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Abstract 

We wish to answer this question If you observe a “significant” P value after doing a single unbiased 

experiment, what is the probability that your result is a false positive?. The weak evidence provided by 

P values between 0.01 and 0.05 is explored by exact calculations of false positive rates.   

When you observe P = 0.05, the odds in favour of there being a real effect (given by the likelihood 

ratio) are about 3:1. This is far weaker evidence than the odds of 19 to 1 that might, wrongly, be 

inferred from the P value.  And if you want to limit the false positive rate to 5 %, you would have to 

assume that you were 87% sure that there was a real effect before the experiment was done. 

If you observe P = 0.001 in a well-powered experiment, it gives a likelihood ratio of almost 100:1 odds 

on there being a real effect. That would usually be regarded as conclusive, But the false positive rate 

would still be 8% if the prior probability of a real effect was only 0.1.  And, in this case, if you wanted 

to achieve a false positive rate of 5% you would need to observe P = 0.00045. 

It is recommended that the terms “significant” and “non-significant” should never be used. Rather, P 

values should be supplemented by specifying the prior probability that would be needed to produce a 

specified (e.g. 5%) false positive rate. It may also be helpful to specify the minimum false positive rate 

associated with the observed P value. 

Despite decades of warnings, many areas of science still insist on labelling a result of P < 0.05 as 

“significant”.  This practice must account for a substantial part of the lack of reproducibility in some 

areas of science.  And this is before you get to the many other well-known problems, like multiple 

comparisons, lack of randomisation and P-hacking.  Science is endangered by statistical 

misunderstanding, and by university presidents and research funders who impose perverse incentives 

on scientists. 
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1. Introduction    

“The major point of this paper is that 

the test of significance does not 

provide the information concerning 

psychological phenomena 

characteristically attributed to it; and 

that, furthermore, a great deal of 

mischief has been associated with its 

use. What will be said in this paper is 

hardly original.it is, in a certain sense, 

what "everybody knows." To say it "out 

loud" is, as it were, to assume the role 

of the child who pointed out that the 

emperor was really outfitted only in his 

underwear. Little of that which 

contained in this paper is not already 

available in the literature, and the 

literature will be cited” 

Bakan, D. (1966) Psychological 

Bulletin, 66 (6), 423 - 237  

 

When you have done an experiment, you want 

to know whether you have made a discovery 

or whether your results could have occurred by 

chance.  More precisely, what you want to 

know is that when a statistical test of 

significance comes out positive, what is the 

probability that you have a false positive i.e. 

there is no real effect and the results have 

occurred by chance. This probability is defined 

here as the false positive rate (FPR). In [1] it 

was called the false discovery rate (FDR), but 

false positive rate is perhaps a better term 

because it is almost self-explanatory and 

because it avoids confusion with the problem 

of multiple comparisons where the term FDR is 

commonly used. 

The question to be answered is, as before, as 

follows.  

 

 

 

The experiment is assumed to be randomised 

and unbiased, with all of the assumptions that 

were made in calculating the P value being 

exactly true, It is also assumed that we are  

 

concerned with a single experiment so there 

are no problems of multiple comparisons.  

Real life can only be worse, so in that sense 

the results given here are the most optimistic 

possible. 

It’s also assumed that we wish to test a 

precise hypothesis, e.g. that the effect size is 

zero (though it makes little difference if we 

allow a narrow band around zero [2] [3]: see 

Appendix A1). 

Most discussions of this topic use the 

standardised normal distribution (z values). 

But most samples are small, often so small 

that the experiment is underpowered [4] , so 

here we use the distribution of Student’s t.   

The discussion will be framed as a comparison 

between the means of two independent 

samples, each of n normally-distributed 

observations.  The assumptions of Student’s t 

test are therefore fulfilled exactly, 

Recently it was asserted that if we observe a P 

value just below 0.05, then there is a chance 

of at least 26% that your result is a false 

positive ([1]). In that paper attention was 

concentrated on P values that came out close 

to 0.05, and the results were found by 

repeated simulations of t tests.  The aim now 

is to extend the results to a range of P values, 

and to present programs (in R) for calculation 

of false positive rates, rather than finding them 

by simulation. Better ways of expressing 

uncertainty are discussed, namely likelihood 

ratios and reverse Bayesian inference.  Before 

getting to results it will be helpful to clarify the 

ideas that will be used. 

2.  Definition of terms  

A P value is defined thus. 

If there were actually no effect (if the 

true difference between means were 

zero) then the probability of observing 

a value for the difference equal to, or 

greater than, that actually observed is 

called the P value.  

If you observe a “significant” P value after 

doing a single unbiased experiment, what 

is the probability that your result is a false 

positive? 
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In other words the P value is the chance of 

seeing a difference at least as big as we have 

done, if, in fact, there were no real effect. 

This definition sounds a bit tortuous, and it’s 

quite rare for experimenters to be able to 

define the P value accurately. But even when 

you have the definition right, it’s hard to see 

exactly what the P value tells us.  The most 

common (mis)interpretations are “the P value 

is the probability that your results occurred by 

chance”. Or “the P value is the probability that 

the null hypothesis is true”.  Both of these are 

disastrously wrong [5].  The latter definition is 

obviously wrong because the P value is 

calculated on the premise that the null 

hypothesis is true, so it can’t possibly tell you 

about the truth of the null hypothesis. 

The P value does exactly what it says. Clearly, 

the smaller the P value, the less likely is the 

null hypothesis.  The problem lies in the fact 

that there is no easy way to tell how small P 

must be in order to prevent you from making a 

fool of yourself by claiming that an effect is real 

when in fact it isn’t.  The probability that your 

results occurred by chance is not the P value: 

it is the false positive rate [5].  

The terms used to describe a null hypothesis 

significance test (NHST), in this case a 

Student’s t test, are defined in Figure 1. The 

type 1 error rate (in this case 5%) is the 

probability of finding a “significant” result, given 

that the null hypothesis is true. Because, like 

the P value, it is conditional on the null 

hypothesis being true, it can’t tell us anything 

about the probability that the null is true and 

can’t tell us anything direct about the false 

positive rate.  For that we need to know also 

what happens when the null hypothesis isn’t 

true.  

In order to calculate the false positive rate the 

null hypothesis is not enough.  We need also 

an alternative hypothesis. This is needed 

because, as Berkson  said in 1942 [6]. 

“If an event has occurred, the 

definitive question is not, "Is this an 

event which would be rare if null 

hypothesis is true?" but "Is there an 

alternative hypothesis under which the 

event would be relatively frequent?" 

 Or, paraphrasing Sellke et al.2001 [7]]  

“knowing that the data are ‘rare’ when 

there is no true difference is of little 

use unless one determines whether or 

not they are also ‘rare’ when there is a 

true difference”.  

 

 

Figure 1.  Definitions for a null hypothesis 

significance test.  A Student’s t test is used to 

analyse the difference between the means of two 

groups of n = 16 observations. The t value therefore 

has 2(n – 1) = 30 degrees of freedom.  The blue line 

represents the distribution of Student’s t under the 

null hypothesis (H0): the true difference between 

means is zero.  The green line shows the non-

central distribution of Student’s t under the 

alternative hypothesis (H1): the true difference 

between means is 1 (one standard deviation).  The 

critical value of t for 30 df and P = 0.05 is 2.04, so, 

for a two-sided test, any value of t above 2.04, or 

below –2.04, would be deemed “significant£.  These 

values are represented by the red areas.  When the 

alternative hypothesis is true (green line), the 

probability that the value of t is below the critical 

level (2.04) is 22% (gold shaded are): these 

represent false negative results. Consequently, the 

area under the green curve above t = 2.04 (shaded 

yellow) is the probability that a “significant” result will 

be found when there is in fact a real effect (H1 is 

true): this is the power of the test, in this case 

78%.The ordinates marked y0 (= 0.526) and. y1 (= 

0.290) are used to calculate likelihood ratios, as in 

section 5. 
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The quantities defined in Figure 1 are not 

sufficient to define the false positive rate.  To 

get what we want we need Bayes’ theorem.  It 

can be written thus. 

odds ratio = likelihood ratio X prior odds     (1)

  

The probability that a hypothesis is true is 

related to the odds ratio in favour of the 

hypothesis being true, thus 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑜𝑑𝑑𝑠

𝑜𝑑𝑑𝑠 + 1
 

      (2) 

For example, if the odds on the null hypothesis 

being true were 9 times greater than the odds 

of the alternative hypothesis being true (odds 

ratio of 9 in favour of the null hypothesis) then 

the probability of the null hypothesis is 9/((9 + 

1) = 0.9, and the probability of the null being 

false is 1 – 0.9 = 0.1. 

The prior probability of an event means the 

probability before the experiment was done.  

The perpetual warfare over the use of Bayes’ 

theorem stems from the fact that we never 

know a value for this prior probability, and that 

problem will be discussed later.  

Before getting to that, we need to clarify an 

important distinction,  

3. Which interpretation is better: ‘p-less-

than’, or ‘p-equals’ ? 

This is an old, but often neglected question. . 

Although this discussion has gone on for 

decades in the statistical literature, it is 

unknown to most users.  The question arises 

when we try to answer the question: what is 

the probability that our results occurred by 

chance if, in a single unbiased test, we find P 

= 0.047 (or whatever value is observed); Is it 

appropriate to consider all tests that produce P 

≤ 0.047 or should we consider only tests that 

give P = 0.047?  Let’s call these, respectively, 

the “p-less-than” interpretation and the “p-

equals” interpretations. 

The distinction sounds subtle, but simulations 

make its meaning obvious. Suppose, sets of 

100,000 t tests are simulated, as In ref. [1]. 

The simulations are intended to mimic what’s 

done in real life, so each set of simulated data 

is analysed with a two-independent-sample t 

test (the only difference from real life is that the 

simulated data are known to fulfil exactly the 

assumptions made by the test).  Each 

simulated test generates a P value.  Simulated 

data are generated for the case when the null 

hypothesis is true, and separately for the case 

when the null hypothesis is not true. Thus, 

unlike in real life, one knows, for each test, 

whether or not the null hypothesis was true: 

this makes it possible to count how often the 

null hypothesis is rejected wrongly and hence 

the false positive rate can be estimated.  The 

calculation of each P value involves tail areas 

in the standard way, i.e. it takes into account 

all results that depart from the null hypothesis 

by as much as, or more than, the observed 

amount.  But, having generated 100,000 P 

values, there are two possible ways to analyse 

them.  We can look at all of the tests that give 

P values that are equal to or less than the 

observed value (0.047, for example). Or one 

can look at only the tests that result in P 

values that come out as 0.047, as observed.   

 The p-equals interpretation counts the 

fraction of false positives among all 

tests that come out with P values 

equal to the observed one, e.g. 0.047. 

 The p-less-than interpretation counts 

the fraction of false positives among 

all tests that come with P equal to or 

less than the observed value. 

In order to answer our question, we have to 

regard the outcome of our experiment as being 

a random instance from the 100,000 possible 

outcomes that were simulated.  In our one 

actual experiment there is a fixed true effect 

size and the prior probability that there’s a real 

effect is also fixed, though its value is 

unknown. It makes no sense to select at 

random, from a prior distribution, a different 

value of the true effect size for each simulated 

t test (see Appendix A1).  The idea of an 

experiment being a random instance from a 

large number of imaginary repetitions of the 

same experiment is a standard way of looking 

at inference, 

Since the outcome of the experiment, in our 

example, was P = 0.047 (or whatever value is 

observed), it seems clear that the ‘p-equals’ 
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case is appropriate for interpretation of our 

particular experiment.  Recall that we are not 

trying to calculate our lifetime false positive 

rate, but just trying to interpret our single 

result.  Simulations that came out with a P 

value of less than 0.047 were not observed in 

the real experiment, so they are irrelevant.  

Most papers (e.g. Wacholder, 2004 [8] and 

Ioannidis, 2005 [9]) consider only the ‘p-less-

than’ case, which is easy to calculate, but 

which, in my opinion, answers the wrong 

question. 

4.  Simulation versus exact calculation 

In ref [1], the problem was solved by 

simulation.  For the example used there, we 

calculated the difference between the means 

of two groups, each with n observations.  The 

difference between the two means can be 

called the effect size.  If the two groups were 

given treatments that were equally effective, 

the effect size would be zero on average. To 

simulate experiments in which the null 

hypothesis is true we generate random 

samples of n “observations” from the same 

normal distribution e.g. both samples come 

from a normal distribution with a mean of zero. 

In order to calculate the FPR we need to 

postulate an alternative to the null hypothesis.  

Let’s say that the true effect size is equal to 

one, the same as the standard deviation of the 

individual responses.  This is not as arbitrary 

as it seems at first sight, because identical 

results are obtained with any other true effect 

size, as long as the sample size is adjusted to 

keep the power of the test unchanged [10].   

In order to simulate an experiment in which the 

null hypothesis is not true we generate random 

samples of n ‘observations’ from a normal 

distribution with a mean of zero for one 

sample, and for the other sample we take n 

observations from a normal distribution with a 

mean of one.  Both distributions have the 

same true standard deviation, equal to one. 

For example, with a true effect size of one 

standard deviation, the power of the test is 

0.78, for P = 0.05, when the sample sizes are 

n = 16.  

For each pair of samples, a standard Student’s 

t test is done. Notice that this is an ideal case, 

because it’s known that the assumptions of the 

t test are obeyed exactly.  Real life can only be 

worse. 

It seems beyond doubt that the ‘p equals’ case 

is what we need.  Our real experiment came 

out with P = 0.047 (or whatever), so what we 

need to do is to look at the false positive rate 

for experiments that produce P values of 

0.047.  If, as in [1], this is done by simulation, 

one has to look at a narrow band of P values 

around the observed value, say P values that 

lie between 0.045 and 0.05, in order to get 

adequate numbers of simulated P values that 

are close to the observed value, 0.047 (or 

whatever).  In this paper we calculate exactly 

the false positive rate that corresponds to any 

specified P value that we have found in a real 

experiment.  An R script is provided to do this 

calculation (calc-FPR+LR.R ).   The calculation 

is outlined in Appendix A2.  The script 

calculates also the false positive rate for the ‘p-

less-than’ case, though this can be found from 

the tree diagram approach, or calculated 

simply from equation A4 in Colquhoun (2014) 

[1].  

The difference between the two approaches is 

illustrated in Figure 2. This shows the false 

positive rate plotted against the P value.  The 

plots are for a well-powered experiment.  The 

curves are calculated with n = 16 observations 

in each sample, because this gives a power of 

0.78 for P = 0.05 and the specified effect size 

and standard deviation.  The sample size is 

fixed because it is good practice to estimate 

sample size in advance to give adequate 

power at a specified P value, usually 0.05.   

The top row in Figure 2 is calculated on the 

basis that the probability that our experiment 

would have a real effect was 0.1 before the 

experiment was done: this prior probability 

shows some scepticism about whether a real 

effect exists. It might, for example, be 

appropriate when testing putative drugs, 

because most drugs candidates fail.   

The bottom row in Figure 2 was calculated on 

the premise that there is is a prior probability 

0.5 that our experiment truly had a real effect 
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(a 50:50 chance).  This assumption of 

equipoise is the largest prior that can 

legitimately be assumed, in the absence of 

good empirical data to the contrary (see Figure 

4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

Plots of false positive rate (FPR) against P value, for two different ways of calculating FPR.  The 

continuous line shows the p-equals interpretation and the dashed line shows the p-less-than 

interpretation.  The dotted red line shows a unit slope: this shows the relationship that would hold if the 

FPR were the same as the P value.  These curves are calculated for a well-powered experiment with a 

sample size of n = 16. This gives power = 0.78, for P = 0.05 in our example (true effect  = 1 SD). 

Top row. Prior probability of a real effect =  0.1 

Bottom row. Prior probability of a real effect =  0.5 

The graphs In the right hand column are the same as those in the left hand column, but in the form of 

a log-log plot. 

Graphs produced by Plot-FPR-vs-Pval.R  [40] 
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The dotted red line in each graph shows where 

the points would lie if the FPR were the same 

as the P value (as is commonly, but 

mistakenly, supposed).  It’s clear that the FPR 

is always bigger, often much bigger, than the P 

value over the whole range. 

Not surprisingly, the FPR is always bigger 

when calculated by the p-equals method than 

it is when calculated with the p-less-than 

method.  For a P value close to 0.05, and prior 

probability of a real effect = 0.5, the FPR is 

26% according to the p-equals interpretation, 

in agreement with the simulations in [1], but for 

the FPR is only 6% according to the p-less-

than interpretation.  When the prior probability 

of a real effect is only 0.1, the FPR for a P 

value of 0.05 is 76% for the p-equals 

interpretation (again agreeing with the value 

found by simulation in [1]). But according to 

the p-less-than interpretation the FPR is 36% 

(in agreement with the tree diagram approach  

and the calculation in appendix A4 of.ref. [1]). 

It’s clear from Figure 2 that the only case in 

which the FPR is similar to the P value is when 

the prior probability of a real effect is 0.5 and 

we use the inappropriate p-less-than 

interpretation. In this case, the bottom row in 

Figure 2 shows that the FPR (dashed blue 

line) is only just above the P value for P values 

close to 0.05, though for P = 0.001 the FPR is 

5-fold greater than the P value, even in this 

case.. But, as discussed above, the 

appropriate answer to the question is given by 

the p-equals interpretation, and the fact that 

this suggests a false positive rate of 26% for 

an observed P value close to 0.05 was what 

led to the conclusion in [1] that the false 

positive rate is at least 26%; and for an 

implausible hypothesis (with a low prior 

probability) it will be much higher.  

5.  Likelihood ratios 

It has often been suggested that it would be 

better to cite likelihood ratios rather than P 

values, e.g. by Goodman [11],[12]. 

The word likelihood is being used here in a 

particular statistical sense. The likelihood of a 

hypothesis is defined as a number that is 

directly proportional to the probability of 

observing the data, given a hypothesis.  Notice 

that this is not the same thing as the 

somewhat elusive probability of the hypothesis 

given the data: that is harder to find.  The 

calculation of the likelihood is entirely 

deductive (under our assumptions –see 

Appendix A1), so it doesn’t involve induction: 

see ref [5] ).  When we speak of a maximum 

likelihood estimate of a parameter it means 

that we choose the value that makes our 

observations more probable than any other. 

The likelihood of a hypothesis is not 

interpretable on its own: we can interpret only 

the relative likelihood of two hypotheses. This 

is called the likelihood ratio. In the example 

used here (and in ref [1]), the two hypotheses 

are the null hypothesis (the true difference 

between means is zero) and the alternative 

hypothesis (the true difference between means 

is one).  

The likelihood ratio is the part of Bayes’ 

theorem (eq. 1) that describes the evidence 

provided by the experiment itself.  Notice that 

use of the likelihood ratio avoids the problem 

of deciding on the prior probabilities.  That, at 

least, is true when we are testing precise 

hypotheses (see Appendix A1). 

Suppose, for example that the data are such 

that a t test gives P = 0.05. The probability of 

this observation under the null hypothesis is 

proportional to the ordinate labelled y0 in 

Figure 1, and the probability of the 

observations under the alternative hypothesis 

is proportional to the ordinate labelled y1 in 

Figure 1.  

   likelihood ratio (alternative / null) = y1/2y0 

The factor of 2 arises because we are talking 

about a 2-sided test.  This is discussed in 

more detail in Appendix A2. 

Values for likelihood ratios are printed out by 

the R script, calc-FPR+LR.R which can be 

downloaded (see ).  Part of the output file is 

shown in Table 1 and Table 2. 

If we observe P = 0.05, for which power = 

0.78, as in Figure 1, the likelihood ratio for the 

alternative versus the null is 2.76 (see Table 1 

and Appendix A2 for details).  So the 

alternative hypothesis is only 2.76 times as 
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likely as the null hypothesis (not 20 times as 

likely as might, wrongly, be guessed from the 

observed P value, 0.05).  This is one reason 

for thinking that the P value (as usually 

misinterpreted) exaggerates the strength of the 

evidence against the null hypothesis [11],[12].  

There are actually two ways to calculate the 

likelihood ratio. The method just described is 

the p-equals interpretation (see section 3 and 

Fig 2).  This is the appropriate way to answer 

our question.  We can also calculate the 

likelihood ratio in a way that’s appropriate for 

the p-less-than interpretation. In this case the 

likelihood ratio is simply equal to the relative 

areas under the curves in Figure 1, i.e. power / 

P value.  In the example in Fig 1, this is 0.78 / 

0.05 = 15.6 i.e., the alternative hypothesis is 

15.6 times as likely as the null hypothesis.                  

This calculation was done in the appendix in 

ref [1], but it is not appropriate for answering 

our question. 

 

Table 1 The case when we observe P = 0.05. Sample output from the R script, calc-FPR+LR.R.  

Values mentioned in the text in red. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fact that we never have a valid value for 

the prior probability means that it’s impossible 

to calculate the false positive rate. Therefore 

rigorous induction is impossible. But we can 

give a minimum value for the FPR. 

Observed likelihood ratios.   The likelihood 

ratios just discussed were calculated for the 

true effect size (of 1 SD).  This is not known in 

real life. So we may ask what happens if we 

calculate the likelihood ratio from our 

experimental data?  This is easily answered by 

simulation. Rather than calculating the 

likelihood ratio for a specified constant effect 

size (1 SD) and a specified standard deviation, 

we calculate separately for each simulated 

experiment the likelihood ratio for the 

‘observed’ effect size, sample standard 

deviation and the P value.  This is done using 

the R script two_sample-simulation-+LR.R 

(see ref ).   

INPUTS  

true mean for sample 1 =  0  

true mean for sample 2 =  1  

true SD (same for both samples) =  1 

  

Observed P value = 0.05 

 

Calculation of FPR for specified n  

 

OUTPUTS for false pos rate, with: prior, P(H1) =  0.1  

CASE OF P = alpha  

For nsamp =  4  False positive rate =  0.747  power =  0.222  

             Lik(H1/Lik(H0) =  3.05  

For nsamp =  8  False positive rate =  0.700  power =  0.461  

             Lik(H1/Lik(H0) =  3.85  

For nsamp =  16  False positive rate =  0.766  power =  0.781  

             Lik(H1/Lik(H0) =  2.76 

 

OUTPUTS for false pos rate, with: prior, P(H1) =  0.5  

CASE OF P = alpha  

For nsamp =  4  False positive rate =  0.246  power =  0.222  

             Lik(H1/Lik(H0) =  3.05  

For nsamp =  8  False positive rate =  0.206  power =  0.461  

             Lik(H1/Lik(H0) =  3.85  

For nsamp =  16  False positive rate =  0.266  power =  0.781  

             Lik(H1/Lik(H0) =  2.76 
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The likelihood ratios, of course, vary from one 

simulated experiment to the next, but if we 

look only at experiments that come out with P 

values close to 0.05, say 0.0475 < P < 0.0525, 

the likelihood ratios (in favour of there being a 

real effect) for these are all close to 3.64. This 

is a bit bigger than the theoretical value of 

2.76, and that is to be expected because it’s 

calculated for each simulated experiment 

using the observed effect size and the 

observed effect size is, in this case, the 

maximum likelihood estimate of the true effect 

size. But the odds of there being a real effect 

are still much smaller than the 19:1 odds that 

might, wrongly, be inferred from the P value of 

0.05. 

If these simulations are repeated for P values 

that are close to 0.01 (looking only at 

simulated experiments that come out with 

0.0095 < P < 0.0105) we find that the 

likelihood ratio in favour of there being a real 

effect is 15.4 (and in this case the theoretical 

value is much the same).  So observation of P 

= 0.01 makes the alternative hypothesis (a real 

effect) 15.4 times more likely than the null 

hypothesis (no real effect).  This makes the 

existence of a real effect much less likely that 

the 99 to 1 odds that might be, wrongly, 

inferred from observing a P value of 0.01.   In 

fact it doesn’t even reach the common 

standard of 19 to 1.  

The likelihood ratio is the bit of Bayes’ theorem 

that tells us about the evidence from the 

experiment.  The fact that observing P = 0.05 

corresponds with a likelihood ratio of only 

about 3 in favour of the alternative hypothesis 

is a good reason to be sceptical about claiming 

that there’s a real effect when you observe a P 

value close to 0.05.  It also shows that the P 

value is a very imperfect measure of the 

strength of the evidence provided by the 

experiment.   

However calculating the likelihood ratio still 

doesn’t tell us what we really want to know, the 

false positive rate. Just as there is no easy 

way to tell how small a P value must be to 

provide reasonable protection against false 

positives, so there is also no easy way to know 

how big the likelihood ratio (in favour of there 

being a real effect) must be to provide 

reasonable protection against false positives.  

What we really want to know is the false 

positive rate, and for that we need the full 

Bayesian approach. 

Notice that Bayes’ theorem (eq. 1) states that 

when the prior odds are 1 (ie the prior 

probability of there being a real effect is 0.5) 

the posterior odds are equal to the likelihood 

ratio.  So the likelihood ratio does give us a 

direct measure of the minimum false positive 

rate (given that it’s not acceptable to assume 

any higher prior than 0.5).  In this case, the 

theoretical likelihood ratio, when we observe P 

= 0.05 in our experiment, is 2.76.  Thus the 

posterior odds in favour of there being a real 

effect is, in this case, also 2.76.  The posterior 

probability of there being a real effect is, from 

eq. 2, 2.76/(2.76 + 1) = 0.734.  And therefore 

the posterior probability that the null 

hypothesis is true, the false positive rate, is 1 – 

0.734 = 0.266. The minimum false positive 

rate is thus 26%, as found by calculation 

above and by simulation in [1].  The likelihood 

ratio found from the experimental results 

(which is what you can calculate in practice), 

was slightly bigger, 3.64, so this implies a 

minimum false positive rate of 1 – (3.64/(1 + 

3.64)) = 21.6%, slightly better, but not by 

much. 

If we observe in our experiment that P = 0.01, 

the false positive rate will be lower.  In this 

case the likelihood ratio in favour of there 

being a real effect is 15.4.  In the most 

optimistic case (prior probability for a real 

effect of 0.5) this will be the posterior odds of 

there being a real effect. Therefore, the 

posterior probability of the null hypothesis, as 

above, 1 – (15.4/(15.4 + 1)) = 0.061, far bigger 

than the observed P value of 0.01. It doesn’t 

even reach the usual 5% value.   

These values are all minimum false positive 

rates.  If the prior probability of a real effect is 

smaller than 0.5, the false positive rate will be 

bigger than these values, as shown in Figure 

4. 

6.  False positive rate as function of sample 

size 

It is possible with the R programs provided, to 

calculate the FPR for any given P value, with 
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different sample sizes.  The calculation is 

outlined in Appendix A2.  Figure 3 shows such 

graphs for sample sizes of n = 4, 8 and 16, as 

used in [1]. The sample sizes give the power 

of the t tests, at the P = 0.05 point, as 0.78 (n 

= 16), 0.46 (n = 8) and 0.22 (n = 4).  These 

values cover the range of powers that are 

common in published work [4]. 

The FPR is calculated by the p–equals method 

(see section 3 and Figure 2), using the R script 

Plot-FPR-vs-Pval.R, see ref [40] ).  The 

program produces also graphs calculated by 

the p-less-than interpretation, but this isn’t 

what we need to answer our question. 

As in Figure 2, the dotted red line shows 

where curves would lie if the FPR were equal 

to the P value. The right hand column shows a 

log-log plot of the graph in the left hand 

column.  It’s obvious that in all cases, the false 

positive rate is a great deal bigger than the P 

value.   

The top row of graphs in Figure 3 is calculated 

with a prior probability that there is a real effect 

of 0.1, i.e. the existence of a real effect is 

somewhat implausible.  For a P value close to 

0.05, the FPR is 76% for the well powered 

sample size (n = 16, power = 0.78), as found 

by simulation in [1], and by calculation: see 

Table 1.    

The lower row of graphs in Figure 3 is 

calculated assuming a prior probability of a 

real effect of 0.5.  In other words, before the 

experiment is done there is assumed to be a 

50:50 chance that there is a real effect so the 

prior odds are 1.  This is the condition of 

equipoise and it’s the largest prior probability 

that can reasonably be assumed (see 

discussion).  For the well-powered experiment 

(n = 16, power = 0.78) the FPR is 26%  when 

a P value of 0.05 is observed (see Table 1),  

Again this agrees with the value found by 

simulation in [1]. 

The graphs in Figure 3 show also that the 

curves for different sample sizes are quite 

close to each other near P = 0.05.  This 

explains why it was found in ref [1] that the 

FPR for P = 0.05 was insensitive to the power 

of the experiment.  The fact that the FPR can 

actually be slightly lower with a small sample 

than with a big one is a well-understood 

phenomenon: see Chapter 13 in ref. [13]  
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Figure 3, The calculated false positive rate plotted against the observed P value.  

The plots are for three different sample sizes: n = 4 (red), n = 8 (green) and n = 16 

(blue),   

Top row. Prior probability of a real effect =  0.1 

Bottom row. Prior probability of a real effect =  0.5 

The graphs In the right hand column are the same as those in the left hand 

column, but in the form of a log-log plot. 

Graphs produced by Plot-FPR-vs-Pval.R  [40] 
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For smaller observed P values, Figure 3 

shows that in all cases the false positive rate is 

much greater than the observed P value.  

For example, if we observe a P value of 0.001, 

we can see what to expect by running the R 

script calc-FPR+LR.R  , with the observed P 

value set to 0.001 (see Table 2) . This gives a 

likelihood ratio of 100 to 1 in favour of there 

being a real effect.  If we assume that prior 

probability of a rea effect is 0.5 then this 

corresponds to a minimum false positive rate 

of 1.0%.  That is 10 times the P value but still 

provides good evidence against the null 

hypothesis.  

However with a prior probability of 0.1 for a 

real effect (an implausible hypothesis) the 

false positive rate is still 8%, despite having 

observed P = 0.001. It would not be safe to 

reject the null hypothesis in this case, despite 

the very low P value and the large likelihood 

ratio in favour of there being a real effect.   

An alternative way to look at the problem is to 

specify a false positive rate that you find 

acceptable, and to calculate the P value that 

would be needed to achieve it.  This can be 

done with the R script calc_p-val.R [40].  If we 

are willing to make fools of ourselves 1 in 20 

times, we could specify a false positive rate of 

5%.  With a well-powered experiment (n = 16), 

to achieve a false positive rate of 0.05 we 

would need a P value of P = 0.0079 if the prior 

probability of a real effect were 0.5 (the most 

optimistic case).  If the prior probability of a 

real effect were only 0.1, we would need to 

observe P = 0.00045. 

These examples serve to show that it would be 

foolish to ignore the prior   probability, even 

though we don’t know its value. 

  

 

Table 2.  The case when we observe P = 0.001. Sample output from the R script, calc-FPR+LR.R 

[40].  Values mentioned in the text in red. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUTS  

true mean for sample 1 =  0  

true mean for sample 2 =  1  

true SD (same for both samples) =  1  

 

Observed P value =  0.001  

 

Calculation of FPR for specified n  

 

OUTPUTS for false pos rate, with: prior, P(H1) =  0.1  

 

CASE OF P = alpha  

For nsamp =  4  False positive rate =  0.526  power =  0.0089  

             Lik(H1/Lik(H0) =  8.12  

For nsamp =  8  False positive rate =  0.208  power =  0.0497  

             Lik(H1/Lik(H0) =  34.3  

For nsamp =  16  False positive rate =  0.0829  power =  0.238  

             Lik(H1/Lik(H0) =  99.6  

 

OUTPUTS for false pos rate, with: prior, P(H1) =  0.5  

CASE OF P = alpha  

For nsamp =  4  False positive rate =  0.110 power =  0.0089 

             Lik(H1/Lik(H0) =  8.12  

For nsamp =  8  False positive rate =  0.0289  power =  0.0497  

             Lik(H1/Lik(H0) =  34.3  

For nsamp =  16  False positive rate =  0.00994  power =  0.238  

             Lik(H1/Lik(H0) =  99.6  
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Figure 4 shows how the false positive rate 

varies with the prior probability that there is a 

real effect. It’s calculated for a well-powered 

experiment (0.78) that gives a P value just 

below 0.05 (see legend for details). 

 

 

 

 

 

 

 

 

 

 

As stated before, the false positive rate is 26% 

for a prior 0.5, but for a less plausible 

hypothesis, with a prior probability of 0.1, the 

false positive rate is 76%.  If the same 

treatment were given to both groups (or, 

equivalently, a dummy pill was given to one 

group, and a homeopathic pill was given to the 

other) then the prior probability is zero: in this 

case the null hypothesis is true, so 5% of tests 

come out positive but what matters is that the 

false positive rate is 100%.  At the other 

extreme, if we were totally sure that there was 

a real effect before doing the experiment (prior 

probability = 1) then all positive tests would be 

true positives and the false positive rate would 

be zero. 

The folly of ignoring the prior probability can 

also be illustrated starkly by an example based 

on decision-making in a court of law [14].   In 

the “Island Problem” discussed there, the 

probability of observing the evidence, given 

that the suspect was guilty was 0.996.  But 

that alone tells us nothing about what we need 

to know, namely the probability that the 

suspect is guilty, given the evidence. To 

mistake the former for the latter is the error of 

the transposed conditional [5], or, in this 

context, the prosecutor’s fallacy.  So would it  

be more helpful to calculate the likelihood ratio 

as an indication of the strength of the 

evidence? This is Prob(evidence | guilty) / 

Prob(evidence | not guilty) which  evaluates to 

odds of 250:1 that a suspect was guilty rather 

than not guilty, in the light of the evidence.  

That sounds beyond reasonable doubt.  But in 

that (somewhat artificial) example, the prior 

odds of guilt were known to be 1 in 1000, so, 

from Bayes’ theorem (equation 1), the 

posterior odds of guilt are not 250:1, but rather 

0.25:1. In other words there are odds of 4 to 1 

against guilt.  Use of the likelihood ratio alone 

would probably have led to a wrongful 

conviction (and, in some countries, execution) 

of an innocent person.   

The prior probability of there being a real effect 

(or, in this example, the prior probability of 

guilt) may not be known, but it certainly can’t 

be ignored.  Luckily there is a solution to this 

dilemma. It will be discussed next, 

7. The reverse Bayesian argument 

Matthews [15]  has proposed an ingenious 

way round the problem posed by the 

inconvenient fact that we essentially never 

have a valid value for the prior probability that 

there is a non-zero effect.  He suggests that 

we reverse the argument. We specify a false 

positive rate that’s acceptable to us, and 

calculate the prior probability that would be 

needed to achieve that rate.  We can then 

judge whether or not that prior probability is, or 

is not, plausible.  The calculation is outlined in 

Figure 4,  The false positive rate plotted against 

the prior probability for a test that comes out 

with a P  value just below 0.05.  The points for 

prior probabilities greater than 0.5 are red 

because it is essentially never legitimate to 

assume a prior bigger than 0.5.  The 

calculations are done with a sample size of 16, 

giving power = 0.78 for P = 0.0475. The square 

symbols were found by simulation of 100,000 

tests and looking only at tests that give P values 

between 0.045 and 0.05.  The fraction of these 

tests for which the null hypothesis is true is the 

false positive rate.  The continuous line is the 

theoretical calculation of the same thing: the 

numbers were calculated with origin-graph.R 

and transferred to Origin to make the plot. 
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Appendix A3.  The calculations are done by 

the R script, calc-prior.R  [40].   

For example, if we observe a P value close to 

0.05, and we want a false positive rate of 5% 

(which is what many people mistakenly think 

the P value gives you), that implies that you 

must assume that the prior probability of a 

non-zero effect is 87% (for sample size n = 

16).  In other words, to obtain a false positive 

rate of 5% you have to be almost sure (prior = 

0.87) that there is a non-zero effect before 

doing the experiment.  And In order to get a 

false positive rate of 1% we would have to 

assume a prior probability of 0.98. These 

priors are obviously preposterously high.  It is 

yet another way of looking at the weakness of 

the evidence provided by a P value close to 

0.05. 

If we observe a P value close to 0.01, then to 

achieve a false positive rate of 5% we would 

have to assume a prior probability that there is 

a real effect of 0.55, i.e. that before the 

experiment was done, it was (slightly) more 

probable than not that there was a real effect. 

And to achieve a false positive rate of 1%, the 

prior would have to be 0.87, unacceptably 

high. 

If we observed a P value of 0.001, then to 

achieve a false positive rate of 5%, we’d have 

to assume the prior was 0.16.  That’s not 

impossible insofar as it’s below 0.5, but if the 

hypothesis were implausible (e.g. we were 

testing homeopathic pills) it might still be 

thought implausibly high.  A false positive rate 

of 0.01 (ten times larger than the P value) 

would need a prior of 0.50: you then have to 

decide whether or not it’s reasonable to 

assume that, before you have the data, there’s 

a 50:50 chance that there’s a real effect. 

Of course the judgement of whether or not the 

calculate prior probability is acceptable or not 

is subjective. Since rigorous inductive 

inference is impossible [5], some subjective 

element is inevitable.  Calculation of the prior 

probability that is needed to achieve a 

specified false positive rate is a lot more 

informative than the equally subjective 

judgement that P < 0.05 is adequate grounds 

for claiming a discovery. 

8.  Discussion 

The fact that we never have a valid value for 

the prior probability means that it’s impossible 

to calculate the false positive rate. Therefore 

rigorous induction is impossible [5].  

Although it is often said that P values 

exaggerate the evidence against the null 

hypothesis, this is not strictly true.  What is 

true is that P values are often misinterpreted 

as providing more evidence against the null 

hypothesis than is the case. Despite the fact 

that the smaller the P value, the less plausible 

is the null hypothesis, there is no simple way 

to know how small the P value must be in 

order to protect you from the risk of making a 

fool of yourself by claiming that an effect is real 

when in fact the null hypothesis is true, so all 

you are seeing is random sampling error.  

The misconception that a P value is the 

probability that your results occurred by 

chance, i.e. that it’s the probability that the null 

hypothesis is true, is firmly lodged in the minds 

of many experimenters. But it is wrong, and it’s 

seriously misleading. 

The problem of reproducibility has not been 

helped by the inability of statisticians to agree 

among each other about the principles of 

inference.  This is shown very clearly by the 

rather pallid nature of the statement about P 

values that was made by the American 

Statistical Association [16].  Reading the 20 

accompanying statements shows little sign of 

convergence among the views of the warring 

camps.  Stephen Senn put it thus in a tweet.  

 

 

 

 

The inability to agree is also made clear by the 

Royal Statistical Society discussion about the 

ASA statement [17], and by Matthews’ 

assessment of it, one year later [18].  

Even such gurus of evidence-based medicine 

as Heneghan and Goldacre don’t mention the 

contribution made by the myth of P values to 

the unreliability of clinical trials [19] 

@stephensenn 

Replying to @david_colquhoun 

@david_colquhoun You know us statisticians 

at the moment we are struggling to converge 

on whether we are converging or not. 
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More surprisingly, even some accounts of 

significance testing by professional 

statisticians don’t always point out the 

weakness of P values as evidence.  Their 

teaching to biologists must bear some of the 

blame for widespread misunderstanding. 

Despite the controversy that still surrounds the 

Bayesian approach, it’s clear that we are all 

Bayesians at heart. This is illustrated by the 

aphorisms “extraordinary claims require 

extraordinary evidence”, and “if sounds too 

good to be true, it’s probably untrue”.  The 

problems arise when we want to put numbers 

on the uncertainty. And the main problem is 

the impossibility of putting numbers on the 

prior probability that the null hypothesis wrong 

(see Appendix A1).    

A real Bayesian would specify a prior 

distribution, which, they would claim, 

represents the state of knowledge before the 

experiment was done, based on current expert 

opinion.  This appears to be nothing more than 

an appeal to authority (see Edwards (1992) 

[20].  There is essentially never enough expert 

opinion to specify a prior distribution, and to try 

to do so carries the risk of reinforcing current 

prejudices.  The result will depend on which 

expert you ask.  There will be as many 

different answers as there are experts.  That is 

not helpful: in fact it’s fantasy science.  So 

what can we do? 

The way to get round the problem proposed by 

Colquhoun 2014 [1] was to say that any prior 

probability greater than 0.5 is unacceptable 

because it would amount to saying that you 

know the answer before the experiment was 

done.  So you can calculate a false positive 

rate for a prior probability of 0.5 and describe it 

as a minimum false positive rate. If the 

hypothesis were implausible, the prior 

probability might be much lower than 0.5, and 

the false positive rate accordingly much higher 

than the minimum.  But setting a lower bound 

on the false positive rate is a lot better than 

ignoring the problem. 

Using likelihood ratios in place of P values has 

been advocated, e.g. [11],[12]. They have the 

advantages that (under our assumptions –see 

Appendix A1) they can be calculated without 

specifying a prior probability, and that they are 

the part of Bayes’ theorem (eq. 1) that 

quantifies the evidence provided by the 

experiment (something that P values don’t do 

[20]).   

Calculation of likelihood ratios certainly serves 

to emphasise the weakness of the evidence 

provided by P values (section 5, and [21]): if 

you observe P = 0.05, the likelihood ratio in 

favour of there being a real effect is around 3 

(section 5),  and this is pretty weak evidence,   

Even if we observe P  = 0.01,  the likelihood of 

there being a real effect is only about 15 times 

greater than the likelihood of the null 

hypothesis. So the existence of a real effect is 

much less likely that the 99 to 1 odds that 

might be, wrongly, inferred from the observed 

P value of 0.01.   In fact it doesn’t even reach 

the common standard of 19 to 1. 

Useful though likelihood ratios can be, they 

aren’t a solution to the problem of false 

positives, for two reasons (see section 5). 

Firstly, there is no simple way to tell how big 

the likelihood ratio must be to prevent you from 

making a fool of yourself. And secondly, 

likelihood ratios can overestimate seriously the 

strength of the evidence for there being a real 

effect when the prior probability is small. Their 

use could result in conviction of an innocent 

person (section 5).  Even if we observe P = 

0.001, which gives a likelihood ratio of 100 in 

favour of there being a real effect, the false 

positive rate would still be 8% if the prior 

probability of a real effect were only 0.1 (see 

Table 2). 

I suggest that the best way of avoiding the 

dilemma posed by the unknown prior is to 

reverse the argument and to calculate, using 

the observed P value, what the prior 

probability would need to be to achieve a 

specified false positive rate (section 7, and ref 

[15]).  That leaves one with the subjective 

judgement of whether or not the calculated 

prior is reasonable or not (though if the prior 

comes out bigger than 0.5, it is never 

reasonable).  If we observe a P value close to 

0.05, then, in order to achieve a false positive 

rate of 5% it would be necessary to assume 

that the prior probability that there was a real 
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effect would be as high as 0.87.  That would 

be highly unreasonable. 

Other ways to get round the problem of the 

unknown prior have been proposed. A full 

Bayesian analysis involves choosing a prior 

distribution for the effect size.  It has been 

shown that it’s possible to specify a prior 

distribution that gives the biggest probability of 

rejecting the null hypothesis [7,22] [23].  Even 

these priors, when we observe a P value close 

to 0.05, give a posterior probability of the null 

hypothesis being true of over 20% (i.e. the 

odds on the null being false are less than 4 to 

1).  That is far weaker evidence against the 

null hypothesis than the (wrongly-interpreted) 

P = 0.05 might suggest.  These 

mathematically-sophisticated Bayesian 

arguments lead to very similar conclusions to 

those given here. 

9.  Conclusions: and what should be done? 

One thing that you should not do is to follow 

the advice given by many journals: Some 

statement like the following is only too 

common [24]. 

“a level of probability (P) deemed to 

constitute the threshold for statistical 

significance should be defined in 

Methods, and not varied later in 

Results (by presentation of multiple 

levels of significance). Thus, ordinarily 

P <  0.05 should be used throughout a 

paper to denote statistically significant 

differences between groups.” 

As Goodman [11] said 

“The obligatory statement in most 

research articles, ‘p values below 0.05 

were considered statistically 

significant’ is an empty exercise in 

semantics” 

Not only is P < 0.05 very weak evidence for 

rejecting the null hypothesis, but statements 

like this perpetuate the division of results into 

“significant” and “non-significant”. 

At the other extreme, neither should you use a 

fantasy prior distribution to do a full Bayesian 

analysis. Valen Johnson has said, rightly, that  

“subjective Bayesian testing 

procedures have not been—and will 

likely never be— generally accepted 

by the scientific community” [25]. 

So here is what I think should be done. 

(1) Continue to give P values and confidence 

intervals. These numbers should be given 

because they are familiar and easy to 

calculate, not because they are very helpful in 

preventing you from making a fool of yourself.  

They do not provide good evidence for or 

against the null hypothesis.  Giving confidence 

intervals has the benefit of focussing attention 

on the effect size.  But it must be made clear 

that there is not a 95% chance that the true 

value lies within the confidence limits you find.  

Confidence limits give the same sort of 

evidence against the null hypothesis as P 

values, i.e, not much.   

Perhaps most important of all, never, ever, use 

the words “significant” and “non-significant” to 

describe the results.  This wholly arbitrary 

dichotomy has done untold mischief to the 

integrity of science. 

A compromise idea is to change the words 

used to describe observed P values.  It has 

been suggested that the criterion for statistical 

significance be changed from 0.05 to 0.005 

[23]. [39].  Certainly, one should never use the 

present nonsensical descriptions:  

P  > 0.05 not significant;   

P < 0.05 significant; 

P < 0.01 very significant.   

Something like the following would be better 

P = 0.05 weak evidence: worth another look 

P = 0.01 moderate evidence for a real effect 

P = 0.001 strong evidence for real effect 

But bear in mind that even these descriptions 

may be overoptimistic if the prior probability of 

a non-zero effect is small. 

Of course these criteria would result in missing 

many real effects.  In practice, decisions must 

depend on the relative costs (in money and in 

reputation) that are incurred by wrongly 

claiming a real effect when there is none, and 

by failing to detect a real effect when there is 
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one.In the end,  Marginal P values are fine as 

a signal to investigate further.  In the end, the 

only solution is replication. 

(2) Perhaps the best way of indicating the 

strength of evidence provided by a single P 

value is to  use the reverse Bayesian method 

(section 7).  That is, calculate what prior 

probability would be needed to achieve a 

specified false positive rate (e,g. use calc-

prior.R [40]). If this prior is bigger than 0.5, 

then you aren’t on safe ground if you claim to 

have discovered a real effect.  It is then up to 

you to argue that the calculated prior is 

plausible, and up to the reader to judge your 

arguments. 

(3) Another way of looking at the strength of 

the evidence provided by a single P value is to 

state, as the P value, the likelihood ratio or, 

better, the corresponding minimum false 

positive rate (e.g. use calc-FPR+LR.R [40]).   

These are much better ways of assessing the 

evidence provided by the experiment than 

simply stating a P  value..  

 (4) Always be aware that no method exists for 

rigorous inductive argument [5].  In practice, 

judgement, and especially replication, is 

always needed.  There is no computer 

program that can automatically make a 

judgement for you.  

Here’s an example.  A study of transcranial 

electromagnetic stimulation, published In 

Science,  concluded that it “improved 

associative memory performance”, P = 0.043 

[26].  If we assume that the experiment had 

adequate power (the sample size of 8 

suggests that might be optimistic), In order to 

achieve a false positive rate of 5% when we 

observe P = 0.043, we would have to assume 

a prior probability of 0.85 that the effect on 

memory was genuine (found from calc-

prior.R). Most people would think it was less 

than convincing to present an analysis based 

on the assumption that you were almost 

certain (probability 0.85) to be right before you 

did the experiment. Another way to express 

the strength of the evidence provided by P = 

0.043 is to note that it makes the existence of 

a real effect only 3.3 times as likely as the 

existence of no effect (likelihood ratio found by 

calc-FPR+LR.R [40]).  This would correspond 

to a minimum false positive rate of 23% if we 

were willing to assume that non-specific 

electrical zapping of the brain was as likely as 

not to improve memory (prior odds of a real 

effect was 1).   

Since this paper was written, a paper (with 72 

authors) has appeared [39] which proposes to 

change the norm for “statistical significance” 

from P = 0.05 to P = 0.005,  Benjamin et al. 

[39] makes many of the same points that are 

made here, and in [1].  But there a few points 

of disagreement,  

(1) Benjamin et al. propose changing the 

threshold for “statistical significance”, whereas 

I propose dropping the term “statistically 

significant” altogether: just give the P value 

and the prior needed to give a specified false 

positive rate of 5% (or whatever). Or, 

alternatively, give the P value and the 

minimum false positive rate (assuming prior 

odds of 1).  Use of fixed thresholds has done 

much mischief. 

(2) The definition of false positive rate in 

equation 2 of Benjamin et al. [39] is based on 

the p-less-than interpretation.  In [1], and in 

this paper, I argue that the p-equals 

interpretation is more appropriate for 

interpretation of single tests.  If this is 

accepted,, the problem w  ith P values is even 

greater than stated by Benjamin et al. (e.g see 

Figure 2). 

(3) The value of P = 0.005 proposed by 

Benjamin et al. [39] would, in order to achieve 

a false positive rate of 5%, require a prior 

probability of real effect of about 0.4 (from 

calc-prior.R, with n = 16). It is, therefore, safe 

only for plausible hypotheses. If the prior 

probability were only 0.1, the false positive rate 

would be 24% (from calc-FPR+LR.R, with n = 

16).  It would still be unacceptably high even 

with P = 0.005.  Notice that this conclusion 

differs from that of Benjamin et al [39] who 

state that the P = 0.005 threshold, with prior = 

0.1, would reduce the false positive rate to 5% 

(rather than 24%).  This is because they use 

the p-less-than interpretation which, in my 

opinion, is not the correct way to look at the 

problem. 
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The problem of false positives is likely to be 

responsible for a substantial part of the 

reported lack of reproducibility.  Many reported 

P values fall in the marginal range, between 

0.01 and 0.05 [27,28].  They provide only weak 

evidence against the null hypothesis.  

Although the problems outlined here have 

been known to statisticians for at least 70 

years, they are still largely unknown to 

experimenters. 

It is hard to avoid the conclusion that 

experimenters don’t want to know about the 

myth of P < 0.05. Despite the decades for 

which statisticians have been pointing out the 

inadequacies of this approach, practice has 

hardly changed.  Indeed it is still widely used in 

papers that have professional statisticians as 

co-authors.  Experimenters perceive that to 

abandon the myth of P < 0.05 might harm their 

place in the academic rat race.   

Journals must bear some of the blame too.  

Their statistical advice is mostly more-or-less 

inaccurate. But when I pointed out the harm 

that would be done by such bad advice [24], 

the response of journal editors was to say that 

if they were to adopt recommendations of the 

sort given above it would “damage their 

journals’ impact factors”.  The effect of 

competition between journals is as corrupting 

as the effect of competition between 

individuals. 

The people who must bear the ultimate 

responsibility for this sad state of affairs are 

university presidents and heads of research 

funders.  While they continue to assess 

“productivity” by counting publications, 

counting citations and judging papers by the 

journal in which they are published, the 

corruption will continue. Despite abundant 

evidence that metrics such as these don’t 

measure quality, and do encourage bad 

practice, they continue to be widespread [29]. 

The efforts of university administrators to edge 

up a place or two in university rankings can be 

very cruel to individuals, even leading to death 

[30], and the people who do this seem to have 

no appreciation of the fact that the rankings 

with which they are so obsessed are 

statistically illiterate [31–33]. 

One really disastrous aspect of the rash of 

false positives is that it gives ammunition to 

people who distrust science.  Until recently, 

these were largely homeopaths and other such 

advocates of evidence-free medicine. Now, 

with a president of the USA who doubts the 

reality of climate change, the need for reliable 

science is greater than it ever has been.   

It has become a matter of urgency that 

universities and politicians should stop 

subverting efforts to improve reproducibility by 

imposing perverse incentives on the people 

who do the work. These pressures have 

sometimes led to young scientists being 

pushed by their seniors into behaving 

unethically.  They are fighting back [38] and 

that’s a good augury for the future  

 

 

Appendix 

A1. The point null hypothesis 

I’m aware that ‘I’m stepping into a minefield 

and that not everyone will agree with the 

details of my conclusions.  However I think that 

most statisticians will agree with the broad 

conclusion that P values close to 0.05 provide 

weak evidence for a real effect and that the 

way in which P values continue to be misused  

 

 

has made a substantial contribution to 

irreproducibility. 

It should be pointed out that the conclusions 

here are dependent on the assumption that we 

are testing a point null hypothesis. The null 

hypothesis is that the true effect size is zero 

and the alternative hypothesis is (for a two-

sided test) that the true effect size is not zero.  

In other words the prior distribution for the null 

hypothesis is a spike located at zero effect 

size [11] [3]. This is, of course, what 

statisticians have been teaching for almost a 

century. This seems to me to be an entirely 

reasonable approach.  We want to know 
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whether our experiment is consistent with a 

true effect size of zero. We are not asserting 

that the effect is exactly zero, but calculating 

what would happen if it were zero.  If we 

decide that our results are not consistent with 

a true effect size of zero then we can go ahead 

and calculate our estimate of the effect size.  

At that point, we then have to decide whether 

the effect size is big enough to matter. It’s not 

uncommon in clinical trials to find small effect 

sizes which, even if they are real, aren’t big 

enough for a patient to get a noticeable 

benefit.  In basic science, focussing research 

efforts on small effects with moderate P values 

is undoubtedly driving extensive investigations 

of epiphenomena that cost a great deal of 

money and ultimately serve no-one.  

In order to test the null hypothesis, H0, that the 

true effect size is zero we have to specify an 

alternative hypothesis, H1, which is that the 

true effect size is not zero.  To do calculations 

we need to specify a value for the true effect 

size under the alternative hypothesis. In our 

calculations, the true mean under the 

alternative hypothesis is set to 1, the same as 

the standard deviation of the observations. 

This isn’t as arbitrary as it sounds because 

exactly the same results will be found for any 

other effect size as long as the sample size is 

adjusted to keep the power unchanged [10]. 

Bayesians may object to this approach and 

say instead that a prior distribution should be 

postulated. Senn [34] has pointed out that, if 

we assume a smeared prior distribution for the 

null hypothesis, it’s possible to find such a 

distribution that makes the FPR the same as 

the P value, at least for one-sided tests.  In 

terms of simulations, this means that in each 

simulated t test, we choose at random from 

this prior distribution, a different value for the 

null hypothesis.  This procedure makes little 

sense to me.  There is no reason at all to think 

that this sort of prior is true.  And we are trying 

to interpret a single experiment. It has a single 

true effect size, which we don’t know but wish 

to estimate.   The simulations, here and in ref. 

[1] mimic what is actually done, and then 

simply count the number of “significant” results 

that are false positives.  It is alarmingly high. 

 

A2 Calculation of likelihood ratios and false 

positive rates 

In ref [1], likelihood ratios and false positive 

rates were calculated in appendix A2 – A4, 

according to the p-less-than interpretation. 

Here we do analogous calculations for the p-

equals case. That is what is needed to answer 

our question (see section 3). 

 

The critical value of the t statistic is calculated 

as  

𝑡𝑐𝑟𝑖𝑡 = 𝑞𝑡(1 −
𝑝𝑣𝑎𝑙

2
, 𝑑𝑓, 𝑛𝑐𝑝 = 0) 

(A1) 

where qt() is the inverse cumulative 

distribution of Student’s t statistic. The 

arguments are the observed P value, pval, the 

number of degrees of freedom, df, and the 

non-centrality parameter, ncp (zero under the 

null hypothesis)   For the example in Figure 1, 

pval = 0.05, with 30 degrees of freedom so this 

gives tcrit = 2.04. Under the null hypothesis 

(blue line in Figure 1) the probability density 

that corresponds to the observed P value is 

 

𝑦0 = 𝑑𝑡(𝑡𝑐𝑟𝑖𝑡, 𝑑𝑓, 𝑛𝑐𝑝 = 0) 

(A2) 

where dt() is the probability density function of 

Student’s t distribution with degrees of 

freedom df and non-centrality parameter = 

zero under the null hypothesis. This is the 

value marked y0 in Figure 1 and in that 

example its value is 0.0526. 

 

Under the alternative hypothesis, we need to 

use the non-central t distribution (green line in 

Figure 1). The non-centrality parameter is 

 

𝑛𝑐𝑝 =
𝑑𝑖𝑓𝑓

𝑠𝑑𝑖𝑓𝑓

 

(A3) 

where diff is the difference between means (1 

in this case) and sdiff is the standard deviation 

of the difference between means, 0.354 in 

Figure 1, so ncp = 2.828.  The probability 

density that corresponds with tcrit = 2.04 is 

 

𝑦1 = 𝑑𝑡(𝑡𝑐𝑟𝑖𝑡, 𝑑𝑓, 𝑛𝑐𝑝 = 2.828) 

(A4) 

 

In the example in Figure 1, this is 0.290, 

labelled y1 in Figure 1. 
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The likelihood of a hypothesis is defined as a 

number that is directly proportional to the 

probability of making the observations when 

the hypothesis is true.  For the p-equals case 

we want the probability that the value of t is 

equal to that observed. This is proportional to 

the probability density that corresponds to the 

observed value (see Figure 1).  (More formally, 

the probability is the area of a narrow band 

centred on the observed value, but we can let 

the width of this band go to zero.)  For a two-

sided test, under the null hypothesis the 

probability occurs twice, once at t = – 2.04 and 

once at +2.04 (see Figure 1). For brevity, let’s 

define 

 

        𝑝0 = 2𝑦0, and 𝑝1 = 𝑦1                          (A5) 

 

Thus, under the p-equals interpretation, the 

likelihood ratio in favour of H1, is 

 

𝐿(𝐻1)

𝐿(𝐻0)
=

𝑃𝑟𝑜𝑏(𝑑𝑎𝑡𝑎 | 𝐻1)

𝑃𝑟𝑜𝑏(𝑑𝑎𝑡𝑎| 𝐻0)
=  

𝑦1

2𝑦0

=
𝑝1

𝑝0

 

(A6) 

In forming the likelihood ratio, the arbitrary 

constant in the likelihoods cancels out. 

 

In the example in Figure 1, the likelihood ratio 

is 0.290 / (2 x 0.0526) = 2.76. The alternative 

hypothesis is 2.76 times more likely than the 

null hypothesis.  This is weak evidence for the 

existence of a real effect. 

 

In order to calculate the false positive rate, we 

need Bayes’ theorem. This can be written in 

the form  

 

posterior odds on H1 = 

     likelihood ratio  X prior odds     (A7) 

 

Or, in symbols, 

 

P(𝐻1| 𝑑𝑎𝑡𝑎)

P(𝐻0| 𝑑𝑎𝑡𝑎)
=

P (𝑑𝑎𝑡𝑎|𝐻1)

P (𝑑𝑎𝑡𝑎|𝐻0)
×

P (𝐻1)

P (𝐻0)
 

(A8) 

 

The likelihood ratio represents the evidence 

provided by the experiment. It is what converts 

the prior odds to the posterior odds.  If the 

prior odds are 1, so the prior probability of a 

real effect is 0.5, then the posterior odds are 

equal to the likelihood ratio.  In the example in 

Figure 1, this is 2.76, so the posterior 

probability of there being a real effect, from eq. 

2, is 2.76 / (2.76 +1) = 0.734. And the posterior 

probability of the null hypothesis is 1 –  0.734 

= 0.266. In the case of prior odds =1 this can 

be written as 

 

P( 𝑑𝑎𝑡𝑎|𝐻0)

P( 𝑑𝑎𝑡𝑎|𝐻0) + P( 𝑑𝑎𝑡𝑎|𝐻1)
 

 

So when we observe P = 0.05 there is a 

26.6% chance that the null hypothesis is true.  

And this is the minimum false positive rate of 

26.6% that was found above, and by 

simulations in section 10 of ref [1]. 

 

Likelihood ratios tell us about the minimum 

false positive rate that is found when the prior 

odds are 1 i.e. prior probability = 0.5 (see 

Figure 4).  But to assume this is dangerous 

(see section 6).  In general, we can’t assume 

that the prior odds are 1. If the prior probability 

of a real effect is P(H1), and the prior 

probability of the null hypothesis is therefore 

P(H0)= 1 − P(H1), then the false positive rate is 

 

𝐹𝑃𝑅 = 𝑃(𝐻0|𝑑𝑎𝑡𝑎)

=  
𝑃(𝐻0)𝑃(𝑑𝑎𝑡𝑎|𝐻0)

𝑃(𝐻0)𝑃(𝑑𝑎𝑡𝑎|𝐻0) + 𝑃(𝐻1)𝑃(𝑑𝑎𝑡𝑎|𝐻1)
 

(A9) 

where data are represented by the observed P 

value.  

 

In the example given in Figure 1, P(data | H0) 

= p0 = 2 x 0.0526 = 0.105, and P(data | H1) = 

p1 = 0.290. 

 

If the prior probability of a real effect is P(H1) = 

0.1, so P(H0) = 0.9, then, for the example in 

Figure 1, the observed P value of 0.05 implies 

a false positive rate of 

 

𝐹𝑃𝑅 = 𝑃(𝐻0! 𝑃𝑜𝑏𝑠 = 0.05)

=  
0.9 × 0.105

0.9 × 0.105 + 0.1 × 0.290  
= 0.766  

(A10) 

 

This agrees with the 76% false positive rate 

found by calculation above, and by simulations 

in [1]. 
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A3 The calculation of the prior probability:  

the reverse Bayesian approach 

In order to do this, all we have to do is to 

rearrange eq A8 to give the prior needed for a 

specified FPR. 

𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑜𝑓 𝐻1 = 𝑝(𝐻1)

=
𝑝0(1 − 𝐹𝑃𝑅)

𝑝0(1 − 𝐹𝑃𝑅) + 𝑝1𝐹𝑃𝑅
 

(A11) 

For the example in Figure 1, p0 = 0.105 and p1 

= 0.290, so if we observe P = 0.05, and want a 

false positive rate of 5%, it would be necessary 

to assume a prior probability of there being a 

real effect of 

 

𝑝(𝐻1) =
0.105(1 − 0.05)

0.105(1 − 0.05) + 0.290 × 0.05

= 0.873 

 

To attain a false positive rate of 5% after 

observing P = 0.05, we would have to be 

almost (87%) certain that there was a real 

effect before the experiment was done. 

 

A4.  Bayesian estimation in single molecule 

kinetics 

It has become common to see Bayesian 

arguments in many fields, including my 

erstwhile job, interpretation of single molecule 

kinetics. Experimental data in that field come 

as distributions (of sojourn times in the open 

and shut states of a single ion channel), so 

maximum likelihood estimation was the 

obvious thing to do, once the mathematical 

problems had been solved [35,36].  Recently 

the same problem has been approached by 

Bayesian methods [37].  The parameters to be 

estimated are the rate constants for transitions 

between discrete states of the receptor 

protein.  The priors were taken to be uniform 

between lower and upper limits. The limits are 

dictated by physical considerations, and the 

same limits were applied in maximum 

likelihood as constraints on the parameter 

values. Under these circumstances, the point 

estimates of rate constants are the same by 

both methods.  The only advantage of the 

Bayesian approach seems to be in the 

estimation of uncertainties in cases where 

parameters are not well-defined by the data.  
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    40    Computer programs used in this paper. Click here to download all in a zip file 

 

calc-FPR+LR.R   Calculates FPR and likelihood ratios for specified P  value and 

sample size. No graphs, just printout file. 

 Sample output file: calc-FPR+LR-p= 0.05 .txt 

 

Plot-FPR-vs-Pval.R   Generates plots of FPR as a function of observed P value. Plots 

are generated for 3 sample sizes (n = 4, 8, 16 by default) and for two values of 

the prior, P(H1) = 0.1 and 0.5 by default. Each plot is produced with arithmetic 

scales and log-log scales.  Also, for direct comparison of the p-equals case and 

the p-less-than case, the FPR vs P value for each case are plotted on the 

same graph, for n = 16 (default),  No print-out files in thus version. 
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two_sample-simulation-+LR.R  Simulates a specified number of t tests and prints out 

results (like in ref [1] but prints also the likelihood ratios for “significant”; results. 

Plots graphs of the distributions from which random samples are generate, and 

the distribution of effect sizes and P values. 

 Sample output file;: simulation+LR-P-between 0.0475 0.0525 .txt 

 

calc-prior.R   Calculates prior probability needed to produce specified FPR, printout 

and graphs of  prior, P(H1), against observed P value.    

 Sample output file: calc_prior-p= 0.05 -FPR= 0.05 .txt 

 

calc_p-val.R  Calculates the P value that would be needed to achieve a specified false 

positive rate (given the prior probability, P(H1), and sample size). 

 Sample output file: calc_pval for FPR= 0.05 p(H1)= 0.5 .txt 

 

t-distributions.R    Plots the distributions of Student’s t for the null and alternative 

hypothesis, for specified sample size and P value (defaults are n = 16 and  

value = 0.05) Used for Figure 1. 
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