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Abstract	
Understanding	the	precise	relation	between	functional	connectivity	and	structural	(white-

matter)	connectivity	and	how	these	relationships	account	for	cognitive	changes	in	older	

adults	are	major	challenges	for	neuroscience.	We	investigate	these	issues	using	a	new	

approach	in	which	structural	equation	modeling	(SEM)	is	employed	to	integrate	functional	

and	structural	connectivity	data	analyzed	with	a	common	framework	based	on	regions	

connected	by	canonical	tract	groups	(CTGs).	CTGs	(e.g.,	uncinate	fasciculus,	cingulum,	etc.)	

serve	as	a	common	currency	between	functional	and	structural	connectivity	matrices,	and	

ensures	that	the	same	amount	of	data	contributing	to	brain-behavior	relationships.	We	used	

this	approach	to	investigate	the	neural	mechanisms	supporting	memory	for	items	and	

memory	for	associations,	and	how	they	are	affected	by	healthy	aging.	Our	results	are	

threefold.	Firstly,	structural	and	functional	CTGs	made	independent	contributions	to	

associative	memory	performance,	suggesting	that	both	forms	of	connectivity	underlie	age-

related	changes	in	associative	memory.	Secondly,	distinct	groups	of	CTGs	supported	

associative	versus	item	memory.	Lastly,	the	relationship	between	functional	and	structural	

connectivity	was	best	explained	by	the	relationship	between	latent	variables	describing	

functional	and	structural	CTGs	based	on	a	constrained	set	of	tracts—but	no	one	specific	CTG	

group—suggesting	that	age	effects	in	connectivity	are	constrained	to	specific	pathways.	

These	results	provide	further	insights	into	the	interplay	between	structural	and	functional	

connectivity	patterns,	and	help	to	elucidate	their	relative	contribution	to	age-related	

changes	in	associative	memory	performance.		
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Introduction	
One	of	the	most	consistent	patterns	in	the	literature	on	episodic	memory	and	aging	is	that	

older	adults	tend	to	be	more	impaired	in	episodic	memory	for	associations	than	in	episodic	

memory	for	individual	items.		While	this	behavioral	dissociation	has	been	well	known	for	a	

long	time	(Glisky	et	al.,	1995;	Naveh-Benjamin,	2000),	cognitive	neuroimaging	provides	a	

complementary	method	for	investigating	the	underlying	neural	mechanisms	(for	review,	

see	Old	and	Naveh-Benjamin,	2008).	During	the	last	three	decades,	cognitive	neuroimaging	

has	gradually	moved	from	an	emphasis	on	individual	brain	regions	to	a	focus	on	the	

interactions	among	brain	regions,	or	connectivity.	Connectivity,	which	can	be	examined	at	

the	functional	level	using	functional	MRI	(fMRI)	and	at	the	structural	level	using	diffusion-

weighted	imaging	(DWI).	Given	that	functional	connectivity	depends	on	structural	(white-

matter)	connectivity,	a	current	challenge	is	how	to	investigate	the	relationship	between	

these	two	forms	of	connectivity	in	relation	to	cognitive	function.	Here,	we	propose	a	new	

approach	for	linking	structural	and	functional	connectivity	data	and	apply	it	to	the	results	of	

an	fMRI-DWI	study	investigating	item	and	associative	memory	in	younger	and	older	adults.	

There	are	two	main	challenges	in	linking	structural	and	functional	connectivity.	

First	is	the	problem	of	translation	between	structural	and	functional	information;	structural	

matrices	are	considerably	more	sparse	than	functional	networks	(Wang	et	al.,	2015),	and	

while	structural	connectivity	is	static,	functional	connectivity	is	highly	dependent	on	the	

active	process	concurrent	with	data	collection	(Honey	et	al.,	2007).	Second	is	the	problem	of	

the	granularity	of	mapping;	while	a	large	array	of	techniques	that	have	attempted	to	

delineate	structural-functional	connectivity	relationships	at	the	level	of	whole-brain	

parcellations	(Betzel	et	al.,	2014;	Zimmermann	et	al.,	2016),	between	discrete	pairs	of	

regions	(Andrews-Hanna	et	al.,	2007;	Dennis	et	al.,	2008;	Davis	et	al.,	2012),	or	at	the	level	

of	voxels	(Horn	et	al.,	2014)	each	technique	tends	to	form	a	unique	claim	about	how	the	

structure-function	relationship	changes	with	age.	Both	of	these	problems	preclude	any	

lasting	or	satisfying	conclusions	about	how	these	modalities	relate	to	one	another,	and	have	

issues	unique	to	datasets	that	include	older	adults	.	The	structural	equation	modeling	(SEM)	

approach	used	here	attempts	to	address	these	problems,	and	provides	a	rigorous	statistical	

framework	to	examine	the	complex	relationships	between	age,	structural	integrity	of	white	

matter,	functional	correlations	between	regional	task-driven	activity,	and	cognitive	

performance.		
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The	premier	method	for	assessing	age-related	changes	in	structural	is	DWI	

tractography.	While	the	use	of	semi-automated	pipelines	for	generating	whole-brain	

connectomes	based	on	DWI	tractography	has	engendered	an	explosion	of	connectome-

based	research	(for	review,	see	Wang	et	al.,	2015),	the	construction	method	varies	widely	

across	studies,	and	these	pipelines	are	rarely	informed	by	known	anatomy,	reducing	their	

validity	and	replicability.	This	lack	of	analytical	sensitivity	and	specificity	may	lead	to	a	lack	

of	consistency	across	construction	methods	(Thomas	et	al.,	2014;	Zhong	et	al.,	2015),	and	

contributes	to	a	measure	that	is	dominated	by	false	positives	(de	Reus	and	van	den	Heuvel,	

2013;	Drakesmith	et	al.,	2015).	Despite	this	uncertainty,	a	number	of	anatomically	defined,	

canonical	white	matter	tracts	demonstrate	reliable	relationships	between	white	matter	

integrity	and	memory,	including	the	fornix,	uncinate	fasciculus,	cingulum,	and	the	genu	of	

the	corpus	callosum.	Multiple	indices	of	integrity	of	these	PFC-based	white	matter	tracts	

have	been	associated	with	age-related	changes	in	scores	on	verbal	associative	memory	

(Davis	et	al.,	2009;	Kennedy	and	Raz,	2009;	Bendlin	et	al.,	2010;	Voineskos	et	al.,	2010),	

spatial-	(Oberlin	et	al.,	2016),	object-based	associative	memory	(Antonenko	et	al.,	2016),	as	

well	as	free	recall	of	both	visual	and	verbal	information	(Metzler-Baddeley	et	al.,	2011;	

Metzler-Baddeley	et	al.,	2012).	While	there	is	a	wide	array	of	approaches	to	addressing	the	

overall	influence	of	age	in	these	studies	(e.g.,	partial	correlation,	mediation,	change	scores,	

etc.),	the	consistency	of	these	tract-specific	relationships	suggests	a	relative	specificity	to	of	

specific	connections	to	specific	forms	of	memory.	Furthermore,	tract-specific	dissociations	

such	as	these	observations	are	not	solely	attributable	to	the	strong	neural	declines	

associated	with	this	region	(Jack	et	al.,	2002;	Sullivan	et	al.,	2006),	as	well	as	the	role	that	

more	global	declines	in	frontally-mediated	executive	functions	play	in	observed	episodic	

memory	decline	(Kievit	et	al.,	2014;	Kievit	et	al.,	2016).	

While	DWI	measures	are	able	to	characterize	structural	differences	across	aging,	

fMRI	has	been	used	to	study	age-related	differences	in	regional	co-activation	(or	

connectivity)	associated	with	memory	function.	In	one	of	the	first	studies	to	examine	age-

related	differences	in	functional	connectivity	associated	with	episodic	(item)	memory,	

Grady	and	colleagues	(2003)	found	a	ventral-to-dorsal	shift	in	functional	coupling	between	

the	hippocampus	and	activity	in	the	rest	of	the	brain	during	successful	episodic	encoding.	

While	young	adults	demonstrated	connectivity	from	a	hippocampal	seed	to	posterior	

sensory	regions,	older	adults	exhibited	greater	success-related	functional	coupling	with	the	

dorsolateral	PFC	and	parietal	cortex.	Thus,	older	adults	demonstrated	a	shift	from	
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posterior-to-anterior	connectivity.	Although	this	study	focused	on	item	memory,	the	finding	

has	been	replicated	in	associative	memory	encoding	(Dennis	et	al.,	2008),	and	several	other	

studies	have	observed	similar	levels	of	plasticity	in	hippocampal	connectivity	across	aging.	

Increased	frontotemporal	connectivity	attributed	to	an	age-related	increase	in	top-down	

modulation	has	also	been	found	in	emotional	and	associative	memory	studies	(Murty	et	al.,	

2009;	St.	Jacques	et	al.,	2009;	Addis	et	al.,	2010).	These	studies	suggest	that	frontotemporal	

tracts	like	the	uncinate	fasciculus,	inferior	fronto-occipital	fasciculus	and	the	fornix	play	a	

privileged	role	in	mediating	age-related	cognitive	decline.	However,	it	is	unclear	how	these	

region-to-region	changes	emerge	in	the	context	of	a	fully-connected	system;	significant	

increases	or	reductions	in	bivariate	estimates	may	emerge	as	a	function	of	subtler	global	

changes	in	connectivity.	More	recently,	the	use	of	whole-brain,	task-based	connectomes	
estimated	either	from	PPI-	or	beta-series	correlation-based	methods	(Fornito	et	al.,	2012;	

Geib	et	al.,	2015),	aim	to	address	this	ambiguity,	but	these	methods	have	yet	to	be	applied	to	

older	adults.		

A	major	goal	of	connectome	research	is	to	discover	whether,	and	how,	the	structural	

and	functional	networks	of	the	brain	are	related	—	an	active	area	with	tremendous	interest	

and	wide	ramifications	in	neuroscience.	Increasingly,	the	widespread	use	of	automated	

connection	matrices	has	led	to	an	explosion	of	computational	solutions	to	this	problem,	

typically	by	directly	comparing	connectivity	matrices	(Horn	et	al.,	2014),	predicting	one	

modality	from	the	other	(Bowman	et	al.,	2012;	Abdelnour	et	al.,	2014;	Messé,	2015),	joint	

analysis	of	structural	and	functional	matrices	(Honey	et	al.,	2009;	Tewarie	et	al.,	2014),	or	

through	the	comparison	of	graph-theoretical	properties	common	to	structural	and	

functional	networks	(Betzel	et	al.,	2014;	Romero-Garcia	et	al.,	2014).	These	more	data-

driven	approaches	have	produced	a	number	of	meaningful	observations	(for	an	excellent	

review,	see	Zhu,	2014),	principally	that	the	relationship	between	functional	connectivity	

and	structural	connectivity	also	appears	to	increase	across	the	lifespan,	and	that	this	

relationship	is	driven	by	an	increase	in	the	reliance	on	more	long-distance	interactions	

between	brain	regions	(Betzel	et	al.,	2014;	Meunier	et	al.,	2014).	Nonetheless,	these	

computational	approaches	have	largely	ignored	canonical	divisions	in	the	structural	

anatomy	of	human	white	matter	pathways.	This	is	problematic	because	in	the	case	of	

structural	models,	these	models	rarely	incorporate	known	anatomy,	leading	to	spurious	

connections	and	a	high	false-positive	rate	in	structural	connectomics	generally	(Maier-Hein	

et	al.,	2016).	In	the	case	of	functional	information,	these	computational	solutions	rarely	take	
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into	account	the	relative	sparsity	of	structural	connection	matrices	compared	to	functional	

data.	Thus,	finding	the	adequate	basis	on	which	to	make	the	comparison	between	these	

modalities	is	challenging.	 
The	present	analysis	seeks	to	address	these	gaps	in	understanding	by	using	task-

based	functional	connectivity,	and	whole	brain	structural	connectivity	informed	by	classical	

white	matter	anatomy.	These	two	data	types	are	united	in	a	common	analytical	framework	

in	order	to	ask	a	specific	question:	do	functional	and	structural	connectivity	make	

independent	contributions	to	memory	in	older	adults?	The	structural	equation	modelling	

(SEM)	approach	adopted	here	provides	a	framework	to	explore	brain-behavior	

relationships.	Particularly,	we	explore	the	possibility	that	function-structure	relationships	

are	best	characterized	by	either	specific	linkages	between	data	types	for	a	given	region,	or	

instead	reflect	a	general	relationship	shared	by	task-relevant	regions	(or	tract	groups).	We	

test	a	model	fitting	structural	and	functional	connectivity	information	summarized	by	

Canonical	Tract	Groups	(CTGs)	in	order	to	predict	associative	and	item	memory	in	younger	

and	older	adults.	Only	by	better	understanding	the	functional	and	neural	bases	of	different	

types	of	memory	can	we	develop	future	strategies	to	help	with	age-related	memory	loss.	

	

Methods	
Participants	
Seventy-six	adults—54	older	adults	(67.68	±	6.9	y.o.,	age	range	61-87	y.o.)	and	22	younger	

adults	(23.6	±	3.5	y.a.,	age	range	19-28	y.o.)—participated	in	the	study.	All	individuals	were	

screened	for	contraindications	to	MRI,	and	seven	individuals	were	excluded	because	of	

scanner	issues	or	poor	structural	or	functional	imaging	quality,	and	two	individuals	did	not	

complete	the	memory	task,	leaving	N	=	67	with	complete	data.	Written	consent	was	

obtained	for	each	participant	and	they	received	monetary	compensation	at	the	end	of	the	

study.	All	experimental	procedures	were	approved	by	the	Duke	University	Institutional	

Review	Board. 
	

Associative	Memory	Task	

Materials	

Stimuli	consisted	of	440	normative	English	words	with	normative	word	frequencies	in	the	

lexicon	of	5-15	per	million,	M	=	8.8	(3.1),	and	had	a	mean	length	of	M	=	7.1	(2.3)	letters.	
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Unique	study	and	test	lists	were	randomly	generated	for	each	participant	and	words	were	

assigned	to	the	following	conditions:	item	(180	words),	associative	(180),	or	item	lures	(80	

words—presented	only	at	retrieval	as	new	words).	At	retrieval,	there	were	four	item	tests	

lists,	each	consisting	of	45	targets	(old	words)	and	20	lures	(non-studied	words),	and	four	

associative	test	lists,	each	consisting	of	45	studied	words.		

	

Encoding	Task	

Participants	studied	the	words	outside	the	scanner.	Words	were	presented	on	a	computer	

monitor	in	white	font	on	a	grey	background	for	3	s	with	a	1	s	interval	using	Cogent	

(http://www/vislab.ucl.ac.uk/cogent_2000.php),	a	stimulus	presentation	software	within	

MATLAB	(www.mathworks.com).	For	half	of	the	trials,	participants	made	a	

“pleasant/unpleasant”	judgement,	and	a	“bigger/smaller	than	a	shoebox”	judgement	for	the	

other	half.	Half	of	the	trials	were	repeated,	with	the	same	judgement;	however,	for	the	

purpose	of	the	present	study,	words	that	were	repeated	were	collapsed	into	one	condition	

for	the	subsequent	fMRI	analysis.	

	

Retrieval	Task	

Approximately	15	min	after	the	encoding	phase,	participants	were	tested	for	their	memory	

of	the	studied	words	in	the	MRI	scanner.	Words	were	presented	via	a	mirror	in	the	scanner	

head	coil	and	a	rear	projection	system	using	a	PC	computer	running	Cogent.	There	were	two	

retrieval	conditions:	Item	memory	and	associative	memory.	In	the	item	memory	retrieval	

task,	participants	made	new/old	responses	on	a	4-point	confidence	scale.	For	the	

associative	memory	retrieval	task,	participants	were	asked	to	indicate	what	type	of	

judgment	they	made	earlier	on	a	word	on	a	4-point	scale:	definitely	pleasant/unpleasant,	

probably	pleasant/unpleasant,	probably	bigger/smaller,	definitely	bigger/smaller.	Four	

item	and	4	associative	runs	were	presented	in	consecutive	blocks	to	minimize	the	effects	of	

task	switching.	Retrieval	stimuli	were	presented	for	3	s,	with	a	white	crosshair	presented	

for	fixation	during	the	inter-trial	interval	(ITI).	Stimulus	order	and	ITI	jitter	(range:	1-7	s)	

were	determined	by	a	genetic	algorithm	designed	to	maximize	statistical	efficiency	and	

facilitate	deconvolution	of	the	hemodynamic	response	(Wager	and	Nichols	2003).		

FIGURE	1	ABOUT	HERE	
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MRI	Acquisition	&	Analysis	
The	analytical	pipeline	is	summarized	in	Figure	1.	Participants	were	first	scanned	on	a	3-T	

gradient-echo	scanner	(General	Electric	3.0	Tesla	Signa	Excite	HD	short	bore	scanner,	

equipped	with	an	8-channel	head	coil).	Coplanar	functional	images	were	acquired	using	an	

inverse	spiral	sequence	(64	×	64	matrix,	time	repetition	[TR]	=	1700	ms,	time	echo	[TE]	=	

31	ms,	field	of	view	[FOV]	240	mm,	37	slices,	3.8-mm	slice	thickness,	254	images).	Using	a	

spiral-in	gradient-echo	sequence:	slice	order	=	interleaved,	matrix	=	642,	FOV	=	24	cm,	

TR=2000ms,	TE=27ms,	sections=34,	thickness=3.8mm,	interscan	spacing	=	0,	flip	angle	=	

60,	SENSE	reduction	factor	=	2).	Following	functional	imaging,	a	high-resolution	SPGR	series	

(1-mm	sections	covering	whole	brain,	interscan	spacing=0,	matrix	=	2562,	flip	angle	=	30,	TR	

=	22	ms,	TE	=	min	full,	FOV	=	19.2	cm)	was	collected.	Finally,	DWI	data	were	collected	using	

a	single-shot	echo-planar	imaging	sequence	(TR	=	1700	ms,	slices	=	50,	thickness	=	2.0	mm,	

FOV	=	256	×	256	mm2,	matrix	size	128	×	128,	voxel	size	=	2	mm3,	b	value	=	1000	s/mm2,	

diffusion-sensitizing	directions	=	25,	total	images	=	960,	total	scan	time	=	5	min).	The	

anatomical	MRI	was	acquired	using	a	3D	T1-weighted	echo-planar	sequence	(matrix	=	

2562,	TR	=	12	ms,	TE	=	5	ms,	FOV	=	24	cm,	slices	=	68,	slice	thickness	=	1.9	mm,	sections	=	

248).	Scanner	noise	was	reduced	with	ear	plugs,	and	head	motion	was	minimized	with	foam	

pads.	Total	scan	time,	including	breaks	and	structural	scans,	was	approximately	1	h	40	min.	

Behavioral	responses	were	recorded	with	a	4-key	fiber-optic	response	box	(Resonance	

Technology,	Inc.),	and	when	necessary,	vision	was	corrected	using	MRI-compatible	lenses	

that	matched	the	distance	prescription	used	by	the	participant.	

	

Construction	of	connectivity	matrices	

Before	either	structural	or	functional	matrices	were	constructed,	we	first	sought	to	

establish	a	consistent	parcellation	scheme	across	all	subjects	and	all	modalities	(DWI,	fMRI)	

that	reflects	an	accurate	summary	of	full	connectome	effects	(Bellec	et	al.,	2015).	Subjects’	

T1-weighted	images	were	segmented	using	the	SPM12	

(www.fil.ion.ucl.ac.uk/spm/software/spm12/),	yielding	a	grey	matter	(GM)	and	white	

matter	(WM)	mask	in	the	T1	native	space	for	each	subject.	The	entire	GM	was	then	

parcellated	into	411	regions	of	interest	(ROIs),	each	representing	a	network	node	by	using	a	

subparcellated	version	of	the	Harvard-Oxford	Atlas,	(Tzourio-Mazoyer	et	al.,	2002),	defined	

originally	in	MNI	space.	The	T1-weighted	image	was	then	nonlinearly	normalized	to	the	

ICBM152	template	in	MNI	space	using	fMRIB’s	Non-linear	Image	Registration	Tool	(FNIRT,	
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FSL,	www.fmrib.ox.ac.uk/fsl/).	The	inverse	transformations	were	applied	to	the	HOA	atlas	

in	the	MNI	space,	resulting	in	native-T1-space	GM	parcellations	for	each	subject.	Then,	T1-

weigted	images	were	coregistered	to	native	diffusion	space	using	the	subjects’	unweighted	

diffusion	image	as	a	target;	this	transformation	matrix	was	then	applied	to	the	GM	

parcellations	above,	using	FSL’s	FLIRT	linear	registration	tool,	resulting	in	a	native-

diffusion-space	parcellation	for	each	subject.	

DWI	data	were	analyzed	utilizing	FSL	(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki)	and	

MRtrix	(http://mrtrix.org)	software	packages.	Data	were	denoised	with	MRtrix,	corrected	

with	eddy	current	correction	from	FSL,	and	brain	extraction	was	performed	with	both	FSL	

and	MRtrix,	whereas	bias-field	correction	was	completed	with	MRtrix.	Constrained	

spherical	deconvolution	(CSD)	was	utilized	in	calculating	the	fiber	orientation	distribution	

(FOD).	This	FOD	was	used	along	with	the	brain	mask	to	generate	whole	brain	tractography,	

with	seeding	done	at	random	within	the	mask	(Tournier	et	al.,	2004;	Tournier	et	al.,	2007).	

Relevant	parameters	regarding	track	generation	are	as	follows:	seed	=	at	random	within	

mask;	step-size	=	0.2	mm;	10,000,000	tracts.	After	tracts	were	generated,	they	were	filtered	

using	SIFT	(spherical-deconvolution	informed	filtering	of	tractograms).	This	process	utilizes	

an	algorithm	which	determines	whether	a	streamline	should	be	removed	or	not	based	off	of	

information	obtained	from	the	FOD,	which	improves	the	selectivity	of	structural	

connectomes	by	using	a	cost-function	to	eliminate	false	positive	tracts	(Yeh	et	al.,	2016).	

Tracts	were	SIFTed	until	1	million	tracts	remained.		Prior	to	connectome	generation,	

subject-specific	MNI-space	brains	were	created	by	an	affine	registration	between	the	MNI	

T1	2mm	brain	template	and	b0s	using	FSL's	FLIRT.	The	MNI	subject-specific	brains	then	

underwent	another	affine	registration	to	the	Harvard-Oxford	100	and	471	ROI	templates.	

Once	all	registrations	were	completed,	the	connectomes	were	generated	using	the	SIFTed	

tracts	and	the	subject-specific	templates	for	the	100	and	471	HOA	images.		

	 Functional	connection	matrices	representing	task-related	connection	strengths	

were	estimated	using	a	correlational	psychophysical	interaction	(cPPI)	analysis	(Fornito	et	

al.,	2012).	Briefly,	the	model	relies	on	the	calculation	of	a	PPI	regressor	for	each	region,	

based	on	the	product	of	that	region’s	timecourse	and	a	task	regressor	of	interest,	in	order	to	

generate	a	term	reflecting	the	psychophysical	interaction	between	the	seed	region’s	activity	

and	the	specified	experimental	manipulation.	In	the	current	study	the	task	regressors	based	

on	the	convolved	task	regressors	from	the	univariate	model	described	above	were	used	as	

the	psychological	regressor,	which	coded	subsequently	remembered	and	subsequently	
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forgotten	word	pairs	with	positive	and	negative	weights,	respectively,	of	equal	value.	This	

psychological	regressor	for	successful	memory	retrieval	was	based	on	a	linear	contrast	of	

Hits	>	Misses	for	both	Associative	and	Item	Memory	blocks;	new	trials	during	the	Item	

memory	blocks	were	modeled,	but	not	used	in	the	connectivity	analysis.	This	memory	

success-related	regressor	was	multiplied	with	two	network	timecourses	for	region	i	and	𝑗.	

We	then	computed	the	partial	correlation	𝜌$$%&,$$%(	∙	+ ,	removing	the	variance	𝑧	associated	

with	the	psychological	regressor,	the	timecourses	for	regions	i	and	𝑗,	and	constituent	noise	

regressors.	We	accounted	for	the	potential	effects	of	head	motion	and	other	confounds	by	

assessing	the	6	motion	parameters	and	including	these	parameters	in	our	partial	

correlation	between	regions.	

	

Defining	Tract	Groups	

We	examine	only	region	pairs	that	are	connected	by	canonical	fiber	systems,	which	term	

here	a	Canonical	Tract	Group	(CTG).	This	approach	affords	three	main	benefits,	namely	1)	

integrating	structural	and	functional	connectivity	information	within	a	common	anatomical	

framework,	2)	constraining	the	overabundance	of	functional	connections	to	known	

anatomy	and	3)	simplifying	the	number	of	pairwise	comparisons	in	an	informed	manner.	

Tract	group	assignment	is	based	on	an	overlap	between	matrix-based	connections	and	

canonical	fiber	systems	from	seven	tracts	defined	by	the	Johns	Hopkins	University	white	

matter	tractography	atlas	(Hua	et	al.,	2008):	the	uncinate	fasciculus	(UF),	superior	

longitudinal	fasciculus	(SLF),	inferior	fronto-occipital	fasciculus	(IFOF),	forceps	minor	

(FMin),	inferior	longitudinal	fasciculus	(ILF),	ventral	cingulate	gyrus	(CINGhipp)	and	the	

dorsal	cingulate	gyrus	(CING),	as	well	as	the	fornix,	based	on	a	novel	template	(Brown	et	al.,	

2017).	The	corticospinal	tract	and	forceps	major	were	not	included	because	they	were	not	

hypothesized	to	be	involved	in	item	or	associative	memory	functioning.		

Next,	a	region	pair	within	a	connectivity	matrix	in	which	the	two	regions	share	

overlap	with	a	given	fiber	tract	are	then	considered	part	of	the	assembly	for	a	CTG	(Fig.	2).	

We	refer	to	this	matrix	of	n	x	n	elements	(where	n	is	the	number	of	regions)	as	the	CTG	

mask.	This	assignment	is	then	repeated	for	all	21	tract	groups	within	the	JHU	Tract	Atlas	

(FSL).	Our	analysis	based	on	CTGs	offers	two	clear	advantages	to	data-driven	comparisons	

between	these	data	types:	a)	CTGs	serve	as	a	common	currency	between	functional	and	

structural	connectivity	matrices	and	b)	this	method	addresses	the	fact	that	structural	

matrices	are	much	more	sparse	than	functional	matrices.	Thus,	by	using	an	identical	set	of	
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region	pairs	from	the	adjacency	matric	in	each	tract	group	(e.g.,	the	UF	is	shown	in	Fig.	2),	

we	ensure	that	the	same	amount	of	data	contributes	to	structural	or	functional	connectivity	

information	in	the	model.		

	

FIGURE	2	ABOUT	HERE	

	

Structural	Equation	Modeling	
After	Structural,	Item,	and	Associative	matrices	filtered	by	CTGs	and	summed	across	all	

elements	in	the	matrix,	CTG	values	are	averaged	across	hemisphere	for	bilateral	tracts,	and	

scaled	before	modeling.	We	fit	confirmatory	SEMs	to	the	mean	FA	of	the	seven,	bilaterally	

averaged,	WM	tract	CTGs,	which	showed	different	sensitivities	to	age.	These	models	were	

used	to	test	the	validity	of	three	single-factor	Latent	Variables	for	structural	connectivity	

(WM)	based	on	DWI	tractography,	and	functional	connectivity	(fCON)	associated	with	

successful	retrieval,	based	on	fMRI	collected	from	either	Item	or	Associative	blocks.	

Both	CFA	and	full	SEMs	were	fit	using	the	lavaan	package	(Rosseel,	2012)	in	R	version	3.3.3	

(R	Development	Core	Team,	2016),	and	regularized	SEM	for	complex	models	using	regsem,	

(Jacobucci	et	al.,	2016),	which	allows	the	use	of	LASSO-based	regularization	while	keeping	

the	SEM	model	intact,	adding	penalization	directly	into	the	estimation	of	the	model.	LASSO	

imposes	a	penalty	on	the	regression	parameters	to	ensure	that	the	SEM	model	remains	

stable	even	when	the	number	of	predictors	is	large.	Specifically,	it	uses	the	L1	norm	to	apply	

a	least	absolute	shrinkage	and	selection	operator	(LASSO,	Tibshirani,	1996)	penalty,	which	

enforces	sparse	solutions	by	shrinking	many	regression	parameters	to	0.	We	therefore	

applied	LASSO	regression	to	the	2	full	model	SEMs	in	order	to	penalize	the	models	and	

reduce	the	number	of	contributing	CTGs.	 
Prior	to	model	fitting,	variables	were	scaled	to	a	standard	normal	distribution	and	

log	transformed	where	necessary	to	increase	normality.	All	models	were	fit	using	Maximum	

Likelihood	Estimation	(ML)	using	robust	standard	errors	and	report	overall	model	fit	

assessed	with	the	chi-square	estimates,	Root	Mean	Squared	Error	of	Approximation	

(RMSEA)	and	its	confidence	interval,	the	Comparative	Fit	index	(CFI).	We	used	the	following	

guidelines	for	judging	good	fit	(Bagozzi	and	Yi,	2012):	RMSEA	below	0.05	(acceptable:	0.05-

0.08)	and	a	CFI	above	0.97	(acceptable:	0.95-0.97).	Model	comparison	was	estimated	via	the	

χ2	difference	and	the	log	likelihood	ratio	test.	The	significance	of	individual	paths	was	tested	

with	p-values	less	than	0.05,	and	the	contribution	of	each	predictor	was	assessed	using	the	
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R2	value.	Lastly,	to	test	the	influence	of	age	(for	both	functional	and	structural	CTGs)	in	the	

model,	Age	paths	were	set	to	zero,	and	model	fit	was	reassessed	using	the	same	likelihood	

ratio	test.			

Results	
Behavioral	testing	
Associative	memory	accuracy	was	0.76	±	0.016	and	RTs	were	2.09	s	±	0.49	for	successful	

associative	trials,	and	2.37	s	±	0.58	for	unsuccessful	associative	trials.	Mean	hit	rates	for	

item	memory	were	0.85	±	0.015	and	a	mean	false	alarm	rate	of	0.22	±	0.008.	RTs	during	the	

item	memory	test	were	1.59	±	0.45	for	item	hits,	and	2.36	for	item	misses.	Effects	of	age	

were	more	prominent	for	associative	memory	than	item	memory,	though	the	interaction	

between	Age	Group	x	Memory	type	was	not	significant	(F61,2	=	2.18,	p	=	0.14).	Effects	of	age	

for	both	associative	memory	(F61,1	=	12.45,	p	=	0.0008)	and	overall	item	memory	hit	rate	

(F61,1	=	3.68,	p	=	0.04)	were	significant.		

	

Canonical	Tract	Groups:	Descriptive	Statistics	and	Effects	of	Age	
Following	the	method	outlined	above,	we	developed	a	semi-automated	pipeline	for	

assigning	a	given	connection	between	ROIs	within	a	standard	atlas	to	a	given	Canonical	

Tract	Group	(CTG).	While	most	CTGs	showed	significant	age	differences	in	the	structural	

domain,	success-related	functional	connectivity	differences	between	younger	and	older	

adults	were	far	subtler	(Table	1).	Functional	CTGs	showed	consistently	moderate	

relationships	with	corresponding	structural	CTGs	(e.g.,	connectivity	between	regions	

functionally	connected	by	the	UF	correlated	with	structural	integrity	of	the	UF),	even	after	

adjusting	for	the	effects	of	age	(all	r	>	0.21,	p	<	0.05).	

	

FIGURE	3	ABOUT	HERE	

	

TABLE	1	ABOUT	HERE	

SEM	results	

CFA	results	

We	used	SEM	to	test	a	range	of	models	of	how	connectivity	supports	associative	memory	in	

older	adults.	We	first	examined	the	reliability	of	the	measures	to	be	used	in	three	

confirmatory	factor	analysis	(CFA)	models;	in	these	models,	we	hypothesize	that	two	latent	
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variables	(functional	connectivity	or	fCON	and	structural	connectivity	or	WM)	capture	the	

covariance	between	7	connectivity	measures	estimated	from	specific	CTGs	(described	

above),	freely	estimating	every	factor	loading.	Three	CFA	models	were	run:	WM,	fCONitem,	

and	fCONassociative.		

	

Full	model	results	

Next,	using	CTGs	we	fit	two	full	models	relating	brain	connectivity	variables	to	behavioral	

variables	using	a	standard	SEM.	These	models	capture	the	hypothesis	that	individual	

differences	in	structural	and	functional	connectivity	measures	make	independent	

contributions	to	successful	memory	functioning.	As	a	number	of	tracts	and	therefore	CTGs	

should	be	linearly	correlated,	we	can	ask	whether	a	more	parsimonious	model	shows	better	

fit.	 
We	fit	two	models,	one	which	focuses	on	Associative	Memory,	and	one	which	

focuses	on	Item	Memory;	while	these	models	share	some	overlap	in	the	regions	

demonstrating	predictive	power	in	the	model,	our	use	of	LASSO	allows	for	distinct	tract	

groups	to	emerge	as	significant	predictors	in	each	model.	The	full	model	for	Associative	

Memory	is	shown	in	Figure	4,	and	fits	the	data	quite	well:	χ2=30.22,	df=29,	p=0.35,	

RMSEA=0.036	[0.000-0.107],	CFI=0.995.	The	good	fit	of	the	full	model	suggests	that	the	

observed	covariance	pattern	in	our	data	is	consistent	with	the	statistical	constraints	

imposed	by	the	model,	and	allows	us	to	further	investigate	the	relations	between	the	

cognitive	factors	and	the	neural	variables.	The	full	model	for	Item	Memory	(Fig.	5),	also	fits	

the	data	well:	χ2=21.09,	df=29,	p=0.5,	RMSEA=0.008	[0.000-0.098],	CFI=0.999.	While	both	

models	share	a	number	of	structural	and	functional	inputs,	there	are	a	number	of	unique	

inputs	to	each	model	(discussed	below). 
	

FIGURE	4	ABOUT	HERE	

FIGURE	5	ABOUT	HERE	

Tract-specific	contributions	

We	relied	on	the	LASSO	regularization	to	simplify	our	model	and	improve	model	fit;	this	

technique	also	implicitly	provides	a	means	of	identifying	the	specific	tract	groups	that	

contribute	to	memory	performance.	As	noted	in	the	Methods,	we	constrained	model	terms	

to	include	both	structural	and	functional	information	pairs	for	each	CTGs,	such	that	we	

could	continue	to	make	explicit	hypotheses	about	structural-functional	relationships	in	our	
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final	models.	In	the	Associative	memory	model,	the	uncinate	fasciculus,	fornix,	forceps	

minor,	and	hippocampal	segment	of	the	cingulum	each	contributed	to	the	overall	model	(all	

R2	>	0.61/0.35	for	structural/functional	information,	resp.).	Furthermore,	the	inclusion	of	

structural	and	functional	information	from	the	forceps	minor	of	the	corpus	callosum,	is	in	

line	with	previous	findings	that	suggest	an	important	role	for	prefrontal	WM	in	episodic	

memory	functioning	in	older	adult	populations	(Davis	et	al.,	2009;	Kennedy	and	Raz,	2009).	

	In	contrast,	the	final	Item	Memory	model	relied	on	paired	structural	and	functional	

information	from	the	inferior	longitudinal	fasciculus,	the	hippocampal	segment	of	the	

cingulum,	the	uncinate	fasciculus,	and	the	inferior	fronto-occipital	fasciculus	(all	R2	>	

0.31/0.34	for	structural/functional	information,	resp.).	This	result	is	consistent	with	the	

qualitative	interpretation	that	Associative	memory	relies	on	fronto-temporal	regions,	while	

item	memory	shows	a	greater	dependence	on	systems	base	solely	within	the	temporal	lobe	

(Glisky	et	al.,	1995;	Spaniol	and	Grady,	2012).	Lastly,	while	the	latent	variable	capturing	the	

variance	in	overall	success-related	functional	connectivity	did	not	demonstrate	a	significant	

path	to	behavioral	performance	on	the	Item	memory	task	(z	=	1.27,	p	=	0.11),	these	

functional	CTGs	nonetheless	contributed	to	the	overall	model	fit;	a	separate	model	

removing	the	link	from	the	fCON	LV	to	Item	Memory	showed	a	significant	reduction	in	

model	fit	(Δχ2=39.15,	Δdf=1,	p	<	0.01).	

	

TABLE	2	ABOUT	HERE	

	

Effects	of	Age	

Our	last	question	was	whether	the	connectivity	measures	examined	herein	captured	the	

effect	of	age	on	memory;	in	our	full	model	above,	Age	effects	on	fCON	and	WM	were	highly	

significant	in	both	Associative	(AgeàfCON:	z	=	-2.49;	AgeàWM:	z	=	-9.76)	and	Item	

Memory	(AgeàfCON:	z	=	-3.64;	AgeàWM:	z	=	-6.81)	models.	This	result	is	unsurprising	

given	the	effects	of	age	observed	in	Table	2.	Nonetheless,	the	role	of	Age	in	explaining	age-

related	changes	in	Associative	and	Item	Memory	is	more	adequately	characterized	within	

the	full	SEM.	We	therefore	tested	an	alternative	model	in	which	Age	effects	were	eliminated	

from	the	model.	The	overall	fit	was	significantly	worse	in	a	model	in	which	age	were	

included,	but	paths	from	age	to	brain	factors	were	fixed	at	zero,	in	both	the	Associative	

Memory	(Δχ2=	-89.21,	Δdf=2,	p	<	0.001)	and	Item	Memory	models	(Δχ2=	-66.26,	Δdf=2,	p	<	

0.005).	This	result,	unsurprisingly,	demonstrates	that	chronological	age	captures	a	
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significant	portion	of	variance	in	the	model,	and	has	a	strong	influence	on	the	latent	

variables	for	structural	and	functional	connectivity.		

Finally,	given	the	strong	relationship	between	age	and	white	matter	measures,	it	is	

possible	that	structural	or	functional	connectivity	information	in	other	tract	groups	capture	

additional	age-related	variance	beyond	the	4	CTGs	that	survived	LASSO	regularization	for	

each	model.	We	therefore	performed	a	more	unconstrained	SEM	with	all	8	CTGs	were	

included,	and	examined	the	change	in	model	fit,	as	above.	In	the	Associative	Memory	model,	

there	was	a	drastic	reduction	in	model	fit,	whether	we	included	all	8	structural	CTGs	

(Δχ2=64.31,	Δdf=1,	p	<	0.005),	functional	CTGs	(Δχ2=25.65,	Δdf=1,	p	<	0.01),	or	both	

(Δχ2=99.79,	Δdf=2,	p	<	0.001).	Similarly,	the	ability	of	our	model	to	capture	age	effects	was	

not	simply	a	function	of	any	four	CTGs.	Model	fits	using	the	same	number	but	different	sets	

of	CTGs	(with	equivalent	Age	effects)	were	similarly	poor	in	model	fit	(all	RMSEA	>	0.3).	

Equivalent	results	were	obtained	in	the	Item	Memory	SEM.	These	results	reinforce	the	

importance	of	our	regularization	technique,	and	suggest	that	the	additional	information	

would	not	improve	the	inferences	made	in	the	above	models.	Given	the	strong	collinearity	

with	age	in	these	additional	terms	(especially	for	all	white	matter	regions),	this	null	result	

suggests	that	unique	role	these	regions	in	mediating	the	age-related	declines	in	Associative	

and	Item	memory,	and	that	these	declines	cannot	be	attributable	to	a	general	aging	factor	

across	all	white	matter	tracts. 

Discussion	
By	combining	multiple	behavioural,	demographic,	and	brain	measures	from	a	large	sample	

of	younger	and	older	adults,	we	provide	evidence	that	age-related	differences	in	Associative	

and	Item	Memory	are	dissociable	by	their	functional	and	structural	connectivity	profiles.	In	

our	best-fitting	model,	individual	CTGs	based	on	canonical	fiber	systems	make	independent	

contributions	to	both	forms	of	memory.	First,	we	found	that	the	relationship	between	

structural	and	functional	connectivity	information	was	best	characterized	by	an	

intermediate	level	of	relationship.	Although	no	specific	Tract	Groups	were	linked	in	their	

corresponding	fCON	and	WM	values	(e.g.,	fCON—WM	linkage	for	the	UF,	ILF,	etc.),	a	general	

WM—fCON	relationship	between	latent	variables	inferred	from	these	tract-specific	

measurements	was	significant	in	both	Associative	and	Item	memory	SEMs.	Second,	we	

found	that	both	WM	and	fCON	make	independent	contributions	to	Associative	Memory	

performance,	while	only	WM	influenced	behaviour	in	the	Item	Memory	model.	Lastly,	age-
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related	influences	on	our	model	were	much	stronger	for	WM	than	fCON,	but	Age	was	an	

essential	component	of	the	full	model.	Our	results	therefore	demonstrate	that	age-related	

declines	in	memory	are	unlikely	to	be	driven	by	a	single	fiber	system	or	a	single	data	type,	

but	emerge	as	a	confluence	of	functional	and	structural	changes	in	multiple	anatomically	

connected	systems.	

	

Structure—Function	Relationships	
Multiple	evidences	have	shown	that	brain	topology	(i.e.,	structure)	supports	fluid	dynamics	

(i.e.,	function),	and	that	brain	dynamics	in	turn	reinforce	structure	via	synaptic	plasticity.	In	

a	very	influential	work	Honey	et	al.	(2007)	showed	that	this	relationship	is	highly	

dependent	on	the	characteristics	of	the	functional	data	used	to	test	this	relationship,	

including	the	timescale,	local	clustering,	and	brain	state.	Thus,	understanding	the	precise	

relationship	between	these	two	forms	of	connectivity	is	still	challenging,	both	

methodologically	(how	to	compare	these	forms	of	data?)	and	theoretically	(what	mechanisms	

link	these	two	forms	of	information?).	In	the	present	analysis,	we	put	forth	a	robust	method	

to	approach	the	former	problem	at	a	large-scale	level	of	brain	organization	by	addressing	

their	mutual	relationships	during	memory	functioning,	through	a	common	connectivity	key.	

By	summarizing	the	structural	(FA	based	on	tractography	streamlines)	and	functional	

(Spearman’s	rho	based	on	task-related	PPI)	relationships	between	pairs	of	regions	which	

are	connected	by	a	canonical	tract	group	(e.g.,	the	uncinate	fasciculus),	our	use	of	CTGs	

integrates	structural	and	functional	connectivity	information	within	a	common	anatomical	

framework,	by	constraining	functional	connections	to	known	anatomy.	Furthermore,	this	

strategy	helps	to	link	empirical	results	obtained	via	adjacency	matrices—a	now	common	

basis	for	most	graph-theoretical	approaches	to	characterizing	aging	brain	networks—with	

clinically-minded	approaches	centered	on	canonical	fiber	systems.	

In	our	best	fitting	model	for	Associative	or	Item	memory,	no	tract-specific	linkages	

between	structural	and	functional	connectivity	information	for	the	same	CTG	reached	

significance,	while	latent	variables	for	structural	and	functional	connectivity	did	show	a	

significant	association.	When	setting	this	LV-LV	pathway	to	zero,	model	fit	significantly	

decreased	(Δχ2=	9.78,	Δdf=1,	p	<	0.016).	It	is	worthwhile	to	note	that,	outside	the	SEM	

framework,	functional	and	structural	CTGs	were	reliably	correlated	across	subjects	(Table	

1;	all	but	one	CTG	r	>	0.21,	even	after	adjusting	for	age).	Taken	together,	these	results	

suggest	that	the	relationship	between	structural	and	functional	connectivity	estimates	may	
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be	best	characterized	on	an	intermediate	level.	Many	of	the	age-related	changes	to	white	

matter	may	appear	to	manifest	as	global	changes	across	different	major	white	matter	tracts	

(Penke	et	al.,	2010),	and	driven	by	causal	factors	that	affect	white	matter,	such	as	small	

vessel	disease,	myelin	depletion,	or	iron	accumulation.	Nonetheless,	a	growing,	model-

based	literature	is	emerging	that	suggests	that	a	more	constrained	set	of	critical	white	

matter	fiber	systems	(forceps	minor,	cingulum,	uncinate	fasciculus)	provides	the	best	fit	for	

models	seeking	to	explain	age-related	changes	in	and	attention,	memory	and	processing	

speed	(Voineskos	et	al.,	2010;	Lovden	et	al.,	2013;	Kievit	et	al.,	2016).		

	

Tract-specific	Effects	on	Associative	and	Item	Memory	
The	value	of	such	debates	rests	on	the	reliability	of	the	anatomical	specificity	used	in	

creating	structural	and	functional	connectivity	values	to	predict	age-related	changes	in	

behavior.	Our	result	suggests	an	intermediate	conclusion	to	the	general	vs.	specific	debate:	

while	specific	structural-functional	linkages	for	a	specific	fiber	tract	do	not	drive	the	success	

of	a	model	of	Associative	or	Item	memory,	there	are	nonetheless	a	subset	of	specific	tract	

groups	which	provide	the	best	fit	to	these	data.	We	found	that	the	structural	and	functional	

connectivity	based	on	the	fornix	had	a	selective	positive	influence	for	Associative,	but	not	

Item	memory,	consistent	with	theoretical	and	empirical	results	supporting	the	role	of	this	

structure	in	associative	retrieval	(Aggleton	and	Brown,	1999;	Antonenko	et	al.,	2016).	The	

fornix	is	a	key	white	matter	tract	of	the	medial	temporal	lobe	memory	system,	

interconnecting	the	hippocampal	formation	with	subcortical	structures	in	the	basal	

forebrain	and	diencephalon.	There	is	evidence	of	altered	WM	microstructure	in	the	fornix	in	

healthy	older	adults	(Persson	et	al.,	2006;	Antonenko	et	al.,	2016),	and	measures	of	fornix	

microstructure	may	be	useful	in	detecting	early/preclinical	AD	stages	(Nowrangi	and	

Rosenberg,	2015).	The	finding	that	the	uncinate	fasciculus	is	implicated	in	both	our	

Associative	and	Item	memory	SEMs	is	consistent	with	evidence	linking	this	tract	to	age-

related	decline	in	memory	functioning	across	a	wide	array	of	tasks,	including	visual	object	

location	(Metzler-Baddeley	et	al.,	2011),	color-picture	associations	(Lockhart	et	al.,	2012),	

working	memory	(Burzynska	et	al.,	2013)	and	verbal	learning	(Lancaster	et	al.,	2016).	

Similarly,	the	Item	memory-specific	role	of	the	IFOF	fits	well	with	electrostimulation-based	

studies	which	have	shown	semantic	paraphasias	in	response	to	(disruptive)	stimulation	of	

this	fiber	system	(Duffau	et	al.,	2005).		
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Interestingly,	we	found	that	the	genu,	or	forceps	minor	of	the	corpus	callosum	(FMin	

in	our	models),	which	connects	left	and	right	prefrontal	cortex,	contributed	significantly	to	

Associative,	but	not	Item	Memory,	a	finding	which	is	consistent		with	the	assumption	that	

Associative	memory	is	more	dependent	on	PFC-mediated	functions	(Shimamura,	1995),	and	

that	bilateral	PFC	activity	may	serve	a	compensatory	role	in	age-related	decline	(Cabeza,	

2002).	We	and	others	have	found	that	the	integrity	of	the	genu	predicts	behavior	on	a	range	

of	episodic	memory	(Davis	et	al.,	2009;	Henson	et	al.,	2016)	and	executive	function	tasks	

(Kievit	et	al.,	2014;	Kievit	et	al.,	2016)	in	elderly	populations.	The	dissociation	in	associative	

versus	item	memory	performance	(Glisky	et	al.,	1995),	and	is	consistent	with	abundant	

evidence	that	the	PFC	is	more	critical	for	associative	than	item	memory	performance	in	

aging	populations	(Duarte	et	al.,	2006;	Old	and	Naveh-Benjamin,	2008;	Spaniol	and	Grady,	

2012;	Leshikar	and	Duarte,	2014),	and	that	reliance	on	structural	and	functional	

connectivity	in	the	PFC	may	be	a	means	of	counteracting	observed	associative	deficits	

(Naveh-Benjamin	et	al.,	2003;	Dennis	et	al.,	2008).	

	

Effects	of	Age	
Age	effects	on	structural	connectivity	revealed	with	DWI	are	regionally	diverse	and	typically	

show	an	anterior-to-posterior	gradient	of	age-related	decline	(Sullivan	et	al.,	2006;	Davis	et	

al.,	2009).	Consistent	with	this	evidence,	we	observed	strong	declines	in	FA	across	nearly	all	

structural	connectivity	groups,	or	CTGs	(Table	2).	While	a	number	of	studies	have	found	

single	correlation	(Kennedy	and	Raz,	2009)	or	mediation	patterns		(Madden	et	al.,	2010;	

Oberlin	et	al.,	2016)	that	help	to	explain	how	these	white	matter	structures	mediated	

cognitive	decline,	our	analysis	advances	on	these	approaches	by	considering	all	of	these	

regions	simultaneously,	within	a	statistically	rigorous	framework.	We	found	that	successful	

Associative	memory	was	associated	with	structural	and	functional	connectivity	in	a	set	of	

connecting	within	or	between	frontal	regions:	the	forceps	minor,	UF,	CINGhipp,	and	the	

fornix	(Fig.	4),	even	when	all	brain	measures	were	adjusted	for	chronological	age.	In	

contrast,	an	overlapping,	but	more	ventral	set	of	regions,	including	the	inferior	longitudinal	

fasciculus,	helped	to	predict	successful	Item	memory	performance	(Fig.	5).		

With	respect	to	functional	connectivity,	that	connectivity	groups	connecting	either	

within	(forceps	minor)	or	with	(UF,	IFOF)	the	PFC	is	consistent	with	the	general	observation	

that	older	adults	show	higher	levels	of	PFC	activity	across	all	a	range	of	cognitive	tasks	

(Grady,	2012).	Our	findings	of	age-related	increases	in	task-related	frontotemporal	
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functional	connectivity	during	successful	Associative	memory	provide	strong	evidence	for	a	

compensatory	mechanism	by	demonstrating	a	reliance	on	PFC	connectivity	from	3	major	

inferior	temporal	white	matter	fibers:	the	FMin,	UF,	and	fornix.	Our	connectivity	measure	

was	based	upon	task-related	data,	and	furthermore	used	an	explicit	contrast	between	Hits	>	

Misses,	in	order	to	isolate	connectivity	related	to	successful	memory	functioning.	Our	result	

is	also	consistent	with	a	handful	of	studies	which	have	identified	an	increased	reliance	on	

frontotemporal	connectivity	to	maintain	associative	memory	function	(Dennis	et	al.,	2008;	

Spaniol	and	Grady,	2012),	and	this	finding	more	generally	supports	the	idea	that	

frontotemporal	interactions	support	associative	or	source	memory	performance	(Backus	et	

al.,	2016).	Despite	these	steps	forward,	it	is	important	to	remember	that	our	data	are	cross-

sectional.	The	nature	of	these	data	therefore	makes	it	difficult	to	distinguish	true	effects	of	

“age”	from	cohort	effects	related	to	year	of	birth.	Indeed,	longitudinal	studies	(Ronnlund	et	

al.,	2005;	Nyberg	et	al.,	2010)	have	shown	important	differences	between	the	effects	of	age	

and	effects	of	birth	year.	In	order	to	establish	a	more	robust	model	of	the	relationship	

between	structural	and	functional	dynamics,	it	would	be	necessary	to	follow	people	over	

time,	and	establish	what	causal	factors	(critical	developmental	periods,	nutrition,	

cardiovascular	fitness,	etc.)	influence	this	relationship.	

	

Using	SEM	to	investigate	network	connectivity	
The	differential	sensitivity	of	associative	and	item	memory	to	both	structural	and	functional	

connectivity	supports	models	in	which	these	types	of	brain	measures	constitute	dissociable	

indices	of	brain	health.	Moreover,	our	results	argue	for	the	importance	of	general	factors	

predicting	age-related	declines	in	brain	health,	over	tract-specific	linkages	to	memory	

functioning.	These	are	some	of	the	issues	addressed	by	turning	to	SEM	as	a	means	of	fitting	

the	pattern	of	covariance	between	our	connectivity	measures	(rather	than	their	mean	

values),	and	using	this	information	to	predict	the	outcomes	for	behavioral	performance	

(Voineskos	et	al.,	2010).	Moreover,	we	can	use	model	selection	to	weight	parsimony	versus	

explanatory	power	of	competing	connectivity	models,	testing	their	relative	degree	of	

support	in	our	sample.	Here	we	sought	to	develop	a	single,	robust	method	for	combining	

structural	and	functional	connectivity	information	within	an	anatomically	informed	

framework.	Furthermore,	we	used	a	LASSO	penalty	to	estimate	to	accurately	and	efficiently	

estimate	a	model	that	is	parsimonious.	Thus,	our	theoretically-driven	approach	uses	

multiple	robust	statistical	approaches	to	reduce	the	complexity	of	connectivity	information	
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inherent	in	multidimensional	connectomes,	and	helps	to	resolve	a	sensible	model	of	

Associative	and	Item	memory	using	multiple	anatomically-based	predictors.	

	

Conclusions	
To	summarize,	based	on	the	evidence	that	structural	and	functional	networks	from	our	CTG	

analysis,	we	have	shown	that	age-related	changes	in	associative—but	not	item	memory—

are	critically	dependent	on	the	linkages	between	structural	and	functional	connectivity	tract	

groups.	Usually,	an	implicit	assumption	is	that	the	structure	of	the	network	is	observable,	

and	inference	of	the	underlying	structure	of	the	connected	system	can	be	based	on	diffusion	

tractography	techniques.	Our	results	test	this	assumption	explicitly,	by	using	an	analytical	

method	that	puts	structural	and	functional	connectivity	information	on	equal	footing.	These	

results	provide	further	insights	into	the	interplay	between	structural	and	functional	

connectivity	patterns,	and	help	to	elucidate	their	relative	contribution	to	age-related	

changes	in	associative	memory	performance.		
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Table	1.	Effects	of	Age	on	Canonical	Tract	Groups.	

		 Canonical	Tract	Group	 Z	

Partial	Correlation	with	
corresponding	WM	
tract	group†	

Structural	Connectivity		

	
CING	 4.190***	 	

	
CINGhip	 11.959****	 	

	
FMin	 5.616***	 	

	
IFOF	 6.746****	 	

	
ILF	 5.328****	 	

	
UF	 6.026****	 	

	
Fornix	 11.889****	 	

	 	 	
	

Functional	Connectivity	-	Associative	Memory	

	
CING	 1.791	 0.28	

	
CINGhip	 2.372*	 0.31	

	
FMin	 1.917*	 0.24	

	
IFOF	 1.491	 0.27	

	
ILF	 1.730	 0.25	

	
UF	 1.368	 0.26	

	
Fornix	 1.002	 0.25	

	 	 	
	

Functional	Connectivity	-	Item	Memory	

	
CING	 3.737***	 0.39	

	
CINGhip	 3.913***	 0.34	

	
FMin	 4.353***	 0.41	

	
IFOF	 3.033**	 0.31	

	
ILF	 3.415**	 0.24	

	
UF	 3.043**	 0.21	

	
Fornix	 2.268*	 0.27	

Note:		†	after	adjusting	for	the	effects	of	age.	CING	=	cingulum;	CINGhip	=	ventral	leg	of	the	cingulum;	

FMin	=	forceps	minor	(or	genu);	IFOF	=	inferior	fronto-occipital	fasciculus;	UF	=	uncinate	fasciculus.	

Significance:	*	=	p	<	0.05;	**	=	p	<	0.01;	***	=	p	<	0.001;	****	=	p	<	0.0001.		
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Table	2.	CTG-Specific	Contributions.	

SEM	Model	 Region	 R2	Structural	CTG	 R2	Functional	CTG	
Associative	Memory	Model	

	 	
	

Latent	Variable		 0.818	 0.143	

	
FMin	 0.617	 0.513	

	
CINGHip	 0.911	 0.760	

	
UF	 0.611	 0.847	

	
Fornix	 0.951	 0.358	

	 	 	 	Item	Memory	Model	
	 	

	
Latent	Variable		 0.394	 0.341	

	
ILF	 0.641	 0.673	

	
CINGHip	 0.436	 0.722	

	
UF	 0.452	 0.593	

	
IFOF	 0.311	 0.495	

Note:	FMin	=	forceps	minor	(or	genu);	CINGhip	=	ventral	leg	of	the	cingulum;	ILF	=	inferior	

longitudinal	fasciculus;	IFOF	=	inferior	fronto-occipital	fasciculus;	UF	=	uncinate	fasciculus.		
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Figure	Captions	
	
Figure	1.	Analytical	Pipeline.	

	

Figure	2.	Construction	of	Canonical	Tract	Groups.	A.	After	functional	and	structural	

connectome	construction,	a	CTG	mask	for	a	particular	tract	is	used	to	filter	functional	and	

structural	connectivity	information.	All	elements	in	the	filtered	matrix	are	then	averaged	

create	a	functional	and	structural	estimate	for	a	given	CTG	(e.g.,	UFfCON	and	UFWM)	which	is	

amenable	to	SEM	modeling.	Also	obvious	in	these	images	is	the	relative	sparsity	of	

structural	connection	matrices	comparted	to	functional	matrices.	B.	Example	CTGs	for	the	

uncinate	fasciculus	(yellow),	cingulum	(green),	or	forceps	major	(blue).	

	

Figure	3.	Age	distributions	of	Canonical	Tract	Groups.	Distribution	of	CTG	values	for	

structural	connectivity	(FA)	and	functional	connectivity	(Spearman’s	rho,	as	calculated	in	

PPI)	for	Associative	and	Item	Memory	in	younger	and	older	adults.	CTG	values	are	shown	

for	seven	major	CTGs	which	influence	the	final	SEMs	below.	Note:	CING	–	cingulum;	CINGhip	

–	ventral	leg	of	the	cingulum;	FMin	–	forceps	minor	(or	genu);	IFOF	–	inferior-fronto-

occipital	fasciculus;	ILF	–	inferior	longitudinal	fasciculus;	UF	–	uncinate	fasciculus.	

	

Figure	4.	Full	model,	Associative	Memory.	Significant	paths	outlined	and	R2	is	

represented	as	the	degree	of	shading	of	the	variables.	Brain	measures	only	have	paths	to	a	

corresponding	CTG	in	the	other	modality,	or	to	the	appropriate	LV.	Notably,	no	tract-

specific	linkages	between	functional	and	structural	information	(left	side	of	SEM).	Note:	

CINGhip	–	ventral	leg	of	the	cingulum;	FMin	–	forceps	minor;	UF	–	uncinate	fasciculus.	

	

Figure	5.	Full	model,	Item	Memory.	Significant	paths	outlined	and	R2	is	represented	as	the	

degree	of	shading	of	the	variables.	Brain	measures	only	have	paths	to	a	corresponding	CTG	

in	the	other	modality,	or	to	the	appropriate	LV.	Notably,	just	as	in	the	Associative	SEM	

above,	no	tract-specific	linkages	between	functional	and	structural	information.	Note:	

CINGhip	–	ventral	leg	of	the	cingulum;	IFOF	–	inferior-fronto-occipital	fasciculus;	ILF	–	

inferior	longitudinal	fasciculus;	UF	–	uncinate	fasciculus.	
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Figure	3	
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Figure	5	
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