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Abstract	

Given	the	increasing	amount	of	neuroimaging	studies,	there	is	a	growing	need	to	summarize	published	results.	

Coordinate-based	meta-analyses	use	 the	 locations	of	 statistically	 significant	 local	maxima	with	possibly	 the	

associated	effect	sizes	to	aggregate	studies.	In	this	paper,	we	investigate	the	influence	of	key	characteristics	of	

a	coordinate-based	meta-analysis	on	(1)	the	balance	between	false	and	true	positives	and	(2)	the	reliability	of	

the	outcome	from	a	coordinate-based	meta-analysis.	More	particularly,	we	consider	the	influence	of	the	chosen	

group	level	model	at	the	study	level	(fixed	effects,	ordinary	least	squares	or	mixed	effects	models),	the	type	of	

coordinate-based	 meta-analysis	 (Activation	 Likelihood	 Estimation,	 fixed	 effects	 and	 random	 effects	 meta-

analysis)	and	the	amount	of	studies	included	in	the	analysis	(10,	20	or	35).	To	do	this,	we	apply	a	resampling	

scheme	 on	 a	 large	 dataset	 (N	 =	 1400)	 to	 create	 a	 test	 condition	 and	 compare	 this	 with	 an	 independent	

evaluation	condition.	The	 test	condition	corresponds	 to	subsampling	participants	 into	studies	and	combine	

these	 using	 meta-analyses.	 The	 evaluation	 condition	 corresponds	 to	 a	 high-powered	 group	 analysis.	 We	

observe	the	best	performance	when	using	mixed	effects	models	in	individual	studies	combined	with	a	random	

effects	meta-analysis.	This	effect	increases	with	the	number	of	studies	included	in	the	meta-analysis.	We	also	

show	that	 the	popular	Activation	Likelihood	Estimation	procedure	 is	a	valid	alternative,	 though	 the	results	

depend	on	the	chosen	threshold	for	significance.	Furthermore,	this	method	requires	at	least	20	to	35	studies.	

Finally,	we	discuss	the	differences,	interpretations	and	limitations	of	our	results.	
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1 Introduction	

Over	 the	 past	 two	 decades,	 there	 has	 been	 a	 substantial	 increase	 in	 the	 number	 of	 functional	 Magnetic	

Resonance	Imaging	(fMRI)	studies,	going	from	20	publications	in	1994	to	over	5000	in	2015.	Despite	this	vast	

amount	of	fMRI	literature,	it	remains	challenging	to	establish	scientific	truth	across	these	often-contradictory	

studies.	

First,	fMRI	studies	tend	to	have	small	sample	sizes	to	detect	realistic	effect	sizes	(median	estimated	sample	

size	 in	 2015	=	 28.5;	 Poldrack	 et	 al.,	 2017)	 as	 among	 other	 causes	 scanning	 participants	 is	 costly	 and	 time	

consuming.	 The	 large	 multiple	 testing	 problem	 and	 ensuing	 corrections	 make	 statistical	 testing	 in	 fMRI	

conservative,	thereby	further	reducing	statistical	power	or	probability	to	detect	true	activation	(Durnez	et	al.,	

2014;	Lieberman	and	Cunningham,	2009).	As	a	consequence,	the	probability	that	a	statistically	significant	effect	

reflects	 true	activation	 is	 reduced	(Button	et	al.,	2013).	This	can	 lead	 to	more	 false	negatives	 (missing	 true	

activation)	as	well	as	more	false	positives	(detecting	activation	where	there	is	none)	in	published	fMRI	studies.	

Second,	 the	diversity	of	pre-processing	 steps	and	analysis	pipelines	have	made	 fMRI	studies	 challenging	 to	

replicate	 (Carp,	 2012b,	 a),	 even	 though	 researchers	 recognize	 the	 value	 of	 both	 reproducibility	 (obtaining	

identical	parameter	estimates	compared	to	the	original	experiment	using	the	same	analysis	and	data;	Poldrack	

and	Poline,	2015)	and	replicability	(the	ability	of	an	entire	experiment	to	be	replicated	by	gathering	new	data	

using	 the	 exact	 same	 materials	 and	 methods;	 Patil	 et	 al.,	 2016).	 Roels	 et	 al.	 (2015)	 also	 showed	 there	 is	

variability	in	the	number	of	significant	features	depending	on	the	data-analytical	methods	used.		 	

Several	approaches	have	been	offered	to	overcome	these	challenges.	A	 first	remediating	step	 is	 to	promote	

transparency,	 pre-registration	 and	 open	 science	 initiatives	 such	 as	 data	 sharing	 or	 using	 standardized	

protocols	in	organizing	and	managing	data	(Pernet	and	Poline,	2015;	Gorgolewski	et	al.,	2016;	Gorgolewski	and	

Poldrack,	2016;	Poline	et	al.,	2012;	Poldrack	et	al.,	2017).	A	second	approach	to	establish	scientific	truth	across	

studies,	 is	 to	 accumulate	 knowledge	 by	 scientifically	 combining	 previous	 results	 using	 meta-analysis	

(Lieberman	and	Cunningham,	2009;	Yarkoni	et	al.,	2010).	Combining	findings	across	studies	increases	power	

to	detect	true	effects,	while	false	positives	are	not	expected	to	replicate	across	studies,	given	a	representative	

set	of	unbiased	results.	Furthermore,	meta-analyses	can	generate	new	scientific	questions	(Wager	et	al.,	2009).	
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Originally,	 meta-analyses	 were	 developed	 to	 aggregate	 single	 univariate	 effect	 sizes	 (Borenstein	 et	 al.,	

2009).	In	an	individual	fMRI	study	however,	the	brain	is	divided	in	a	large	amount	of	artificially	created	cubes	

(voxels).	Until	recently,	the	standard	approach	was	to	only	report	coordinates	in	3D	space	of	peaks	of	activity	

that	survive	a	statistical	threshold.	These	are	called	foci,	peaks	or	local	maxima.	While	guidelines	are	shifting	

towards	making	statistical	maps	or	full	data	sets	of	a	study	available,	many	findings	in	the	literature	only	consist	

of	locations	of	activation.	In	these	cases,	an	fMRI	meta-analysis	is	limited	to	those	voxels	for	which	information	

is	at	hand.	This	is	termed	a	coordinate-based	meta-analysis	(CBMA,	see	e.g.	Paus	1996;	Paus	et	al.	1998).	When	

full	 images	 (and	 hence	 information	 in	 all	 voxels)	 are	 available,	 methods	 designed	 for	 image-based	 meta-

analysis	(IBMA)	can	be	used	(Radua	and	Mataix-Cols,	2012;	Salimi-Khorshidi	et	al.,	2009).	

In	this	study,	we	focus	on	CBMA	for	which	different	algorithms	exist	(Wager	et	al.,	2007;	Radua	and	Mataix-

Cols,	2012).	In	particular,	we	consider	the	popular	Activation	Likelihood	Estimation	(ALE)	(Turkeltaub	et	al.,	

2002,	2012)	and	effect	size	based	methods	such	as	seed	based	d-mapping	(SBdM,	formerly	called	effect	size-

signed	differential	mapping)	(Radua	et	al.,	2012).	 	

The	ALE	algorithm	considers	a	reported	local	maximum	as	a	center	of	a	spatial	probability	distribution.	As	such,	

the	 method	 only	 requires	 the	 location	 of	 the	 peak	 and	 then	 searches	 for	 brain	 regions	 where	 spatial	

convergence	can	be	distinguished	from	random	clustering	of	peaks.	 	

Effect	size	based	methods	on	the	other	hand	transform	t-values	of	reported	local	maxima	are	transformed	into	

effect	size	estimates	and	calculate	a	weighted	average	of	 the	reported	evidence.	The	weights	determine	the	

underlying	meta-analysis	model.	For	instance,	the	weights	in	seed	based	d-mapping	include	within-study	and	

between-study	variability	which	corresponds	to	a	random	effects	model.	If	the	weights	ignore	the	between-

study	variability	one	obtains	a	fixed	effects	model.	

In	 this	 paper,	 we	 evaluate	 the	 influence	 of	 study	 characteristics	 on	 the	 statistical	 properties	 of	 CBMA	

techniques	 for	 fMRI.	 Previous	 work	 by	 Eickhoff	 et	 al.	 (2016b)	 and	 Radua	 et	 al.	 (2012)	 already	 evaluated	

statistical	properties	of	CBMA	algorithms	or	tested	software	for	implementation	errors	(Eickhoff	et	al.,	2016a).	

However,	 these	 studies	did	not	 study	 the	effect	of	 input	 characteristics	 at	 the	 individual	 study	 level	on	 the	

performance	of	these	CBMA	algorithms.	 	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2017. ; https://doi.org/10.1101/144071doi: bioRxiv preprint 

https://doi.org/10.1101/144071
http://creativecommons.org/licenses/by-nd/4.0/


	

	 5	

We	investigate	the	influence	of	the	group	level	model	on	the	performance	of	various	CBMA	procedures.	More	

specifically,	 we	 test	 the	 effect	 of	 pooling	 subjects	 at	 the	 individual	 study	 level	 using	 either	 a	 fixed	 effects,	

ordinary	least	squares	(OLS)	or	mixed	effects	group	level	model	on	the	outcome	of	the	meta-analyses	methods	

mentioned	above.	As	in	Eickhoff	et	al.	(2016b)	we	also	evaluate	the	effect	of	the	number	of	studies	in	the	meta-

analysis	(K).	Extending	on	their	work,	we	consider	the	case	for	K	=	10,	20	and	35	when	using	ALE	as	well	as	

effect	size	based	CBMA’s	using	a	fixed	and	random	effects	model.	We	consider	two	performance	measures:	the	

balance	between	false	positives	and	true	positives	and	the	activation	reliability	as	a	proxy	for	replicability.	

We	 approach	 this	 problem	 by	 applying	 a	 resampling	 scheme	 on	 a	 large	 dataset	 from	 the	 IMAGEN	 project	

(Schumann	 et	 al.,	 2010)	 and	 create	 meta-analyses	 (i.e.	 test	 conditions)	 which	 we	 compare	 against	 a	 high	

powered	large	sample	size	study	as	a	reference	(i.e.	an	evaluation	condition).		

In	the	following	section,	we	discuss	the	dataset,	give	a	theoretical	overview	of	the	three	models	to	pool	

subjects	at	study	level	and	discuss	the	three	models	for	coordinate-based	meta-analysis.		In	the	next	sections,	

we	present	the	design	of	the	study	with	the	chosen	performance	measures	and	discuss	our	findings.	

	

	

2 Materials	and	Methods	

The	code	containing	the	design	and	analysis	of	the	results	in	this	paper	are	available	at:	

https://github.com/NeuroStat/PaperStudyCharCBMA		

	

2.1 Data	

We	 use	 preprocessed	 data	 from	 the	 IMAGEN	 project	 (Schumann	 et	 al.,	 2010).	 This	 is	 a	 large	 genetic-

neuroimaging	study	on	reinforcement-related	behaviour	in	adolescents	with	the	goal	to	identify	its	predictive	

value	for	the	development	of	frequent	psychiatric	disorders	across	Europe.	The	database	contains	fMRI	data	

from	1487	adolescents	aged	between	13	and	15	years,	acquired	across	several	research	centers	on	3	Tesla	

scanners	from	different	manufactures.	The	data	are	stored	and	preprocessed	at	the	Neurospin	center	using	
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SPM8	(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).	

The	scanning	sessions	of	interest	involved	a	global	cognitive	assessment.	Note	that	we	only	use	a	part	

of	the	entire	IMAGEN	database	for	which	data	was	acquired	using	the	following	tasks.	In	a	fast-event	related	

design,	 participants	 had	 to	 do	 a	 series	 of	 alternating	 cognitive/motor	 tasks.	 Two	 of	 these	 are	 (1)	 reading	

sentences	in	silence	and	(2)	solving	math	subtractions	in	silence.	These	math	questions	were	single	digits	(0-

9)	that	had	to	be	subtracted	from	a	digit	between	11-20.	Each	of	these	trials	was	presented	for	10	times	with	a	

probabilistic	inter-stimulus	interval	of	on	average	3	seconds	(see	also	Pinel	et	al.,	2007).	We	use	the	contrast	

MATH	>	LANGUAGE	(2	-	1)	for	this	study.	

A	BOLD	time	series	was	recorded	for	each	participant	using	echoplanar	imaging	with	an	isotropic	voxel	

size	of	3.4	mm,	isotropic	and	temporal	resolutions	of	2.2	seconds.	A	total	of	160	volumes	are	obtained.	For	each	

participant,	 a	 structural	 T1-weighted	 image	 (based	 on	 the	 ADNI	 protocols	

(http://adni.loni.usc.edu/methods/documents/mri-protocols/))	was	acquired	for	registration.	

Preprocessing	 included	 slice-timing	 correction,	 movement	 correction,	 coregistration	 to	 the	 segmented	

structural	T1-weighted	images,	non-linear	warping	on	the	MNI	space	using	a	custom	EPI	template	and	spatial	

smoothing	of	 the	 signal	with	 a	5	mm	Gaussian	Kernel	 (Imagen	 fMRI	data	 analysis	methods,	 revision2,	 July	

2010).	

In	the	first	level	analysis,	all	experimental	manipulations	were	modelled	using	a	general	linear	model	

with	 a	 standard	 autoregressive	 (AR(1))	 noise	model	 and	 18	 estimated	movement	 parameters	 as	 nuisance	

terms.	This	resulted	in	a	statistical	map	for	each	parameter	estimate	and	a	map	reflecting	the	residual	variance	

of	the	model	fit.			

In	this	study,	we	use	for	each	participant	(1)	the	contrast	map	or	the	difference	between	the	parameter	estimate	

maps	for	MATH	and	LANGUAGE	and	(2)	an	error	map	for	that	contrast	derived	from	the	residual	variance	map.	

After	visual	inspection	for	errors	or	artefacts	we	removed	87	participants	from	which	parts	of	the	brain	were	

missing.	To	automate,	we	used	a	cut-off	corresponding	to	96%	of	the	median	number	of	masked	voxels	over	all	

subjects	in	the	database.	
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2.2 Group	level	models	

Localizing	 significant	 brain	 activity	 in	 an	 fMRI	 data-analysis	 is	 based	 on	 the	 statistical	 parametric	 map	 of	

contrasting	conditions	associated	with	all	participants	involved	in	an	experiment.	In	this	study,	we	focus	on	the	

univariate	approach	in	which	activation	is	tested	in	a	voxelwise	manner	through	general	linear	models	(GLMs).	

Due	to	computational	constraints,	the	analysis	is	typically	executed	in	a	two	stage	GLM	procedure	(Beckmann	

et	al.,	2003).	 In	a	 first	step,	 the	measured	 time	series	 (BOLD	signal)	of	each	subject	 is	modelled	by	a	 linear	

combination	of	nuisance	terms	and	the	expected	time	series	under	the	experimental	design.	Note	that	such	a	

model	 is	 fitted	 for	 each	 voxel	𝑣	(𝑣 = 1, … , 𝑆) 	separately.	 In	 what	 follows,	 we	 drop	 the	 index	 v	 for	 ease	 of	

notation.	 This	 first	 stage	model	 for	 a	 single	 subject	𝑖	(𝑖 = 1, … , 𝑁)	can	 be	written	 as	 follows	 (Friston	 et	 al.,	

1995):	

	 𝐘𝐢 = 𝐗/𝜷𝐢 + 	𝜺𝐢	 (1)	

where	𝐘𝐢		is	a	one	dimensional	vector	of	length	T	containing	the	measurements	of	the	BOLD	signal	on	T	different	

time	points,	𝐗/	is	a	matrix	of	dimension	T	×	p	that	contains	a	convolution	of	the	stimulus	onset	function	with	a	

hemodynamic	 response	 function	 (HRF;	 see	 e.g.	 Henson	 and	 Friston,	 2007)	 as	 well	 as	 possible	 nuisance	

covariates,	𝜷𝐢 = (𝛽45, … , 𝛽46)	is	a	vector	of	parameter	estimates	and	𝜺4 	is	a	one	dimensional	vector	of	length	T	

containing	the	within-subject	random	error	with	mean	zero.	Temporal	correlation	 is	removed	through	pre-

whitening.	Localizing	activation	proceeds	by	testing	specific	contrasts	of	𝜷𝒊.	Let	c	represent	a	contrast	vector,	

the	null	hypothesis	𝐻9 	can	 then	be	expressed	as:	𝒄𝜷𝒊 = 0.	For	 inference,	one	 typically	assumes	 independent	

error	terms	that	follow	a	Gaussian	distribution.	

	

In	a	second	step,	parameter	estimates	obtained	at	the	first	stage	are	combined	over	N	subjects	to	obtain	group	

level	 estimates.	More	 particularly,	we	 use	 the	 vector	 of	 estimated	 first	 level	 contrasts	𝐘𝐆 = 𝒄𝜷5, … , 𝒄𝜷=
>
.	

Then,	for	every	voxel	𝑣	(𝑣 = 1, … , 𝑆),	we	estimate	the	following	model:	
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	 𝒀𝑮 = 𝑿𝑮𝜷𝑮 +	𝜺𝑮	 (2)	

in	which	𝑿𝐆 	is	a	group	design	matrix	and	𝜺𝐆 	a	mixed-effects	zero	mean	error	component	containing	between	

subject	variability	and	within	subject	variability.	In	the	simplest	case,	we	are	interested	in	the	average	group	

activation.	 Therefore,	when	 testing	 the	 null	 hypothesis	𝐻9 	of	 no	 group	 activation	(𝜷𝐆 = 0) ,	𝐗𝐆 	is	 a	 column	

vector	of	length	N	with	all	elements	equal	to	1	and	the	test	

statistic	is	identical	to	a	one-sample	t-test:	

	
	𝑇 = 	

𝛽C

var(𝛽C)
	 (3)	

Under	the	assumption	that	𝜺𝐆	~	𝑁(0, 𝜎CI𝐼),	this	test	statistic	follows	a	t-distribution	under	𝐻9.	Alternatively,	it	

is	 possible	 to	 test	 differences	 between	 groups	 of	 subjects	 (e.g.	 patients	 versus	 controls)	 by	 incorporating	

additional	regressors	in	the	group	design	matrix.	As	statistical	tests	are	performed	in	all	voxels	simultaneously,	

adjustments	for	multiple	testing	need	to	be	imposed.	 	

Several	 methods	 are	 available	 to	 estimate	𝜷𝐆 	and	var(𝜷𝐆) 	in	 model	 (2).	 We	 consider	 the	 Ordinary	 Least	

Squares	(OLS),	Fixed	Effects	(FE)	and	Mixed	Effects	(ME)	approaches.	In	this	study,	we	use	the	FSL	software	

library	(Smith	et	al.,	2004)	and	therefore	only	outline	the	implementation	of	these	methods	as	described	in	

Woolrich	et	al.	(2004).	For	a	discussion	of	different	implementations	in	other	software	packages,	see	Mumford	

and	Nichols	(2006).	

	

Ordinary	Least	Squares	

In	the	OLS	procedure	(Holmes	and	Friston,	1998),	one	assumes	that	within	subject	variability	is	equal	across	

all	 subjects	 (resulting	 in	 homogeneous	 residual	 variance).	 In	 the	 simple	 case	 of	 seeking	 group	 average	

activation,	and	as	shown	in	Mumford	and	Nichols	(2009),	𝜷𝐆 	in	model	(2)	can	be	estimated	as	𝜷KLM = 	𝑋𝐆O𝐘𝐆	

where	 −	denotes	 the	 pseudo	 inverse.	 The	 residual	 error	 variance	𝜎KLMI 	is	 estimated	 as	 𝐘𝐆 − 𝐗𝐆𝜷𝑶𝑳𝑺
>
(𝐘𝐆 −

𝐗𝐆𝜷𝑶𝑳𝑺)/(𝑁 − 1),	and	therefore	var(𝜷𝑶𝑳𝑺)	can	be	estimated	as	 𝐗𝐭𝐗 O5𝜎KLMI .	Under	the	assumption	of	Gaussian	
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distributed	error	terms,	the	resulting	test	is	equal	to	a	one-sample	t-test	with	𝑁 − 1	degrees	of	freedom	(dof)	

on	the	contrast	of	parameter	estimates	𝐘𝐆	obtained	at	the	first	level.	

In	FSL,	this	model	is	termed	mixed	effects:	simple	OLS.	

Fixed	and	mixed	effects	

Both	for	the	fixed	and	mixed	effects	models,	βC	in	model	(2)	and	var(βC)	are	estimated	as	follows:	

	 𝜷𝐆 = 𝐗𝐆𝐭 𝐖O𝟏𝐗𝐆
O𝟏
𝐗𝐆𝐭 𝐖O𝟏𝐘𝐆	 (4)	

	 var(𝜷𝐆) = 𝐗𝐆𝐭 𝐖O𝟏𝐗𝐆
O𝟏
	 (5)	

with	W	a	weighting	matrix.	As	is	the	case	for	OLS,	the	error	terms	in	model	2	are	typically	assumed	to	follow	a	

Gaussian	distribution.	 	

In	the	fixed	effects	model,	the	weights	in	W	correspond	to	the	within	subject	variability	only	(ignoring	between	

subject	variability).	Hence,	W	is	an	N	×	N	matrix	equal	to:	

	
𝐖 =

𝜎5I 0 0
0 ⋱ 0
0 0 𝜎=I

	 (6)	

	

Thus,	𝜷𝐆 	is	equal	to	a	weighted	average	of	the	first	level	contrast	parameters	with	the	weights	corresponding	

to	the	inverse	of	the	within	subject	variances.	 	

These	variances	are	easily	estimated	at	the	first	level	of	the	GLM	procedure.	The	number	of	degrees	of	freedom	

in	the	fixed	effects	model	depends	on	the	number	of	scans	per	subject	and	the	sample	size	at	the	second	level	

(though	FSL	restricts	the	number	of	dof	to	a	maximum	of	1000	and	is	set	equal	to	999	when	no	information	on	

the	number	of	scans	at	the	first	level	is	provided).		

In	FSL,	this	model	is	termed	fixed	effects.	

For	 the	 mixed	 effects	 model,	 between	 subject	 variability	(𝜎\I) 	is	 incorporated	 into	 the	 weighting	

matrix:	
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𝐖 =

(𝜎5I + 	𝜎\I) 0 0
0 ⋱ 0
0 0 (𝜎=I + 	𝜎\I)

	 (7)	

Estimating	the	variance	components	of	the	mixed	effects	model	is	complicated	as	(1)	multiple	components	need	

to	be	estimated	and	(2)	there	are	typically	only	a	few	measurements	on	the	second	level	to	estimate	𝜎\I.	FSL	

relies	on	a	fully	Bayesian	framework	with	reference	priors	(Woolrich	et	al.,	2004).	Inference	on	𝜷𝐆 	in	model	(2)	

then	depends	on	its	posterior	distribution,	conditional	on	the	observed	data	(Mumford	and	Nichols,	2006).	As	

suggested	in	Woolrich	et	al.	(2004),	a	fast	approximation	is	used	first	and	then	on	voxels	close	to	significance	

thresholding	a	slower	Markov-Chain-Monte-Carlo	sampling	framework	is	applied	to	estimate	all	parameters	of	

interest.	The	posterior	marginal	distribution	of	𝜷𝐆 	is	assumed	to	approximate	a	multivariate	t-distribution	with	

noncentrality	 parameter	𝜷𝐆 .	 A	 lower	 bound	 on	 the	 number	 of	 degrees	 of	 freedom	 (i.e.	𝑁 − 𝑝C 	with	𝑝C 	the	

amount	of	parameters	in	the	group	design	matrix	𝐗𝐆)	is	used	for	the	voxels	with	a	test	statistic	close	to	zero	

and	an	EM	algorithm	(Dempster	et	al.,	1977)	is	employed	to	estimate	the	effective	degrees	of	freedom	in	voxels	

that	are	close	to	the	significance	threshold.	 	

In	FSL,	this	model	is	termed	mixed	effects:	FLAME1+2.	 	

	

2.3 Coordinate-based	meta-analyses	

2.3.1 ALE	

Coordinate	 based	 meta-analyses	 combine	 coordinates	 from	 several	 studies	 to	 assess	 convergence	 of	 the	

location	of	brain	activation.	The	ALE	algorithm	(Turkeltaub	et	al.,	2002,	2012)	starts	by	creating	an	activation	

probability	map	for	each	study	in	the	meta-analysis.	The	location	of	each	reported	peak	in	a	study	is	modelled	

using	a	Gaussian	kernel	to	reflect	the	spatial	uncertainty	of	the	peak	activation.	Voxels	where	kernels	overlap	

due	 to	multiple	 nearby	 peaks	 take	 the	maximum	probability.	Next	 an	ALE	map	 is	 calculated	 by	 taking	 the	

voxelwise	union	of	the	probabilities	over	all	studies.	If	𝑝^_	is	the	probability	of	a	peak	at	voxel	𝑣	(𝑣 = 1, … , 𝑆)	

in	a	study	𝑚	(𝑚 = 1,… , 𝐾),	then	the	union	is	defined	as:		1 −	 (1 − 𝑝^_)b
_c5 .	 	
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A	null	distribution	created	with	non-linear	histogram	integration	is	used	for	uncorrected	voxel-level	inference	

under	 the	 assumption	 of	 spatial	 independence	 (Eickhoff	 et	 al.,	 2012).	 Various	 corrections	 for	 multiple	

comparisons	 are	 available	 in	ALE,	 but	 based	on	 the	 large-scale	 simulation	 study	 in	Eickhoff	 et	 al.	 (2016b),	

cluster-level	family-wise	error	(cFWE)	correction	is	preferred	as	it	provides	the	highest	power	to	detect	a	true	

underlying	effect	while	being	less	susceptible	to	spurious	activation	in	the	meta-analysis.	All	ALE	calculations	

were	implemented	using	MATLAB	scripts	which	corresponds	to	the	ALE	algorithm	as	described	in	Eickhoff	et	

al.	 (2009,	 2012,	 2016b)	 and	Turkeltaub	 et	 al.	 (2012)	 provided	 to	 us	 by	 Prof.	 dr.	 Simon	Eickhoff	 (personal	

communication).	

	

2.3.2 Random	effects	CBMA	

An	alternative	approach	is	to	use	the	associated	t-values	of	reported	peaks	to	estimate	corresponding	effect	

sizes,	enabling	a	weighted	average	of	these	effect	sizes.	Depending	on	the	weights,	this	results	in	a	random	or	

fixed	effects	meta-analysis	model.	To	evaluate	the	performance	of	these	effect	size	based	methods,	we	use	the	

seed	 based	d-mapping	 algorithm	 (SBdM),	 as	 described	 in	Radua	 et	 al.	 (2012).	However,	we	 have	 carefully	

replicated	 this	 algorithm	 in	 R	 (R	 Core	 Team,	 2015)	 to	 efficiently	 develop	 a	 fixed	 effects	 meta-analysis	

implementation	 (see	 below).	 As	 we	 cannot	 exclude	 slightly	 divergent	 results	 compared	 to	 the	 standalone	

version	of	SBdM	(http://www.sdmproject.com),	we	choose	to	refer	to	this	 implementation	as	random	effects	

CBMA.	We	follow	the	guidelines	for	significance	testing	as	described	in	Radua	et	al.	(2012).	 	

Unlike	ALE,	the	method	assigns	effect	sizes	to	voxels.	These	correspond	to	the	standardized	mean	(for	a	one	

sample	design)	known	as	Hedges’	g	(Hedges,	1981)	obtained	from	the	peak	height	𝑡^_ 	in	study	𝑚	(𝑚 = 1,… , 𝐾)	

and	voxel	𝑣	(𝑣 = 1, … , 𝑆).	For	a	given	peak	with	height	𝑡^_ 	stemming	from	a	one-sample	t-test	and	𝑁_ 	subjects,	

the	effect	size	𝑔^_	and	a	correction	factor	𝐽_ 	is	given	by:	

	 𝑔^_ = 	
𝑡^_
𝑁_

	×	𝐽_	 (8)	
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𝐽_ = 1 −

3
4	× 𝑁_ − 1 − 1

	 (9)	

First,	all	coordinates	of	local	maxima	are	smoothed	using	an	unnormalized	Gaussian	kernel.	The	resulting	map	

represents	 for	each	voxel	 the	distance	 to	a	nearby	peak.	Effect	 sizes	 in	voxels	 surrounding	a	peak	are	 then	

obtained	through	multiplication	of	the	peak	effect	size	calculated	using	equation	8	and	the	smoothed	map.	The	

effect	size	in	voxels	where	kernels	overlap	is	an	average	weighted	by	the	square	of	the	distance	to	each	nearby	

peak.	 	

Once	an	effect	size	𝑔^_∗ 	(i.e.	the	smoothed	standardized	effect	size)	is	obtained	in	each	voxel	(which	will	be	zero	

for	voxels	that	are	not	near	a	peak),	the	variance	of	this	effect	size	is	obtained	as	follows	(Hedges	and	Olkin,	

1985):	

	 var 𝑔^_∗ = 5
=j

+	 1 −	 k =jOI I
k =jO5 I

I
	×	(=jOl)

I
×𝑔∗^_

I 		 (10)	

Combining	all	studies	proceeds	by	calculating	the	weighted	average	θ	through	a	random	effects	model:	

	
𝜃^ =

U^_×𝑔^_∗b
_c5

Uopb
_c5

	 (11)	

with	 the	weights	 in	U^_ 	being	 the	 inverse	 of	 the	 sum	of	 both	 the	within	 study	 variability	 (estimated	using	

equation	10)	and	the	between	study	variability	(𝜏I).	The	latter	is	estimated	through	the	DerSimonian	&	Laird	

estimator	(DerSimonian	and	Laird,	1986).	 	

In	a	final	step,	the	null	hypothesis	H9:	θo = 0	is	calculated	with	the	following	Z-test:	Zo = 	 θo 1 Uopv
pc5 	

(Borenstein	 et	 al.,	 2009).	 A	 permutation	 approach	 with	 20	 iterations	 is	 used	 to	 create	 a	 combined	 null-

distribution,	in	which	each	iteration	is	a	whole	brain	permutation	with	close	to	100,000	values.	To	optimally	

balance	 sensitivity	 and	 specificity,	 a	 threshold	of	P	 =	 0.005	and	Z	 >	 1	 is	 recommended,	 instead	of	 classical	

multiple	comparisons	corrections	(Radua	et	al.,	2012).	Since	the	effect	size	is	imputed	as	0	in	voxels	far	from	

any	peak,	Z	>	1	is	a	lot	more	unlikely	under	the	empirical	null	distribution.	
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2.3.3 Fixed	effects	CBMA	

Finally,	we	also	evaluate	the	performance	of	a	fixed	effects	CBMA.	This	procedure	only	differs	from	the	random	

effects	CBMA	with	respect	to	the	weights.	A	fixed	effects	model	ignores	heterogeneity	across	studies	and	only	

uses	the	within	study	variability	to	calculate	the	weights,	Uop.	 	

An	illustration	of	ALE	and	an	effect	size	based	CBMA	prior	to	thresholding	can	be	seen	in	figure	1.	

	

	

Figure	1.	Illustration	of	ALE	and	an	effect	size	based	CBMA.	Reported	coordinates	are	first	modelled	by	applying	a	Gaussian	
kernel.	These	are	then	combined	either	through	calculating	probabilities	or	by	transforming	the	test-statistics	to	effect	sizes	
and	calculate	a	weighted	average.	Note	that	for	illustration	purpose,	we	only	plot	the	values	>	0	in	the	histograms.	Illustration	
is	prior	to	thresholding.	
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2.4 Design	

In	this	section,	we	describe	the	set-up	of	our	study	to	test	the	effect	of	pooling	subjects	at	the	individual	study	

level	on	the	outcome	of	methods	for	CBMA.	

2.4.1 Resampling	scheme	

The	general	study	design	is	depicted	in	figure	2.	In	one	iteration	𝑙	(𝑙 = 1, … , 𝐼)	or	fold,	𝑁x 	subjects	are	sampled	

without	replacement	into	an	evaluation	condition	while	𝑁x 	different	subjects	go	into	a	test	condition.	Next,	the	

subjects	in	the	test	condition	are	subsampled	into	K	smaller	studies	with	varying	sample	sizes	(mean	=	20,	SD	

=	5).	No	subsampling	restriction	into	the	K	studies	is	imposed.	However,	to	ensure	independent	results	across	

iterations,	we	impose	the	restriction	that	subjects	can	only	be	used	once	in	a	test	condition	in	one	iteration	and	

once	in	an	evaluation	condition	in	another	iteration.	Since	this	results	in	a	trade-off	between	the	number	of	

iterations	 (I)	 and	 the	number	of	 subjects	per	 iteration	 (𝑁x),	we	 consider	 three	 scenarios	of	 the	 resampling	

scheme,	 allowing	 us	 to	 vary	 the	 number	 of	 studies	 in	 the	meta-analyses	 in	 the	 test	 condition.	 In	 the	 first	

scenario,	we	have	7	iterations	where	we	sample	200	subjects	for	each	condition	(𝐼	×	𝑁x = 7	×	200 = 1400).	In	

the	test	condition,	we	then	sub-sample	these	subjects	into	10	studies	(K	=	10).	In	the	second	scenario,	we	double	

the	amount	of	studies	in	the	meta-analysis	with	𝑁x = 400, 𝐾 = 20	and	𝐼 = 3.	Finally,	in	the	third	scenario	we	

include	35	studies	in	each	meta-analysis	which	leads	to	𝑁x = 700, 𝐾 = 35	and	𝐼 = 2.	This	is	the	maximum	K	as	

we	then	use	all	the	subjects	from	the	database	while	performing	more	than	1	iteration.	

2.4.2 Test	condition	

The	K	studies	in	the	test	condition	are	all	analysed	using	FSL,	version	5.0.6.	Every	second	level	GLM	model	(FE,	

OLS	and	ME)	is	fitted	to	each	of	the	K	studies	with	the	FLAME	1	+	2	option	for	the	mixed	effects	models.	We	

only	test	for	average	group	activation.	
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Figure	2.	Design	of	the	study	illustrating	the	calculation	of	false	positives	and	true	positives	and	reliability	using	an	evaluation	

condition	(EVAL)	and	test	condition	(TEST).	

	

	

To	obtain	local	maxima,	we	search	for	clusters	of	significant	activity	in	the	K	studies	of	the	test	condition.	We	

choose	this	as	clusters	give	an	intuitive	way	of	defining	local	maxima	(i.e.	the	highest	peak	within	each	cluster).	

To	control	for	multiple	testing,	we	first	determine	a	threshold	such	that	the	voxelwise	false	discovery	rate	(FDR)	

is	controlled	at	level	0.05.	Then,	we	determine	clusters	of	significant	voxels	by	using	this	FDR	threshold	as	a	
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cluster	forming	threshold	in	combination	with	a	26-point	search	algorithm.	By	doing	so,	we	still	obtain	local	

maxima,	but	avoid	clusterwise	inference	which	is	shown	to	be	conservative	(Eklund	et	al.,	2016).	The	average	

observed	cluster	forming	threshold	in	this	study	equals	𝑍 = 3.18.	The	resulting	coordinates	of	the	foci	from	

each	study	with	the	number	of	subjects	are	then	used	as	input	for	the	ALE	meta-analysis.	The	corresponding	t-

values	(peak	heights)	are	added	for	the	fixed	and	random	effects	coordinate-based	meta-analyses.	 	

To	 identify	 significant	 voxels	 in	 the	 resulting	 meta-analyses,	 we	 apply	 the	 recommended	 procedures	 as	

described	in	section	2.3.	For	ALE,	a	voxelwise	threshold	uncorrected	for	multiple	testing	is	used	at	level	0.001,	

as	well	as	a	cluster-level	family-wise	error	(cFWE)	correction	for	multiple	testing	at	level	0.05.	For	the	fixed	

and	random	effects	CBMA	we	use	a	threshold	at	𝑍 > 1	and	at	𝑃 = 0.005,	uncorrected	for	multiple	testing.	

	

2.4.3 Evaluation	condition	

Finally,	 the	𝑁x 	subjects	 in	 the	 evaluation	 condition	 are	 combined	 in	 one	 large,	 high	powered	 study,	 using	 a	

mixed	effects	model.	To	control	for	multiple	testing	and	balance	sensitivity	and	specificity	in	this	large	sample,	

we	apply	a	more	conservative	threshold	such	that	the	voxelwise	FDR	is	controlled	at	level	0.001.	The	resulting	

map	serves	as	a	reference/benchmark	image	for	the	meta-analysis	results	obtained	in	the	test	condition.	Note	

that	a	threshold	for	the	sample	in	the	evaluation	condition	could	be	chosen	in	different	ways	so	deviations	from	

the	benchmark	image	should	not	be	interpreted	in	an	absolute	manner	but	compared	between	methods	in	a	

relative	manner.		Furthermore,	we	do	not	model	all	available	subjects	into	the	evaluation	condition,	but	a	set	

of	𝑁x 	different	subjects	with	respect	to	the	test	condition.	This	ensures	that	the	evaluation	condition	is	based	

on	independent	data.	Next,	by	having	an	equal	sample	size	in	both	conditions	one	can	consider	the	evaluation	

condition	as	a	perfect	scenario	 in	which	all	data	 is	available	 for	aggregation,	while	 the	 test	condition	 is	 the	

scenario	in	which	we	need	to	aggregate	censored	summary	results	in	the	form	of	peak	coordinates.		
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2.5 Performance	measures	

To	assess	the	performance	of	the	different	procedures	for	CBMA,	we	use	two	different	measures:	the	balance	

between	 false	 positives	 and	 true	 positives	 in	 receiver	 operator	 characteristic	 (ROC)	 curves	 and	 activation	

reliability	as	a	proxy	for	replicability.	

2.5.1 ROC	curves	

Statistical	tests	are	often	evaluated	based	on	the	extent	to	which	they	are	able	to	minimize	the	number	false	

positives	(detecting	signal	where	there	is	none)	while	maximizing	the	amount	of	true	positive	hits	(detecting	

true	signal).	Receiver	operator	characteristic	(ROC)	curves	plot	the	observed	true	positive	rate	(TPR)	against	

the	 observed	 false	 positive	 rate	 (FPR)	 as	 the	 threshold	 for	 significance	 (𝛼 )	 is	 gradually	 incremented.	 To	

calculate	true	and	false	positives,	we	compare	the	results	from	the	meta-analysis	in	the	test	condition	with	the	

reference	 image	 in	 the	 evaluation	 condition	 (EVAL	on	 figure	2).	The	TPR	or	 sensitivity	 is	 calculated	as	 the	

number	of	voxels	that	are	statistically	significant	in	both	the	meta-analysis	map	and	the	reference	map	divided	

by	 the	 total	 number	 of	 voxels	 that	 is	 statistically	 significant	 in	 the	 reference	 map.	 The	 FPR	 or	 fall-out	 is	

calculated	 as	 the	 number	 of	 voxels	 that	 is	 statistically	 significant	 in	 the	meta-analysis	map	 but	 not	 in	 the	

reference	map	divided	by	the	total	number	of	voxels	that	is	NOT	statistically	significant	in	the	reference	map.	

Because	the	TPR	and	FPR	are	calculated	voxelwise,	we	construct	the	ROC	curves	based	on	uncorrected	p	-	

values	for	the	meta-analyses	by	incrementing	the	significance	level,	alpha,	from	0	to	1.	Finally,	we	average	the	

I	individual	ROC	curves	and	additionally	use	the	area	under	the	curve	(AUC)	as	a	summary	measure.	Higher	

AUC	values	indicate	a	better	balance	in	discriminating	between	false	positive	and	true	positive	voxels.	We	also	

plot	the	ROC	calculate	the	AUC	for	that	part	of	the	curve	for	which	𝛼	∈ 0,0.1 	by	means	of	the	standardized	

partial	AUC	(McClish,	1989).	

Since	the	ALE	algorithm	uses	an	MNI	brain	template	with	a	higher	resolution	(2	mm	voxels,	dimensions	91	

×	109	×	91)	 than	the	(pre-processed)	 IMAGEN	data	(3	mm	voxels,	dimensions	53	×	63	×	46),	 the	reference	
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image	is	also	resampled	to	a	higher	resolution	so	that	it	matches	the	resolution	of	the	ALE	images.	We	apply	a	

linear	affine	transformation	with	12	degrees	of	freedom	from	the	EPI	template	of	the	IMAGEN	dataset	to	the	

MNI	brain	template,	using	a	correlation	ratio	cost	function	(Jenkinson	et	al.,	2002)	and	trilinear	interpolation	

in	FSL.	As	the	fixed	and	random	effects	meta-analyses	model	the	local	maxima	using	the	same	brain	template	

as	the	IMAGEN	data,	no	such	transformation	is	needed	here	to	calculate	the	ROC	curves.	

2.5.2 Reliability	

We	consider	activation	reliability	as	an	indicator	for	the	success	of	replicating	results.	We	define	replicability	

as	the	ability	to	repeat	the	results	of	an	experiment	using	the	exact	same	materials,	procedures	and	methods,	

but	with	a	different	set	of	subjects.	There	is	no	consensus	in	the	literature	on	this	definition	as	other	authors	

use	terms	such	as	strong	replicable	results	or	direct	reproduction	to	 indicate	the	same	concept	(Patil	et	al.,	

2016;	Pernet	and	Poline,	2015).	We	quantify	reliability	in	two	ways.		 	

First,	we	measure	 the	overlap	of	 results	between	 iterations	of	 the	 same	analysis	pipeline.	We	calculate	 the	

percent	 overlap	 of	 activation	 (Maitra,	 2010)	 between	 all	 �	×	(�	O	5)	
I

	pairwise	 combinations	 of	 the	 I	 unique	

iterations	of	the	design	(figure	2).	Let	𝑉�,�	represent	the	intersection	of	statistically	significant	voxels	in	image	

a	and	b,	𝑉� 	the	amount	of	statistically	significant	voxels	in	image	a	and	𝑉�	the	amount	of	statistically	significant	

voxels	in	image	b.	The	overlap	𝜔�,�	is	then	defined	as:	

𝜔�,� = 	
𝑉�,�

𝑉� + 𝑉� −	𝑉�,�
	

This	measure	 ranges	 from	0	 (no	overlap)	 to	1	 (perfect	overlap).	Note	 that	 this	 is	an	adaptation	of	 the	Dice	

(1945)	or	the	Sørensen	(1948)	similarity	coefficient.	

As	a	second	method	to	quantify	reliability,	we	describe	the	amount	of	unique	information	captured	in	each	

iteration.	We	first	quantify	the	number	of	times	out	of	the	I	iterations	a	voxel	is	declared	significant	and	visualize	

this	on	a	heatmap.	We	do	the	same	for	the	I	reference	images	from	the	evaluation	condition.	As	a	comparison,	

we	include	the	average	effect	size	map	obtained	using	again	the	reference	images.	 	
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Next,	 we	 run	 a	 26	 point	 search	 clustering	 algorithm	 on	 each	 thresholded	 meta-analysis	 to	 calculate	 the	

frequency	of	clusters	of	at	least	one	statistically	significant	voxel.	We	record	the	average	cluster	size	expressed	

in	number	of	voxels.	We	then	assess	the	number	of	unique	clusters	across	the	pairwise	combinations.	A	cluster	

of	statistically	significant	voxels	in	image	a	is	unique	if	no	single	voxel	from	this	cluster	overlaps	with	a	cluster	

of	statistically	significant	voxels	in	the	paired	image	b.	We	finally	determine	the	amount	of	these	unique	clusters	

that	are	large	(we	have	set	the	threshold	for	large	at	50	voxels)	and	divide	this	by	the	total	amount	of	statistically	

significant	 clusters	 to	 obtain	 the	proportion	of	 large	unique	 clusters.	Additionally,	we	 study	 the	number	of	

clusters	 and	 cluster	 sizes	 for	 both	unique	 and	overlapping	 clusters	 to	 get	 an	 overview,	 independent	 of	 the	

chosen	threshold	on	the	cluster	size.	Given	a	sample	size,	smaller	amounts	of	(large)	unique	clusters	imply	a	

higher	pairwise	reliability.		

	

3 Results	

3.1 ROC	curves	

In	figure	3,	5	and	7	we	present	the	average	ROC	curves	(over	iterations)	that	show	the	observed	true	positive	

rate	against	the	observed	false	positive	rate	for	K	=	10,	20	and	35	over	the	entire	range	of	𝛼.	In	figure	4,	6	and	

8	we	present	the	average	ROC	curves	for	K	=	10,	20	and	35	when	𝛼	∈ 0,0.1 .	To	condense	this	section,	we	only	

discuss	results	based	on	the	entire	range	of	𝛼.	We	observe	the	same	patterns	emerging	when	𝛼	∈ 0,0.1 .	The	

overall	AUC	is	high,	but	recall	that	given	that	comparisons	are	made	with	the	reference	image,	all	values	should	

be	used	for	relative	comparisons	as	the	absolute	AUC	will	depend	on	how	the	reference	image	is	determined.	

We	observe	higher	AUC	values	using	fixed	and	random	effects	models	compared	to	ALE.	The	only	exception	

is	observed	for	the	combination	of	OLS	and	ALE	for	K	=	35.	Small	differences	are	observed	between	the	fixed	

and	 random	effects	meta-analysis	with	 generally	higher	AUC	values	 for	 random	effects	meta-analyses.	 The	

observed	TPR	at	an	uncorrected	threshold	of	0.05	never	exceeds	0.5	for	ALE	in	any	of	the	scenarios,	while	the	
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TPR	of	the	fixed	and	random	effects	CBMA	methods	approaches	0.6	when	combining	mixed	or	fixed	group	level	

models	with	a	higher	amount	of	studies	in	the	meta-analysis.	

The	AUC	reveals	an	interaction	between	group	level	models	and	CBMA	methods.	In	the	fixed	and	random	

effects	meta-analysis	an	OLS	model	is	associated	with	lower	values	of	the	AUC	compared	to	fixed	and	mixed	

effects	models,	regardless	of	the	amount	of	studies	in	the	meta-analysis.	While	the	difference	between	fixed	and	

mixed	 effects	 group	models	 is	minimal,	 the	mixed	 effects	model	 consistently	 outperforms	 the	 fixed	 effects	

model.	

When	using	the	ALE	algorithm	however,	the	lowest	AUC	is	consistently	associated	with	a	fixed	effects	group	

model	for	all	study	set	sizes	K.	Only	with	the	highest	amount	of	studies	in	the	meta-analysis	(K	=	35),	does	an	

OLS	 group	 model	 outperform	 the	 mixed	 effects	 model.	 The	 combination	 of	 an	 OLS	 model	 with	 the	 ALE	

algorithm	not	only	leads	to	a	lower	observed	TPR	at	an	uncorrected	threshold	of	0.05,	but	also	a	lower	observed	

FPR.	

Finally,	for	all	CBMA	methods,	increasing	the	number	of	studies	in	the	meta-analysis	from	10	to	20	results	

in	a	higher	AUC.	The	average	AUC	of	the	meta-analyses,	regardless	of	the	group	level	models,	increases	for	K	=	

10	from	0.82	(ALE),	0.86	(fixed	effects	MA)	and	0.87	(random	effects	MA)	to	respectively	0.85,	0.89	and	0.89	in	

K	=	20.	Adding	even	more	studies	(K	=	35)	is	associated	with	a	further	increase	to	0.86	of	the	average	AUC	for	

ALE,	but	not	for	the	fixed	(0.89)	and	random	effects	(0.89)	meta-analyses.	

Overall,	the	best	balance	between	TPR	and	FPR	detection	is	observed	when	using	mixed	effects	group	level	

models	together	with	random	effects	meta-analyses.	
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Figure	4:	identical	ROC	curves	as	in	figure	3	(K	=	10),	but	only	for	𝛼	

∈ [0,0.1] .	 The	 area	 under	 the	 curve	 is	 calculated	 through	 a	

standardized	partial	AUC.	The	columns	correspond	to	the	coordinate-

based	meta-analyses	(left:	ALE	uncorrected	procedure,	middle:	fixed	

effects	meta-analysis,	right:	random	effects	meta-analysis).	The	rows	

correspond	to	the	second	level	GLM	pooling	models	(top:	OLS,	middle:	

fixed	effects,	bottom:	mixed	effects).	The	drop-down	lines	correspond	

to	 the	 point	 at	 which	 the	 pre-specified	 nominal	 level	 is	 set	 at	 an	

uncorrected	𝛼	level	of	0.05.	

	

Figure	 3:	 complete	ROC	 curves	 (±	 1	 standard	 deviation),	 averaged	

over	I	=	7	iterations	plotting	the	observed	true	positive	rate	against	

the	observed	false	positive	rate	for	K	=	10.	The	columns	correspond	to	

the	 coordinate-based	 meta-analyses	 (left:	 ALE	 uncorrected	

procedure,	middle:	fixed	effects	meta-analysis,	right:	random	effects	

meta-analysis).	The	rows	correspond	to	the	second	level	GLM	pooling	

models	 (top:	OLS,	middle:	 fixed	 effects,	 bottom:	mixed	 effects).	 For	

each	of	those,	the	area	under	the	curve	(AUC)	is	calculated	and	shown	

within	the	plot.	The	drop-down	lines	correspond	to	the	point	at	which	

the	pre-specified	nominal	level	is	set	at	an	uncorrected	𝛼	level	of	0.05.	

	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2017. ; https://doi.org/10.1101/144071doi: bioRxiv preprint 

https://doi.org/10.1101/144071
http://creativecommons.org/licenses/by-nd/4.0/


	

	 22	

	

	

Figure	5:	ROC	curves	(±	1	standard	deviation),	averaged	over	I	=	3	

iterations	 plotting	 the	 observed	 true	 positive	 rate	 against	 the	

observed	false	positive	rate	for	K	=	20.	The	columns	correspond	to	the	

coordinate-based	 meta-analyses	 (left:	 ALE	 uncorrected	 procedure,	

middle:	 fixed	 effects	 meta-analysis,	 right:	 random	 effects	 meta-

analysis).	 The	 rows	 correspond	 to	 the	 second	 level	 GLM	 pooling	

models	 (top:	OLS,	middle:	 fixed	 effects,	 bottom:	mixed	 effects).	 For	

each	of	those,	the	area	under	the	curve	(AUC)	is	calculated	and	shown	

within	the	plot.	The	drop-down	lines	correspond	to	the	point	at	which	

the	pre-specified	nominal	level	is	set	at	an	uncorrected	𝛼	level	of	0.05.	

	

Figure	6:	identical	ROC	curves	as	in	figure	5	(K	=	20),	but	only	for	𝛼	

∈ [0,0.1]. 	The	 area	 under	 the	 curve	 is	 calculated	 through	 a	

standardized	partial	AUC.	The	columns	correspond	to	the	coordinate-

based	meta-analyses	(left:	ALE	uncorrected	procedure,	middle:	fixed	

effects	meta-analysis,	right:	random	effects	meta-analysis).	The	rows	

correspond	to	the	second	level	GLM	pooling	models	(top:	OLS,	middle:	

fixed	effects,	bottom:	mixed	effects).	The	drop-down	lines	correspond	

to	 the	 point	 at	 which	 the	 pre-specified	 nominal	 level	 is	 set	 at	 an	

uncorrected	𝛼	level	of	0.05.	
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Figure	7:	ROC	curves	(±	1	standard	deviation),	averaged	over	I	=	2	

iterations	 plotting	 the	 observed	 true	 positive	 rate	 against	 the	

observed	false	positive	rate	for	K	=	35.	The	columns	correspond	to	the	

coordinate-based	meta-analyses	 (left:	 ALE	 uncorrected	 procedure,	

middle:	 fixed	 effects	 meta-analysis,	 right:	 random	 effects	 meta-

analysis).	 The	 rows	 correspond	 to	 the	 second	 level	 GLM	 pooling	

models	 (top:	OLS,	middle:	 fixed	 effects,	 bottom:	mixed	 effects).	 For	

each	of	those,	the	area	under	the	curve	(AUC)	is	calculated	and	shown	

within	the	plot.	For	each	of	those,	the	area	under	the	curve	(AUC)	is	

calculated	 and	 shown	 within	 the	 plot.	 The	 drop-down	 lines	

correspond	to	the	point	at	which	the	pre-specified	nominal	level	is	set	

at	an	uncorrected	𝛼	level	of	0.05.	

Figure	8:	identical	ROC	curves	as	in	figure	7	(K	=	35),	but	only	for	𝛼	

∈ [0,0.1] .	 The	 area	 under	 the	 curve	 is	 calculated	 through	 a	

standardized	partial	AUC.	The	columns	correspond	to	the	coordinate-

based	meta-analyses	(left:	ALE	uncorrected	procedure,	middle:	fixed	

effects	meta-analysis,	right:	random	effects	meta-analysis).	The	rows	

correspond	to	the	second	level	GLM	pooling	models	(top:	OLS,	middle:	

fixed	effects,	bottom:	mixed	effects).	The	drop-down	lines	correspond	

to	 the	 point	 at	 which	 the	 pre-specified	 nominal	 level	 is	 set	 at	 an	

uncorrected	𝛼	level	of	0.05.	
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3.2 Reliability	

Figures	9	and	10	display	the	percent	overlap	of	activation	for	K	=	10,	20	and	35.	Noticeably,	the	overlap	values	

have	a	wide	range	 from	0.07	(OLS,	ALE	cFWE,	K	=	10)	 to	a	moderate	0.69	(fixed	effects	group	 level	model,	

random	 effects	 MA,	 K	 =	 35).	 Average	 overlap	 values	 over	 I	 iterations	 and	 the	 group	 level	 models/CBMA	

methods	 can	be	 found	 in	 table	 1.	Again,	 as	 the	 overlap	between	 thresholded	maps	depends	 on	 the	 chosen	

threshold,	it	is	better	to	focus	on	the	relative	performances	of	the	group	level	models	and	methods	for	CBMA.	

Similar	to	the	ROC	curves,	we	observe	higher	overlap	when	more	studies	are	added	to	the	meta-analysis.	

Furthermore,	both	ALE	 thresholding	methods	are	associated	with	 lower	values	of	overlap	compared	 to	 the	

fixed	and	random	effects	meta-analysis.	In	contrast	to	the	ROC	curves,	the	maximum	overlap	value	observed	in	

ALE	 is	 low	and	does	not	approach	the	performance	of	 the	 fixed	and	random	effects	meta-analysis.	We	only	

observe	small	differences	between	the	fixed	and	random	effects	meta-analysis.	For	K	=	10,	we	observe	mostly	

higher	values	using	a	random	effects	meta-analysis.	

Regarding	the	group	level	models,	OLS	models	are	associated	with	lower	coefficients	of	overlap	than	fixed	

and	mixed	effects	models.	In	general,	we	observe	higher	values	using	fixed	effects	models	compared	to	mixed	

effects	models,	though	these	differences	are	much	smaller.	These	patterns	are	similar	regardless	of	the	CBMA	

method	and	study	set	size	K.	

Given	the	results	on	the	overlap	values,	we	look	for	similar	patterns	using	the	heatmaps	at	MNI	z-coordinate	

50	for	K	=	10	(left	part	of	figure	11.A),	K	=	20	(right	part	of	figure	11.A)	and	K	=	35	(figure	12.A)	and	in	the	

results	detailing	the	amount	of	unique	information	in	each	iteration	(table	2).	

Regarding	ALE,	we	clearly	observe	smaller	regions	of	activation	with	a	higher	percentage	of	large	unique	

clusters	compared	to	the	fixed	and	random	effects	meta-analysis,	especially	in	small	K.	However,	we	do	observe	

convergence	 in	 the	ALE	 results	 to	 the	 brain	 regions	 characterized	by	 (1)	 consistent	 statistically	 significant	

declared	voxels	(panel	B	in	figure	11	and	12)	and	(2)	high	effect	sizes	in	the	reference	images	(panel	C	in	figure	
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11	 and	 12).	 The	 fixed	 and	 random	 effects	meta-analyses	 do	 detect	 larger	 regions,	 but	 are	 not	 necessarily	

constrained	to	the	exact	spatial	shape	of	activated	regions	observed	in	the	reference	images.	

The	 difference	 in	 the	 degree	 of	 unique	 information	 between	 uncorrected	 ALE	 and	 ALE	 cFWE	 is	 more	

detailed	than	the	observed	overlap	values.	Uncorrected	ALE	is	associated	with	the	highest	(out	of	any	meta-

analysis)	detection	rate	of	small	clusters.	This	in	turn	leads	to	an	inflated	number	of	(small	and	large)	unique	

clusters.	However,	we	observe	the	highest	percentages	of	large	unique	clusters	using	ALE	cFWE.	Only	small	

differences	between	the	fixed	and	random	effects	meta-analyses	are	observed.	

Regarding	the	group	level	models,	we	see	on	average	 less	and	smaller	clusters	of	statistically	significant	

voxels	associated	with	the	OLS	group	level	models	compared	to	the	fixed	and	mixed	effects	models.	This	is	true	

for	every	study	set	size	K.	However,	for	small	study	set	sizes	such	as	K	=	10	and	20,	the	OLS	model	is	associated	

with	a	higher	percentage	of	 large	unique	clusters.	For	K	=	35,	 this	 is	 the	opposite	as	 the	OLS	model	has	on	

average	the	lowest	percentage	of	large	unique	clusters.	The	fixed	and	mixed	effects	group	level	models	show	in	

most	 cases	 similar	 values.	We	 include	 the	distributions	 of	 the	number	of	 overlapping	 and	unique	detected	

clusters	as	well	as	the	cluster	sizes	in	the	appendix.	These	distributions	show	the	same	patterns	as	depicted	in	

table	2.	

To	conclude,	models	such	as	the	OLS	group	level	model	(for	K	=	10	and	20)	and	the	ALE	meta-analyses	that	

are	characterized	with	low	overlap	values	are	either	associated	with	smaller	clusters	of	statistically	significant	

voxels	or	higher	percentages	of	large	unique	clusters.		
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Figure	9.	Percent	overlap	of	activation	(𝜔�,�)	from	all	pairwise	comparisons	for	K	=	10.	The	rows	represent	the	group	level	

models	(top	to	bottom:	fixed	effects,	mixed	effects	and	OLS).	The	columns	represent	the	thresholded	meta-analyses.	From	left	

to	right:	ALE	cFWE	at	0.05,	ALE	uncorrected	at	0.001	and	fixed	and	random	effects	CBMA	at	0.005	with	𝑍 > 1.	
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Figure	10.	Percent	overlap	of	activation	(ω�,�)	from	all	pairwise	comparisons	for	K	=	20	(bottom)	and	35	(top).	The	rows	
represent	the	group	level	models	(top	to	bottom:	fixed	effects,	mixed	effects	and	OLS).	The	columns	represent	the	thresholded	
meta-analyses.	From	left	to	right:	ALE	cFWE	at	0.05,	ALE	uncorrected	at	0.001	and	fixed	and	random	effects	CBMA	at	0.005	
with	Z > 1.	
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	 Average	overlap	over	I	and	CBMA	methods	

K	 Fixed	effects	 Mixed	effects	 OLS	

10	 0.29	 0.26	 0.15	

20	 0.48	 0.43	 0.28	

35	 0.54	 0.52	 0.46	
	

	 Average	overlap	over	I	and	group	level	models	

K	 Fixed	Effects	MA	 Random	Effects	MA	 ALE	Uncorrected	 ALE	cFWE	

10	 0.34	 0.35	 0.13	 0.11	

20	 0.52	 0.52	 0.27	 0.28	

35	 0.64	 0.64	 0.38	 0.39	
Table	1.	Averaged	overlap	values	over	the	I	iterations	and	the	CBMA	methods	(top)	and	over	the	I	iterations	and	the	group	level	

models	(bottom)	for	each	K.	
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Figure	11.	Heatmaps	of	MNI	z-coordinate	50	for	K	=	10	(left)	and	K	=	20	(right).	A:	the	number	of	iterations	in	which	each	

voxel	has	been	declared	statistically	significant	for	each	combination	of	a	group	level	model	(row-wise)	and	thresholded	

meta-analysis	(column-wise).	B:	the	number	of	iterations	in	which	each	voxel	of	the	reference	images	has	been	declared	

statistically	significant.	Areas	of	interest	involve	the	supramarginal	gyrus	(posterior	division),	superior	parietal	lobule	and	

angular	gyrus.	C:	average	effect	size	of	the	reference	images	over	the	iterations.	
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Figure	12.	Heatmap	of	MNI	z-coordinate	50	for	K	=	35.		 	

A:	 the	number	of	 iterations	 in	which	 each	voxel	has	 been	declared	

statistically	significant	for	each	combination	of	a	group	level	model	

(row-wise)	 and	 thresholded	 meta-analysis	 (column-wise).	 B:	 the	

number	of	iterations	in	which	each	voxel	of	the	reference	images	has	

been	declared	statistically	 significant.	Areas	of	 interest	 involve	 the	

supramarginal	 gyrus	 (posterior	 division),	 superior	 parietal	 lobule	

and	angular	gyrus.	C:	average	effect	size	of	the	reference	images	over	

the	iterations.	
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	 	 	 	 Amount	of	
clusters	

Voxels	in	clusters	 Unique	clusters	 Large	uni.	clust.	 Percentage	

K	 Group	Model	 Meta-analysis	 I	 mean	 sd	 mean	 sd	 mean	 sd	 mean	 sd	 large	clusters	

10	 Fixed	Effects	 Fixed	Effects	MA	 7	 23.1	 6.1	 206.7	 71.4	 11.67	 5.83	 2.00	 1.48	 0.09	

	 	 Random	Effects	MA	 7	 19.6	 3.1	 186.4	 43.9	 9.33	 2.88	 1.45	 1.52	 0.08	

	 	 ALE	Uncorrected	 7	 50.3	 7.2	 53.1	 11.1	 31.10	 6.66	 4.14	 2.72	 0.08	

	 	 ALE	cFWE	 7	 11.0	 1.3	 155.0	 31.8	 5.71	 1.94	 5.71	 1.94	 0.52	

	 OLS	 Fixed	Effects	MA	 7	 19.9	 6.1	 132.1	 59.6	 11.86	 4.95	 2.69	 2.41	 0.14	

	 	 Random	Effects	MA	 7	 20.6	 7.4	 126.6	 68.6	 12.43	 5.92	 2.62	 2.23	 0.13	

	 	 ALE	Uncorrected	 7	 31.9	 6.8	 41.7	 15.2	 22.95	 5.65	 3.17	 2.04	 0.10	

	 	 ALE	cFWE	 7	 4.9	 2.9	 136.5	 49.0	 3.10	 2.35	 3.10	 2.35	 0.63	

	 Mixed	Effects	 Fixed	Effects	MA	 7	 22.9	 4.7	 189.0	 50.8	 12.19	 3.98	 2.36	 1.41	 0.10	

	 	 Random	Effects	MA	 7	 21.4	 3.4	 169.2	 44.0	 10.38	 3.22	 1.40	 0.94	 0.07	

	 	 ALE	Uncorrected	 7	 49.1	 8.1	 54.0	 14.1	 30.57	 7.03	 4.26	 2.31	 0.09	

	 	 ALE	cFWE	 7	 11.6	 1.5	 147.3	 26.1	 5.95	 1.77	 5.95	 1.77	 0.52	

20	 Fixed	Effects	 Fixed	Effects	MA	 3	 19.3	 5.1	 438.1	 145.5	 8.00	 4.29	 2.17	 1.83	 0.12	

	 	 Random	Effects	MA	 3	 17.0	 1.7	 394.8	 71.7	 4.67	 1.86	 0.50	 0.55	 0.03	

	 	 ALE	Uncorrected	 3	 52.3	 8.4	 128.1	 42.0	 22.67	 7.37	 4.67	 2.16	 0.09	

	 	 ALE	cFWE	 3	 21.0	 2.6	 264.8	 53.4	 3.33	 2.07	 3.33	 2.07	 0.16	

	 OLS	 Fixed	Effects	MA	 3	 21.3	 8.7	 248.9	 105.2	 12.33	 7.55	 3.17	 0.75	 0.15	

	 	 Random	Effects	MA	 3	 20.3	 8.4	 251.0	 97.0	 11.00	 7.40	 3.00	 0.63	 0.15	

	 	 ALE	Uncorrected	 3	 47.0	 11.1	 64.9	 17.3	 29.00	 9.72	 5.17	 2.14	 0.11	

	 	 ALE	cFWE	 3	 12.3	 1.5	 181.6	 36.9	 5.33	 1.97	 5.33	 1.97	 0.44	

	 Mixed	Effects	 Fixed	Effects	MA	 3	 20.7	 4.5	 389.8	 122.1	 8.67	 4.27	 1.00	 1.10	 0.05	

	 	 Random	Effects	MA	 3	 21.0	 1.0	 318.6	 44.0	 9.00	 0.89	 1.00	 0.89	 0.05	

	 	 ALE	Uncorrected	 3	 50.7	 6.1	 123.9	 36.5	 26.67	 5.16	 5.67	 2.80	 0.11	

	 	 ALE	cFWE	 3	 18.3	 2.5	 279.4	 54.4	 5.33	 2.07	 5.33	 2.07	 0.29	

35	 Fixed	Effects	 Fixed	Effects	MA	 2	 14.50	 2.12	 735.33	 193.06	 9.50	 2.12	 3.50	 2.12	 0.25	

	 	 Random	Effects	MA	 2	 12.50	 3.54	 793.10	 308.16	 4.50	 3.54	 2.00	 1.41	 0.17	

	 	 ALE	Uncorrected	 2	 54.50	 0.71	 182.37	 5.91	 21.50	 0.71	 6.50	 4.95	 0.12	

	 	 ALE	cFWE	 2	 25.50	 0.71	 347.01	 37.16	 4.50	 0.71	 4.50	 0.71	 0.17	

	 OLS	 Fixed	Effects	MA	 2	 14.00	 2.83	 587.50	 167.23	 7.00	 2.83	 1.50	 0.71	 0.11	

	 	 Random	Effects	MA	 2	 13.50	 2.12	 600.95	 144.08	 6.50	 2.12	 1.50	 0.71	 0.11	

	 	 ALE	Uncorrected	 2	 41.00	 8.49	 148.97	 31.85	 20.00	 8.49	 4.00	 0.00	 0.10	

	 	 ALE	cFWE	 2	 15.50	 0.71	 350.41	 9.69	 3.50	 0.71	 3.50	 0.71	 0.22	

	 Mixed	Effects	 Fixed	Effects	MA	 2	 19.50	 4.95	 566.47	 229.15	 12.50	 4.95	 3.50	 3.54	 0.18	

	 	 Random	Effects	MA	 2	 17.50	 3.54	 578.73	 203.84	 9.50	 3.54	 3.00	 2.83	 0.17	

	 	 ALE	Uncorrected	 2	 56.00	 7.07	 182.71	 45.69	 22.00	 7.07	 5.50	 0.71	 0.10	

	 	 ALE	cFWE	 2	 22.00	 2.83	 402.95	 27.23	 5.00	 2.83	 5.00	 2.83	 0.23	
Table	2	Descriptive	results	of	the	thresholded	meta-analyses	in	a	replication	setting.	For	each	study	set	size	(K),	I	replicated	
images	are	compared	pairwise.	Shown	in	the	table	are	the	averages	(over	I)	of	the	amount	of	clusters	and	the	size	of	these	
clusters.	Next	to	it	are	the	averages	(over	�	×	(�	O	5)	

I
	pairwise	comparisons)	of	the	amount	of	clusters	that	are	unique	to	one	of	

the	paired	comparisons,	the	amount	of	large	(i.e.	more	than	50	voxels)	unique	clusters	and	the	percentage	of	the	total	amount	
of	clusters	that	are	large	unique	clusters.		
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3.3 Between	study	variability	

We	observe	no	substantial	differences	between	 the	 fixed	and	random	effects	meta-analysis	 in	most	 results.	

Since	we	are	working	with	one	large	database	of	a	homogenous	sample	executing	the	same	paradigm,	between	

study	variability	is	limited.	

To	investigate	this	further,	we	look	at	the	between	study	variability,	estimated	by	𝜏I	in	the	weights	(U^_in	

equation	(11))	of	the	random-effects	meta-analysis	for	K	=	10.	In	figure	13,	we	display	the	average	t-map	(over	

7	 iterations)	of	 the	 reference	 images	over	4	 slices	along	 the	z-axis.	We	 then	plot	 the	estimated	𝜏I 	from	 the	

random	 effects	 meta-analyses	 combined	 with	 the	 statistically	 significant	 voxels	 depicting	 the	 weighted	

averages	of	the	random	effects	meta-analysis.	

We	 observe	 the	 higher	 levels	 of	 between	 study	 heterogeneity	 mostly	 in	 the	 same	 regions	 that	 are	

statistically	significant	in	the	random	(and	fixed)	effects	meta-analysis	(figure	13).	OLS	pooling	generates	less	

between	study	heterogeneity	 compared	 to	 fixed	and	mixed	effects	pooling.	This	 corresponds	 to	 the	overall	

smaller	differences	in	performance	between	fixed	and	random	effects	meta-analysis	we	observe	when	using	

OLS	pooling	(e.g.	see	figures	3	and	9).	
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Figure	13.	Slices	(MNI	z-coordinates	from	left	to	right:	-44,	-4,	26	and	58)	showing	the	average	t-map	of	the	reference	images,	

the	estimated	variance	between	studies	and	the	weighted	average	of	the	random	effects	meta-analysis	(statistically	

significant	voxels	only)	using	the	3	pooling	models	for	K	=	10.	The	contour	lines	represent	the	average	t-map	of	the	reference	

images	shown	as	illustration.	
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4 Discussion	

In	this	paper,	we	studied	how	(1)	the	balance	between	false	and	true	positives	and	(2)	activation	reliability	for	

various	coordinate-based	meta-analysis	 (CBMA)	methods	 in	 fMRI	 is	 influenced	by	an	analytic	 choice	at	 the	

study	level.	We	applied	a	resampling	scheme	on	a	large	existing	dataset	(N	=	1400)	to	create	a	test	condition	

and	an	independent	evaluation	condition.	Each	test	condition	corresponds	to	a	combination	of	(a)	a	method	for	

pooling	 subjects	within	 studies	and	 (b)	 a	meta-analytic	method	 for	pooling	 studies.	 For	 (a),	we	 considered	

ordinary	least	squares,	fixed	effects	and	mixed	effects	modelling	in	FSL	and	for	(b)	we	considered	an	activation	

likelihood	estimation	(ALE),	a	fixed	effects	coordinate-based	meta-analysis	and	a	random	effects	coordinate-

based	meta-analysis.	We	generated	meta-analyses	 consisting	of	 either	10,	20	or	35	 studies.	The	evaluation	

condition	corresponded	to	a	high-powered	image	that	was	used	as	a	reference	outcome	for	comparison	with	

the	meta-analytical	results.	

Comparing	 the	 test	 and	 evaluation	 condition	 enabled	 to	 calculate	 false	 and	 true	 positive	 hits	 of	 the	meta-

analyses	 depicted	 in	 ROC	 curves	 for	 each	 specific	 combination.	 By	 resampling	 within	 test	 conditions,	 we	

explored	various	measures	of	reliability.	

In	our	study,	we	found	the	most	optimal	balance	between	false	and	true	positives	when	combining	a	mixed	

effects	group	level	model	with	a	random	effects	meta-analysis.	For	less	than	20	studies	in	the	meta-analyses,	

adding	more	studies	lead	to	a	better	balance	for	this	analysis	pipeline.	When	the	meta-analysis	contained	at	

least	20	studies,	there	was	no	further	considerable	improvement	by	adding	studies.	Our	results	further	indicate	

that	the	combination	of	a	random	effects	meta-analysis	performed	better	with	respect	to	activation	reliability	

when	combined	with	a	fixed	or	mixed	effects	group	level	model.	There	are	however	two	disadvantages	when	

using	fixed	effects	group	level	models.	First,	 inference	 is	restricted	to	the	participants	 included	in	the	study	

(Mumford	and	Nichols,	2006).	Second,	it	has	been	shown	that	fixed	effects	models	tend	to	be	liberal	(Mumford	

and	Nichols,	2006).	Hence,	comparing	two	images	with	a	large	amount	of	positive	hits	(either	be	true	or	false	

positives)	likely	corresponds	with	an	increased	overlap.		
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Noticeably,	the	ROC	curves	demonstrate	a	worse	balance	between	false	and	true	positives	when	OLS	group	

level	models	are	used	to	pool	subjects	within	studies,	regardless	of	the	meta-analysis.	As	shown	in	Mumford	

and	Nichols	(2009),	OLS	models	tend	to	be	associated	with	conservative	hypothesis	testing	and	a	loss	of	power	

depending	 on	 the	 sample	 size	 and	 the	 extent	 to	 which	 the	 assumption	 of	 homogeneous	 within	 subject	

variability	is	violated	(see	also	Friston	et	al.	2005).	Our	results	are	in	line	with	Roels	et	al.	(2016)	who	show	

favourable	ROC	curves	in	parametric	testing	of	the	mixed	effects	group	level	model	compared	to	OLS.		

Regarding	CBMA,	 it	can	be	noted	that	even	though	ALE	only	 includes	peak	 location	and	not	peak	height	

(effect	size),	results	converge	to	the	same	brain	regions	associated	with	high	effect	sizes	in	the	reference	images.	

Subsequently,	 the	ALE	 results	 tend	 to	 involve	brain	 regions	 that	 correspond	 to	 the	detected	 regions	 in	 the	

reference	images.	Our	observations	are	in	line	with	Eickhoff	et	al.	(2016b)	in	the	sense	that	ALE	meta-analyses	

require	at	least	20	studies.	At	this	point,	the	outcome	with	respect	to	the	ROC	curves	are	close	to	the	fixed	and	

random	effects	methods	for	CBMA.	These	findings	differ	from	Radua	et	al.	(2012),	who	observe	much	lower	

values	for	sensitivity	when	comparing	ALE	to	seed	based	d-mapping.	Their	study	was	limited	however	to	10	

studies	per	meta-analysis.	Furthermore,	these	authors	applied	a	false	discovery	rate	correction	in	ALE	(at	level	

0.05)	which	is	shown	to	be	relatively	low	in	sensitivity	and	susceptible	to	spurious	activation	for	ALE	maps	

(Eickhoff	et	al.,	2016b).	We	on	the	other	hand	looked	at	a	range	of	false	positive	rates	given	a	significance	level	

𝛼	which	enables	to	study	the	power	of	procedures	at	an	observed	false	positive	rate.			

We	observed	a	lower	reliability	when	using	ALE	compared	with	the	fixed	and	random	effects	methods	for	

CBMA,	even	when	35	studies	were	included	in	the	meta-analysis.	We	propose	the	following	explanations.	First	

in	low	study	set	sizes	and	as	shown	in	Eickhoff	et	al.	(2016b),	ALE	results	that	include	only	10	studies	are	more	

likely	 to	 be	 driven	 by	 one	 single	 experiment.	 Second,	 the	 two	 approaches	 differ	 in	 the	 kernel	 sizes	 when	

modelling	the	foci.	As	described	in	Radua	et	al.	(2012)	and	Eickhoff	et	al.	(2009),	the	ALE	algorithm	relies	on	

kernels	with	a	smaller	full-width	at	half	maximum	than	the	fixed	and	random	effects	meta-analyses.	This	results	

in	a	greater	number	of	small	clusters	of	activation	when	using	ALE.	These	images	are	more	prone	to	be	a	hit	or	

miss	 in	 a	 replication	 setting,	 depending	on	 the	 sample	 size	 and	 the	observed	effect	 size.	Third,	 the	various	

methods	 use	 different	 approaches	 to	 correct	 for	 the	multiple	 testing	 problem.	 For	 ALE	we	 used	 the	 cFWE	
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correction	that	was	extensively	validated	in	Eickhoff	et	al.	(2016b).	The	fixed	and	random	effects	CBMA	was	

implemented	using	the	recommended	thresholding	of	seed	based	d-mapping	that	relies	on	two	(uncorrected)	

thresholds	 rather	 than	 explicitly	 correcting	 P-values.	 It	 remains	 unclear	 how	 this	 two-step	 thresholding	

procedure	behaves	in	a	range	of	scenarios	where	both	the	amount	and	location	of	peaks	with	respect	to	the	

true	effect	varies	strongly.		 	

	

We	conclude	with	discussing	some	shortcomings	of	this	paper.	

First,	we	did	not	investigate	adaptive	smoothing	kernels	such	as	the	anisotropic	kernel	described	in	Radua	et	

al.	 (2014).	 This	 type	 of	 kernel	 incorporates	 spatial	 information	 of	 the	 brain	 structure.	 These	 kernels	 are	

promising	as	they	potentially	result	 in	a	better	delineation	of	the	activated	brain	regions	in	a	meta-analysis	

rather	than	the	Gaussian	spheres	we	observed	in	our	results.	

Second,	 our	 results	 are	 characterized	 by	 low	 between-study	 heterogeneity	 since	 each	 study	 is	 created	 by	

sampling	from	the	same	dataset.	In	a	real	meta-analysis,	we	expect	higher	between	study	variability	as	it	will	

include	 studies	 with	 a	 range	 of	 different	 scanner	 settings,	 paradigm	 operationalisations	 and	 sample	

populations.	In	previous	versions	of	this	manuscript,	we	tested	(1)	sampling	subjects	in	figure	2	according	to	

the	scanning	site	involved	in	the	IMAGEN	project	and	(2)	clustering	subjects	based	on	their	individual	effect	

size	 maps	 into	 individual	 studies	 to	 achieve	 higher	 between-study	 variability.	 However,	 these	 design	

adaptations	did	not	yield	substantial	higher	between-study	heterogeneity.		

Third,	we	limited	our	comparison	to	a	fixed	and	random	effects	model	implementation	of	an	effect	size	based	

CBMA	method	with	ALE,	the	most	used	CBMA	method	that	only	uses	peak	location.	There	are	alternatives	for	

ALE	that	also	only	use	the	location	of	 local	maxima	such	as	Multilevel	Kernel	Density	Analysis	(Wager	et	al,	

2007,	2009).		

Fourth,	we	did	not	explicitly	investigate	the	influence	of	the	sample	size	of	individual	studies	on	the	outcome	of	

a	meta-analysis.	However,	Tahmasebi	et	al.	 (2012)	used	the	same	IMAGEN	dataset	(though	with	a	different	

contrast)	to	measure	the	effect	of	the	sample	size	on	the	variability	of	the	locations	of	peak	activity	in	group	

analyses	(study	level).	Their	results	indicate	that	30	participants	or	more	are	needed	so	that	locations	of	peak	
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activity	stabilize	around	a	reference	point.	For	similar	results,	see	Thirion	et	al.	(2007)	who	recommend	at	least	

20	participants	 in	 a	 group	 analysis	 to	 achieve	 acceptable	 classification	 agreement.	 This	was	defined	 as	 the	

concordance	between	group	analyses	containing	different	subjects	performing	the	same	experimental	design	

on	declaring	which	voxels	are	truly	active.		

Finally,	it	should	be	stressed	that	our	study	does	not	reveal	which	combinations	are	more	robust	against	the	

presence	of	bias.	This	bias	could	include	(1)	publication	bias	(Rothstein	et	al.,	2005),	(2)	bias	due	to	missing	

information	since	only	statistically	significant	peak	coordinates	and/or	peak	effect	sizes	are	used	within	studies	

and	not	the	entire	image,	(3)	or	in	the	case	of	effect	size	based	CBMA	bias	due	to	missing	data	if	peak	effect	sizes	

for	 some	 studies	 are	 not	 reported	 (Costafreda,	 2009;	 Wager	 et	 al.,	 2007).	 Seed	 based	 d-mapping,	 uses	

imputations	to	solve	this	latter	missing	data	problem.	As	we	did	not	have	any	missing	data	in	our	simulations,	

we	did	not	evaluate	the	influence	of	these	missing	data	on	the	performance	of	the	various	CBMA	methods.		

	

	

5 Conclusion	

There	is	a	clear	loss	of	information	when	fMRI	meta-analyses	are	restricted	to	coordinates	of	peak	activation.	

However,	if	complete	statistical	parametric	maps	are	unavailable,	then	coordinate	based	meta-analyses	provide	

a	way	to	aggregate	results.	We	have	investigated	the	trajectory	of	fMRI	results	from	the	choice	of	statistical	

group	model	at	 the	study	 level	 to	different	coordinate-based	meta-analysis	methods.	Our	results	 favour	the	

combination	of	mixed	effects	models	in	the	second	stage	of	the	GLM	procedure	combined	with	random	effects	

meta-analyses	which	rely	on	both	the	coordinates	and	effect	sizes	of	the	local	maxima.	Our	results	indicated	(1)	

a	higher	balance	between	the	false	and	true	positive	rate	when	compared	to	a	high-powered	reference	image	

and	 (2)	 a	 higher	 reliability	 if	 the	meta-analysis	 contains	 at	 least	 20	 or	 35	 studies.	 The	 popular	 Activation	

Likelihood	 Estimation	 method	 for	 coordinate-based	 meta-analysis	 provides	 a	 slightly	 lower	 but	 still	

comparable	balance	between	false	and	true	positives.	However,	 it	needs	at	 least	35	studies	to	approach	the	

higher	 levels	of	 reliability	 associated	with	a	 random	effects	model	 for	 coordinate-based	meta-analysis.	The	

main	advantage	of	our	work	consists	of	using	a	large	database,	while	the	main	limitation	is	the	restriction	to	
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only	one	dataset.	We	argue	that	this	work	provides	substantial	insight	into	the	performance	of	coordinate	based	

meta-analyses	for	fMRI.	
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Appendix	

1. 	Distributions	of	amount	and	cluster	sizes.		

For	K	=	10,	20	and	35,	we	plot	the	amount	of	overlapping	and	unique	clusters	with	the	cluster	sizes	(expressed	

in	number	of	voxels)	next	to	it.	This	is	calculated	on	the	pairwise	comparisons	of	the	I	unique	iterations.	We	

plot	the	results	for	each	group	level	model	and	CBMA.		

1.1	K	=	10	
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1.2	K	=	20	
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1.3	K	=	35	
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