200 bp of the Ensembl annotated UMD3.1 TSSs Ensembl build 85 (total 26740). 
 3 
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Table 3. Summary of mapped and filtered regulatory sequences. 1 

Datasets Number of mapped regions Genome coverage (%) 
human cow pig human cow pig 

Total genome size (Mb) NA1 NA NA 3,137.2 Mb 
(100%) 

2,670.4 Mb 
(100%) 

2,808.5 Mb 
(100%) 

ROADMAP enhancers (% 
mapped to target species) 

9,102,278 
(100%) 

5,917,129 
(65%) 

5,620,417 
(62%) 

8,836.6 Mb2 

(NA) 

6,142.4 Mb2 

(NA) 
 

5,809.5 Mb2 

(NA) 
 

ROADMAP enhancers 
(overlapping regions were 
merged) 

494,583 
(100%) 

371,295 
(75%) 

361,682 
(73%) 

1,123.2 Mb 
(35.8%) 

885.6 Mb 
(33.2%) 

826.2 Mb 
(29.4%) 

FANTOM CAGE enhancers 43,011 
(100%) 

34,303 (80%) 27,558 (64%) 12.4 Mb 
(0.40%) 

12.2 Mb (4.6%) 9.6 Mb (0.34%) 

ENCODE distal TFs 1,122,364 
(100%) 

749,572 
(67%) 

716,515 
(64%) 

169.7 Mb 
(5.4%) 

132.0 Mb 
(4.9%) 

124.4 Mb (4.4%) 

FANTOM CAGE promoter 
peaks 

201,802 
(100%) 

154,377 
(76%) 

153,893 
(76%) 

4.3 Mb 
(0.14%) 

3.7 Mb (0.14%) 3.7 Mb (0.13%) 

ENCODE proximal TFs 384,343 
(100%) 

298,554 
(78%) 

279,774 
(73%) 

58.2 Mb 
(1.9%) 

48.0 Mb 
(1.8%) 

48.9 Mb (1.7%) 

Merged ROADMAP, 
ENCODE, and FANTOM 
datasets (Universal Dataset)3 

760,702 542,756 
(86.1% and 

96.6%)4 

519,913 
(89.2% and 

97.1%)4 

1,165.7 Mb 
(37.2%) 

919.5 Mb 
(34.4%) 

857.8 Mb 
(30.5%) 

Filtered Dataset NA 245,384 
(73.5% and 

95.0%)4 

151,523 
(69.8% and 

95.6%)4 

NA 356.1 Mb 
(13.3%) 

311.5 Mb 
(11.1%) 

1NA, not applicable. The percent was not calculated for these three values because overlapping regions are present in the different enhancer 2 

datasets.  3 
2The total size is bigger than the genome size because overlapping regions are included 4 
3Total size of non-overlapping regions in the Universal Dataset (before filtering). The % overlapping Villar reference enhancers (the former) and 5 

promoters (the later) in the targeted species 6 
4% overlap Villar reference liver enhancers and promoters in the filtered datasets 7 
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Table 4. Filters with species-specific data for selecting regulatory regions (refer to the Supplementary Materials and Methods). 1 

Filter Filtering 
parameters 

Length (Mb) Number (Ratio Enhancers, Count/Mb) Number (Ratio Promoters, Count/Mb) 
Cattle Pig Mouse Cattle Pig Mouse Cattle Pig Mouse 

Whole 
genome 

Genome baseline 
(enhancers/Mb) 

2,670.4 2,808.5 2,730.8 31,971 
(12.0) 

23,804 
(8.5) 

18,396 (6.7) 13,796 (5.2) 11,114 
(4.0) 

15,164 (5.6) 

Universal 
Dataset 

Universal baseline 
(enhancers/Mb) 

937.4 882.4 699.7 31,971 
(34.1) 

23,804 
(27.0) 

18,396 (26.3) 13,796 (14.7) 11,114 
(12.6) 

15,164 (21.7) 

CAGE CAGE >= 2 or 
CAGE = 1 and 
RNAseq > 
mean(VillarRef)1 

201.9 194.7 147.6 9,628 
(47.7) 

6,679 
(34.3) 

 

3935 (26.7) 10,152 (50.3) 9,476 
(48.7) 

10,951 (74.2) 

CAGE >= 1 250.7 248 189.8 11,318 
(45.2) 

8,214 
(33.0) 

5,199 (27.0) 12,103 (48.3) 9,936 
(39.9) 

12,722 (67.0) 

H3K27Ac Log2(H3K27Ac) 
>= 
median(log2(Villa
rRef))2 

89.6 103.8 47.0 16,124 
(180.0) 

11,985 
(115.4) 

6,736 (143.3) 3,927 (43.8) 9,324 
(89.8) 

10,570 
(225.0) 

Log2(H3K27Ac) 
>= 
mean(log2(Villar
Ref)) 

91.0 102.0 50.4 16,366 
(179.8) 

11,670 
(114.4) 

7,255 (143.9) 3,966 (43.6) 9,305 
(91.2) 

10,707 
(212.4) 

RNAseq Log2(RNAseq) 
>= 3rd 

quartile(log2(Vill
arRef))3 

156.1 85.3 105.8 6,999 
(44.8) 

3,162 
(37.1) 

2,726 (25.8) 5,473 (35.1) 6,412 
(75.2) 

4,375 (41.3) 

Log2(RNAseq) 
>= 
median(log2(Villa
rRef)) 

278.1 184.0 193.1 12,147 
(43.7) 

6,748 
(36.6) 

4,626 (24.0) 8,442 (30.4) 8,709 
(47.3) 

6346 (32.9) 

Log2(RNAseq) 
>= 
mean(log2(Villar
Ref)) 

319.4 197.7 218.7 13,746 
(43.0) 

7,268 
(36.8) 

5,175 (23.7) 9,249 (29.0) 8,874 
(44.9) 

6839 (31.3) 

gkm-SVM Length < 3000 & 85.9 4.7 77.2 3,603 261 (55.6) 3,525 (45.7) 9,208 (107.1) 359 (76.4) 8,570 (110.0) 
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SVM >= 
median(VillarRef)
4 

(41.9) 

Length < 3000 & 
SVM >= 
mean(VillarRef) 

87.4 3.7 74.5 3,645 
(41.7) 

200 (53.9) 3,446 (46.3) 9,230 (105.6) 287 (77.3) 8,555 (114.9) 

Length < 5000 & 
SVM >= 
mean(VillarRef) 

133.4 49.3 110.8 5,673 
(42.5) 

1,858 
(37.6) 

4,285 (38.7) 9,766 (73.2) 1,333 
(27.0) 

9,100 (82.1) 

Annotation 
count 

AnnCount >= 3rd 
quartile 
(VillarRef)5 

72.8 41.4 362.4 3,308 
(45.5) 

893 (21.6) 9,183 (25.3) 9,618 (132.2) 7,489 
(181.0) 

11,317 (31.2) 

AnnCount >= 
median 
(VillarRef) 

109.1 21.2 614.3 5,173 
(47.4) 

887 (21.5) 13,366 (21.7) 10,599 (97.2) 7,486 
(181.7) 

13,835 (22.5) 

AnnCount >= 
mean (VillarRef) 

273.2 239.6 318.2 12,433 
(45.5) 

7,792 
(32.5) 

8,321 (26.2) 12,391 (45.4) 10,039 
(41.9) 

10,633 (33.4) 

PhastCons 
  

PhastCons >= 95th 

percentile 
(VillarRef)6 

28.0 26.7 31.1 939 (33.5) 722 (27.1) 851 (27.3) 1,504 (53.7) 1,165 
(43.7) 

2,177 (69.9) 

PhastCons >= 
median 
(VillarRef) 

383.6 351.3 354.9 13,068 
(34.1) 

9,425 
(26.8) 

8,319 (24.4) 9,929 (25.9) 7,746 
(22.1) 

11,016 (31.0) 

PhastCons >= 
mean (VillarRef) 

247.4 227.0 248.0 8,415 
(34.0) 

6,098 
(26.8) 

6,039 (24.3) 8,000 (32.3) 6,249 
(27.5) 

9,456 (38.1) 

TFBS 
count 

TFBScount >= 
median 
(VillarRef)7 

16.3 12.9 213.3 4 (0.2) 2 (0.2) 6,151 (28.8) 6,700 (411.3) 3,253 
(252.0) 

9,739 (45.7) 

TFBScount >= 
mean (VillarRef) 

379.9 882.4 295.9 12,933 
(34.0) 

23,804 
(27.0) 

7,995 (27.0) 9,956 (26.2) 10,788 
(12.2) 

10,729 (36.3) 

 1 
1 Regions with at least two CAGE peaks, or with one CAGE peak and the number of mapped reads from RNAseq data is higher than the mean mapped reads of the reference 2 

Villar enhancer dataset. The results are compared with results from applying another filtering criterion, which is CAGE peak above 1. The comparisons are based on total 3 

length of all selected regions, and average count of filtered regions normalised by length (regulatory regions per 1 Mb genome length).     4 

2 Regions with more of the H3K27Ac mapped reads than the median or mean mapped reads to reference enhancers in the Villar dataset (log2 scale). 5 
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3 Regions with more of the RNAseq mapped reads than the 3rd quartile, median, or mean mapped reads to reference enhancers in the Villar dataset (log2 scale). 1 

4 Regions with length shorter than 3000 bp (or 5000 bp) and gkmSVM scores >= median or mean scores for the Villar enhancer dataset. 2 

5 Regions with more annotation terms (diversity of regulatory features) mapped to the regions, compared to those mapped to reference regions in the Villar enhancer dataset. 3 

6 Regions with higher conservation PhastCons scores compared to 95th percentile, median, or mean scores to enhancers in the Villar dataset. 4 

7 Regions with more transcription factor binding sites than those in the Villar enhancer dataset. 5 
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Table 5.  HPRS predicted regulatory datasets for 10 species.  

Species Number of 
regions 

Total length 
(Mb) 

Enhancer 
coverage1 

Promoter 
coverage1 

Unfiltered datasets 
Cattle (bTau6)2 545,748 919.5 86.1% 96.6% 
Pig (susScr3) 519,913 882.4 89.2% 97.1% 
Marmoset (CalJac3) 642,144 1,106.4 93.1% 98.4% 
Rhesus Macaque (RheMac3) 693,312 1,158.2 94.5% 97.6% 
Dog (CanFam3) 570,317 877.5 89.4% 97.6% 
Cat (FelCat5) 570,282 903.9 90.8% 97.1% 
Guinea pig (CavPor3) 523,273 761.6 81.1% 92.7% 
Rabbit (OryCun2) 531,109 819.4 86.8% 96.8% 
Mouse (Mm10) 478,974 699.7 79.6% 93.2% 
Rat (Rn5) 453,017 620.5 75.3% 89.5% 
Filtered datasets3 
Cattle (bTau6)  245,358 356.1 73.5% 95.0% 
Pig (susScr3) 151,523 311.5 69.8% 95.6% 
Mouse (mm10) 281,071 308.4 68.9% 91.4% 
The datasets were generated for each species using the same human data sources, including: 
88 ROADMAP tissues/primary cell lines, FANTOM promoters and enhancers, and 
ENCODE proximal and distal TFs (Table S2) and combined with the Villar reference 
enhancer promoter dataset. The prediction results for each species are available as part of the 
supplementary file 2.  
1Coverage of the relevant Villar reference datasets [22]. 
2Reference genomes are from UCSC (http://hgdownload.cse.ucsc.edu/downloads.html) 
3The relevant Villar reference species enhancer datasets were added prior to filtering. 
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Figures 

 
Fig. 1. A streamlined workflow for the prediction of regulatory regions. Four key steps 
include mapping human regulatory regions to a target genome (creating a universal dataset), 
filtering the mapped regions by seven epigenomic, transcriptomic and genomic criteria to 
keep only regions with potential regulatory functions, validating the predicted regions by 
comparing with known reference dataset, and translating the findings to potential applications 
in genomic technology.  
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Fig. 2. Optimization of mapping parameters using seven input databases. The input 
databases included five human enhancer databases (ENSEMBL, ENCODE, ROADMAP 
liver tissue, Vista, and FANTOM enhancers), one human promoter database (FANTOM 
promoters) and one annotated human exon database (UCSC hg19) [6, 18, 21, 56, 57]. The 
numbers of regions from each dataset used to optimise parameters is shown in Table S4. We 
used the UCSC pair-wise whole genome alignment chain files between the human genome 
(hg19) and the bovine genome (UMD3.1) and performed mapping from the human genome 
to the bovine genome (minMatch 0.1 to 0.95 as shown in the x-axis) and then reciprocal 
mapping from the bovine genome back to the human genome [52, 58-60]. a) recovered rate, 
defined as the percentage of the number of mapped regions with exact reciprocal mapping to 
the total number of original regions in humans. b) confirmation rate, defined as the 
percentage of reference regions covered by predicted regions to the total number in reference 
regions (Villar reference enhancers, Villar reference promoters, and cattle GENCODE genes 
V19). c) specificity, defined as the percentage of matched reference (true positive for the 
reference dataset) compared to the total number of predicted regions. 
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Fig. 3. Effects of combining databases. a) Application of the HPRS mapping method to the 
genomes of ten mammalian species. The input for the HPRS mapping was one of the 42 
ROADMAP human datasets [22] (38 adult tissues and four cell lines as shown in the x-axis) 
to 10 mammalian species. The Villar reference enhancer datasets determined by H3K27Ac 
and H3K4me3 assays for liver tissue in each species were used to estimate coverage of 
experimental enhancers by the predicted dataset (shown in y-axis as species-specific 
enhancer dataset). For each species, the coverage was the percent of the Villar reference 
enhancer dataset overlapped with the HRPS pre-filtered enhancers. b) The combination of all 
40 tissues in each species was used. c) and d) show the optimal combination of five databases 
for enhancers and promoters respectively. The reference datasets include: ROADMAP 
enhancers (42 tissues); ENCODE distal TFs; ENCODE proximal TFs; FANTOM enhancers 
and FANTOM promoters. The numbers shown in the intersections are the number of 
common regulatory regions between the HPRS mapped regions and the Villar reference 
datasets. 
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Figure 4. Enrichment of the enhancers and promoters by the filters in the HPRS filtering 
process. a) A pipeline to filter predicted regulatory regions from the Universal Dataset with 
542,756 regions, covering 937.4 Mb of the genome (35.1%). The initial number of 
experimentally defined Villar reference datasets included 31,971 enhancers (E) and 12,257 
promoters (P). The number of reference E and P, total number of predicted regulatory regions 
and total length (in Mb) for all promoters and enhancers passing each filtering layer are 
shown. The RatioE (total enhancers overlapping Villar reference enhancers/total length) and 
RatioP (total promoters overlapping Villar reference promoters/total length) were used as 
criteria to assess enrichment for each filter. The seven filters are described in the Table 4 and 
in the supplementary methods. b) Two bar graphs showing enrichment results (using the 
same starting set) of using each of the seven filtering steps in comparison with the baseline 
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(whole genome) as shown in the dashed lines, and the Universal Dataset (mapped regions, 
not filtered). The y-axis shows the average number of reference promoters or enhancers in 
every 1MB of the genome. The density of regulatory regions predicted is an indicator of the 
prediction coverage and accuracy. The higher values indicate more experimentally validated 
enhancers and promoters are enriched after filtering, suggestive of a more efficient filter. 
Each filter was tested independently, using the same Universal Dataset as the input, to 
compare enrichment levels resulted from each of the seven filters.  
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Figure 5. Enrichment of significant pleiotropic SNPs in regulatory genomic regions. 
Count of significant pleiotropic GWAS SNPs [37] (P-values are from multi-trait meta-
analysis chi-squared test statistic for 32 traits) in a set of  ~729,100 SNPs genotyped using the 
Illumina HD Bovine SNP chip or imputed from genotyping data from smaller Illumina 
Bovine SNP chips. Legend labels, from top to bottom: “AllHDchip”: 43,130 SNPs randomly 
selected (from all 692,529 SNPs on the HD chip, excluding those from chromosome X); 
“100kbUpstream ”: 43,130 SNPs randomly selected (from 325,227 SNPs within 100 kb 
upstream regions of coding genes); “5kbUpstream”: all 30,384 SNPs within the 5kb upstream 
regions of coding genes (results scaled to 43k SNPs); “Genes”: 43,130 SNPs randomly 
selected (from 240,160 SNPs in coding genes); “Exons”:  all 10,003 SNPs in exons of coding 
genes (results scaled to 43k SNPs); “HPRS regions”: 43,130 SNPs in regulatory regions.   
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Figure 6. Application of the regulatory database to prioritize significant bovine SNPs 
identified by GWAS studies for functional validation. Overview of 13 significant SNPs 
fine-mapped by Karim et al [40] is shown in the left panel. Among those SNPs, only three 
overlap regulatory regions and promoter regions in the predicted database. A detailed view 
(right panel) of the two SNPs validated as causative in Karim et al [40]. Both SNPs are within 
promoter regions of the PLAG1 gene, but not the CHCHD7 gene. The Regulatory (enhancers, 
promoters, and transcription factor binding sites) and Promoter (only promoters) tracks 
display HPRS predicted regions.  
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Fig. 7. A potential model for effect of the Celtic mutation. Using human Hi-C 
(chromosome conformation capture) data and scanning of transcription factor binding sites, 
we generated a hypothesis to predict cattle regulatory targets for polled mutation (HiC target, 
HiC anchor and HAND1 tracks). The Regulatory (enhancers, promoters, and transcription 
factor binding sites) tracks display the HPRS predicted region. Two common mutations on 
chromosome 1 in cattle have been associated with polled cattle. One is a 202-bp-indel 
(“Celtic mutation”). The other is an 80 kb duplication ~300 kb away. Purple arrows on the 
top link the Hi-C anchor to multiple targets mapped from human to cattle genome. Map with 
exact size and location of the regulatory regions and the Hi-C anchor overlapping the Celtic 
mutation and its targets.  
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