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Abstract 
Single-cell RNA-seq allows building cell atlases of any given tissue and infer the dynamics of 

cellular state transitions during developmental or disease trajectories. Both the maintenance and 

transitions of cell states are encoded by regulatory programs in the genome sequence. However, 

this regulatory code has not yet been exploited to guide the identification of cellular states from 

single-cell RNA-seq data. Here we describe a computational resource, called SCENIC (Single Cell 

rEgulatory Network Inference and Clustering), for the simultaneous reconstruction of gene 

regulatory networks (GRNs) and the identification of stable cell states, using single-cell RNA-seq 

data. SCENIC outperforms existing approaches at the level of cell clustering and transcription 

factor identification. Importantly, we show that cell state identification based on GRNs is robust 

towards batch-effects and technical-biases. We applied SCENIC to a compendium of single-cell 

data from the mouse and human brain and demonstrate that the proper combinations of 

transcription factors, target genes, enhancers, and cell types can be identified. Moreover, we used 

SCENIC to map the cell state landscape in melanoma and identified a gene regulatory network 

underlying a proliferative melanoma state driven by MITF and STAT and a contrasting network 

controlling an invasive state governed by NFATC2 and NFIB. We further validated these 

predictions by showing that two transcription factors are predominantly expressed in early 

metastatic sentinel lymph nodes. In summary, SCENIC is the first method to analyze scRNA-seq 

data using a network-centric, rather than cell-centric approach. SCENIC is generic, easy to use, 

and flexible, and allows for the simultaneous tracing of genomic regulatory programs and the 

mapping of cellular identities emerging from these programs. Availability: SCENIC is available as 

an R workflow based on three new R/Bioconductor packages: GENIE3, RcisTarget and AUCell. As 

scalable alternative to GENIE3, we also provide GRNboost, paving the way towards the network 

analysis across millions of single cells. 
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Introduction 
The transcriptional state of a cell emerges from an underlying gene regulatory network in which a 

limited number of transcription factors and co-factors regulate each other and their downstream 

target genes 1. Recent advances in single-cell transcriptome profiling have provided exciting 

opportunities for a high-resolution identification and clustering of transcriptional states, and to 

identify trajectories of transitions between states, for example during differentiation 2,3. Statistical 

techniques and bioinformatics methods have been optimized for single-cell RNA-seq 4, including 

methods for expression normalization 5,6, differential expression analysis 7–12, clustering 13–16, 

dimensionality reduction 17,18, trajectory inference 19, and rare cell type identification 17,20. Although 

these methods have led to significant new biological insights, it is still unclear whether specific and 

robust GRNs underlying thus predicted cell states can be established. This may indeed be 

challenging given that at the single cell level, gene expression may, at least in part, be 

disconnected from the dynamics of transcription factor inputs due to stochastic variation of gene 

expression consecutive to, for example, transcriptional bursting 21–23. In addition, single-cell 

approaches usually yield low detection coverage of expressed genes and high numbers of drop-

outs 3,4. Linking the genomic regulatory code to single-cell gene expression variation, however, 

may allow exploiting the regulatory genome to optimize the analysis of single-cell RNA-seq data, to 

overcome drop-outs and technical variation, and to guide the discovery and characterization of 

cellular states. Consistently, methods that exploit co-expression or networks for the analysis of 

single-cell RNA-seq data such as “network synthesis toolkit”  24, Pina’s approach 25, PAGODA 13, 

and SINCERA 26 have tentatively been developed. However, these do not make use of regulatory 

sequence analysis to predict interactions between transcription factors and target genes.  

Here we developed a new method, called SCENIC (Single-Cell rEgulatory Network Inference and 

Clustering), to characterize gene regulatory networks using single-cell RNA-seq data, and 

simultaneously optimize cellular state identification using the inferred networks. We benchmarked 

each of the features of SCENIC against alternative approaches, and applied SCENIC on a variety 

of recently published single-cell RNA-seq data sets, covering different species (human, mouse), 

tissues (brain, retina, tumors), and biological (differentiation) or pathological (intratumor 

heterogeneity) processes. Our results show that GRNs constitute robust guides to identify high-

resolution cellular states, and that single-cell RNA-seq data are well-suited to trace gene regulatory 

programs in which specific combinations of transcription factors drive cell type-specific 

transcriptomes. 
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Results 

Simultaneous discovery of gene regulatory networks and cellular states in the 
mouse brain  
We developed SCENIC (Single-Cell rEgulatory Network Inference and Clustering) to map gene 

regulatory networks from single-cell RNA-seq data, using a combination of co-expression network 

inference, transcription factor motif analysis, and network-based prediction of cellular 

subpopulations (Figure 1). All three steps are based on new R/Bioconductor packages (see 

Methods). To test SCENIC performances we applied it to a scRNA-seq data set with well-known 

cell types from the adult mouse brain previously described in Zeisel et al. 16. This data set has 

been used extensively for benchmarking purposes 13,14,20,27–31 and contains the main cell types in 

hippocampus and somatosensory cortex, namely neurons (pyramidal excitatory neurons, and 

interneurons), glia (astrocytes, oligodendrocytes, microglia), and endothelial cells. In the first step 

(Figure 1a), we inferred co-expression modules using an improved implementation of GENIE3 32, 

the top-performing method for network inference in the DREAM challenge 33. GENIE3 identified co-

expression modules associated to 1046 TFs, ranging in size from 52 to 12082 target genes (we 

use various thresholds for N, see Methods). Since GENIE3 uses Random Forest regression, it has 

the added value of allowing complex (e.g., non-linear) co-expression relationships between a TF 

and its candidate targets. 

These co-expression modules contained many false positive predictions, and a mixture of direct 

and indirect interactions 33. Therefore, the second step of SCENIC analyzes all the co-expression 

modules using cis-regulatory motif analyses (Figure 1b). We reasoned that, if the DNA recognition 

motif of the regulator is significantly enriched in the upstream and intronic sequences of the co-

expressed gene set, then this module is of higher confidence. Furthermore, for the selected 

modules we determined the optimal subset of direct targets, thereby pruning the initial module to 

remove indirect targets. For this motif enrichment step we used a new R implementation of i-

cisTarget 34, called RcisTarget. Briefly, RcisTarget tests for enrichment of more than 18 thousand 

position weight matrices using a cross-species ranking approach (see Methods). On the mouse 

brain, RcisTarget identified 151 of the initial 1046 GENIE3 modules as significantly enriched for the 

motif of the co-expressed transcription factor (7% of the initial TFs). Next, RcisTarget determines 

for each enriched motif the optimal "leading edge" of direct targets. This results in a subset of pru-

ned modules, with only putative direct targets, which we call regulons. The other modules, without 

support for direct regulation, are removed.  

In the third step, SCENIC scores all cells for the activity of each regulon. This scoring is done with 

a new metric, called AUCell (Area Under a Cell), which is inspired by order statistics and recovery 

analyses (see Figure 1c and Methods). AUCell calculates the enrichment of the regulon as an area 

under the recovery curve (AUC) across the ranking of all genes in a particular cell, whereby genes 
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are ranked by their expression value. This method is therefore independent of the gene expression 

units and the normalization procedure. Using the distribution of AUCell scores across all cells, an 

optimal subpopulation is selected (Figure 2a, S1). We validated AUCell using previously published 

neuronal and glial gene signatures, and found it more robust than using the mean of the 

normalized expression values across the gene signature (Figure S2).  

When applied to the 151 regulons inferred on the mouse brain data, AUCell leads to a binary 

regulon activity matrix (Figure 1c, Figure 2a-b). Hierarchical clustering of this matrix uncovered the 

expected cell types –which are in full agreement with the cell types annotated by the authors of this 

study–, thus demonstrating that the activity of gene regulatory subnetworks can accurately predict 

cell types (Figure 2b-c). This is not the case when only gene expression of the predicted 

transcription factors is used for clustering, indicating that the target genes provide robustness 

(Figure S3). Moreover, the regulons and the top transcription factor predictions, were consistent 

with their previously established roles in the respective cell types: Mef2c, Neurod, Creb, and Egr4 

in neurons; Sox10 in oligodendrocytes; Dlx1/2 in interneurons; and Lef1 in endothelial cells. 

Particularly, the predicted network of microglia contains many well-known regulators of microglial 

fate and/or microglial activation, including PU.1, Nfkb, Irf, and AP-1/Maf (Figure 2b, 2d). When we 

compared the predicted microglial network to previously published gene signatures of microglial 

“activation” in a mouse CK-p25 Alzheimer's disease (AD) model 35, we found the microglia network 

to be strongly activated and the neuronal network to be down-regulated during AD progression 

(Figure S4), indicating that the microglia network captures a relevant regulatory program. 

SCENIC therefore successfully (1) identifies TF-driven regulatory modules based on co-expression; 

(2) trims these modules towards direct TF-target relationships by motif discovery; and (3) maps the 

activity of the array of regulons onto single cells, thereby generating a regulon activity matrix, which 

allows accurate identification of cellular states. The network-driven single-cell clustering provides 

robust cell clustering, alongside meaningful biological insights into master regulators and gene 

regulatory networks underlying specific cell types. 

Comparison with other methods 
To further evaluate the performance of SCENIC, we performed four benchmark comparisons, each 

assessing a different aspect of SCENIC: (1) cell clustering accuracy; (2) TF identification; (3) 

automatic normalization; and (4) automatic batch effect removal. In this section, we present the 

first three comparisons using the mouse brain data, while the detection of batch effects will be 

discussed in sections below using a cross-species analysis, and using two related cancer data sets. 

To compare the accuracy of cell clustering based on SCENIC GRNs with standard clustering 

methods, we used the recent benchmark assay from the SC3 publication 14, based on the adjusted 

Rand index (ARI) 36. The ARI determines whether pairs of cell are correctly assigned to the same 

cluster, using as ground truth the clustering and annotation provided by the authors of the original 
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study. SCENIC clusters were highly reliable, with an overall sensitivity of 0.88 and specificity of 

0.99, and a clustering performance at least as good as the best performing method thus far (ARI > 

0.80), namely SC3, while outcompeting all other methods (Figure 2e). To further assess the 

robustness of cell clustering by SCENIC, we re-analyzed the mouse brain data, now either using 

only 100 randomly selected cells (to simulate small data sets), or using 1/3 of the sequencing 

reads (to simulate low-coverage data sets). Interestingly, SCENIC identified cell types that are 

represented by only few cells (e.g. 2-6 cells from microglia, astrocytes or interneurons) and is 

relatively robust to drop-outs (Figure S5).  

In the second comparison, we tested the performance of SCENIC in identifying correct 

transcription factors. To do so, we first created a set of 571 “true positive” brain-related TFs based 

on annotation from the Mouse Genome Informatics database (MGI) 37 and GO 38,39 (see Methods), 

which we used to calculate the recall and precision of TF identification. We compared SCENIC with 

a “standard” analysis pipeline, consisting of clustering, differential expression (DE) analysis, and 

motif discovery. Applying various clustering and DE methods and parameters (see Methods) led to 

multiple gene signatures per cell type, which were analyzed for enriched motifs using Homer (we 

chose Homer because it was the second-best performer in the iRegulon benchmark 40). This 

analysis showed that SCENIC significantly outperforms standard analyses approaches (Figure 2f). 

For example, at >0.95 precision, SCENIC finds 25 relevant TFs, while the next performing method 

detected only 10 relevant TFs at even lower precision (~0.85). Overall, SCENIC could potentially 

identify up to 212 out of 310 TFs detected at protein level in the mouse brain by Zhou et al.  (65 

TFs would be missed because they are not detected in the scRNA-seq dataset, and only 38 

because they have no motifs annotated in RcisTarget databases, Figure S6b).  

In the third comparison, we investigated how gene expression normalization impacts gene 

regulatory network inference. Applying SCENIC to raw data versus normalized data gave similar 

clustering accuracies, differing only 3% in ARI score (0.87-0.90), and concordant TF recoveries, 

(26/30 TFs are common). Related to normalization, we found an interesting difference between the 

t-SNE plots based on the raw expression matrix versus the regulon activity matrix. While the 

clustering applied directly on the expression matrix is strongly biased towards the number of genes 

expressed in a cell, the clustering based on SCENIC effectively corrects for the intra-cluster bias, 

while the true biological difference between neurons (more genes expressed) and glia (less genes 

expressed) is unaffected 41,42 (Figure 2g-h). Thus, SCENIC removes the intra-cluster bias without 

having to decide which normalization method to use.  

In conclusion, SCENIC competes with the best clustering methods to discovering cell types and 

correctly assigning cells to each cell type; but SCENIC goes beyond existing methods by reducing 

data dimensionality using TF regulons rather than principal components, thereby accounting for 

noise and removing technical biases, and uncovering master regulators and gene regulatory 

networks for each cell type.  
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Inferring cross-species cell states and networks  
Our analysis of the mouse brain revealed a single cluster of interneurons, with an underlying 

network driven by the highly significant factors Dlx1 and Dlx2 (Figure 2b, 2c). To validate this 

Dlx1/2 network, we analyzed a recently published single-nuclei RNA-seq data set of the human 

brain by Lake et al 43. On the human data, SCENIC identifies a cluster of interneurons strongly 

driven by DLX1/2 (see Figure S7 for the entire regulon activity matrix), having the same recognition 

motif as in mouse. Comparing the predicted target genes of mouse Dlx1/2 and human DLX1/2 

revealed a conserved set of targets including DLX1 itself (auto-regulatory), NR2E1, SP8, SOX1, 

NXPH1, and IGF1, which are all closely associated to DLX1/2 in terms of protein-protein 

interactions or literature evidence (Figure 3a-b). This cross-species analysis cross-validated the 

predicted DLX1/2 targets in interneurons, and yielded a core set of conserved targets, alongside a 

subset of species-specific target genes. In addition, the regulon-based clustering of the Lake et al. 

human nuclei featured three subtypes of interneurons, corresponding to the known interneuron 

subtypes (PVALB, VIP, SST, see Figure S8). This contrasts with the results for the mouse dataset, 

where the interneurons make up one homogeneous cluster of cells without clear subtypes, due to 

the experimental setup of Zeisel et al. dataset, where only one type of interneurons (Htr3a positive 

cells) were purified. 

Encouraged by this finding, we asked whether cross-species network activity could be exploited 

more generally to analyze cross-species scRNA-seq, possibly overcoming “batch effects” that are 

notorious in cross-species analysis 44. Analogous to the cross-species DLX validation, we used 

SCENIC to “train” regulons from one species, and then score cells of another species with the 

orthologous genes using AUCell, and vice versa. Note that since AUCell is independent of the 

units of the dataset (as it is a rank-based approach), it was possible to apply it to simultaneously 

study mouse and human brain41 data. In contrast to standard clustering based on normalized 

expression, which yields a strong species-driven clustering (Figure S9), the SCENIC analysis 

effectively grouped cells by cell type first, and then by species, as expected (i.e., a human and 

mouse interneuron are more similar to each other than a human interneuron and a human 

oligodendrocyte) (Figure 3c). Interestingly, SCENIC identified an "interneuron-like" and a 

"excitatory neuron-like" subpopulation within the fetal quiescent cells in the human data set, 

expressing DLX1,2,5 and MAF, and NEUROD1. 

Together, the analysis of Lake et al. dataset confirmed that single-nuclei RNA-seq are also 

amenable to gene regulatory network analysis, and provided putative regulators for interneuron 

subtypes. By comparing mouse and human single-cell data sets, we confirmed that some gene 

regulatory networks are conserved across species, and validated a predicted DLX network across 

interneurons. Finally, we provide an example of how regulatory network analysis can overcome 

species-specific biases.  
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Upscaling to big data  
With new developments in single-cell RNA-seq technologies, including the use of droplet 

microfluidics 45,46 and the release of commercial platforms such as 10X Genomics, datasets with 

increasingly large numbers of single cells are becoming available. A recent demonstration from 

10X Genomics released a dataset containing 1.3 million cells from the embryonic mouse brain 47 

(E18.5 hippocampus, cortex, and ventricular zone). To apply network inference on such large 

datasets we suggest two complementary approaches. In the first approach, we infer the GRN from 

a sub-sampled data set, and re-include all cells in the third step, for the AUCell scoring. We tested 

this approach using GENIE3 on a large Drop-seq dataset containing 44808 single cells from the 

mouse retina from Macosko et al. 45. For GENIE3 we selected the same 11020 cells as the authors 

used (the authors made that selection based on the number of genes expressed, being at least 

900 genes 45, see Methods) and derived 123 regulons. The identified master regulators, such as 

Sox8/9, Hes1, Rax, Nr1h4, Srf, and Nr2e1 for the Muller glia 48–51, illustrated that correct networks 

can be inferred even on sparse data. All 44K cells were then scored with these regulons to build 

the full t-SNE plot (Figure S10). In the second approach, we solved the computational efficiency 

problem by using more efficient machine learning and big data handling solutions. Particularly, we 

implemented a new variant of GENIE3 in Scala that replaces the Random Forest regression with 

gradient boosting. This new implementation drastically reduces the time needed to infer a GRN. 

For example, network inference on the mouse brain data (3K cells) is at least 30 times faster than 

GENIE3 on a single node, while retaining the accuracy of TF and target prediction (Figure S11a). 

Additionally, we exploited the “embarrassingly parallel” nature of this inference method (the 

regulators are predicted individually for each target), designing GRNboost as a distributed 

algorithm, and using Apache Spark 52 to coordinate the computations across a compute cluster. 

We applied GRNboost on 3K, 10K, and 100K cells from the embryonic mouse brain, and were able 

to infer gene regulatory networks within 18 and 37 minutes, and 8 hours respectively (Figure S11b). 

Using two technical replicates of 100K cells, we found that target gene predictions by GRNBoost 

were robust (Figure S12). This method will pave the way to network inference on very large data 

sets, such as the soon available Human Cell Atlas 53. 

 

SCENIC unravels the heterogeneity of regulatory states in tumours 
Understanding the mechanisms driving intratumor heterogeneity has become a priority in cancer 

biology as, among others, it represents an essential step towards the development of improved 

rational combination treatments 54. Single-cell RNA-seq provides unprecedented opportunities to 

gain insights into the molecular determinants of cancer cell phenotypic diversity, and mapping the 

gene regulatory networks may significantly contribute to this. However due to tumor-specific 

mutations and complex genomic aberrations, the identification of cancer cell states is more 

challenging than characterizing normal cell types 55. To further test SCENIC utility for the analysis 
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of such complex datasets, we run it on two recently published scRNA-seq data sets, the first 

obtained from six oligodendroglioma tumours 56 (4043 cancer cells), and the second from fourteen 

melanoma lesions 55 (1252 cancer cells). Standard clustering of the oligodendroglioma expression 

matrix resulted in clusters of cancer cells by the tumour of origin, similar to previous observations  
55,57 (Figure 4a), due to strong inter-tumor heterogeneity 54. Critically, SCENIC-based cell clustering 

revealed three cancer cell states shared across tumours namely “astrocyte-like”, “oligodendrocyte-

like”, and cancer stem cells (including cycling cells). Each state is driven by expected/relevant TFs, 

including SOX10/4/8, OLIG1/2, and ASCL1 for the oligodendrocyte-like state, and SOX9, NFIB, 

AP-1 for the astrocyte-like state, and E2F, FOXM1 for the cycling cells. We further validated the 

cluster of cycling cells by comparing to the author’s labels and by examining gene signatures 

related to the cell cycle using GO-terms (Figure S13). Interestingly, when we used diffusion plots 

with the binary matrix (Figure 4b) rather than t-SNE, SCENIC was able to reconstruct the 

differentiation trajectory (from stem-like, undifferentiated, to the oligodendrocyte-like branch and 

astrocyte-like branch). Note that this cancer trajectory represents a different “trajectory” compared 

to normal oligodendrocyte differentiation (Figure S14 for the SCENIC analysis of 5069 

oligodendrocytes 58). We then asked to what extent these three clusters can be identified by other 

methods (Figure 4a). This revealed that SCENIC can compete with dedicated batch-effect removal 

methods, such as Combat 59,60 and Limma 61,62, when used to explicitly remove the tumor-batch 

effect. With SCENIC, this batch-effect is removed automatically, without requiring prior information 

about the source of the batch effect.  

We observed a similar batch effect correction on the melanoma data, where SCENIC clusters 

cancer cells from different tumors together, in contrast to the standard clustering (Figure 5a-c). 

Similar to oligodendroglioma, we identified a cluster of cycling cells, driven by similar transcription 

factors (e.g., E2F1/2/8 and MYBL2, Figure 5f-g). The targets of these factors are strongly enriched 

for G1/S phase transition according to pathway enrichment analysis (Figure 5h). We validated this 

state by comparing gene expression across all cells using the gene signatures derived from cell 

cycle related GO terms (Figure 5n-o).  

Interesting, the melanoma cells fall largely into two groups, one corresponding to a MITFhigh state, 

showing also high TYR expression (TYR is a target gene of MITF [re]), and an MITFlow state 

(Figure 5d-e, Figure S15 and S16). For the MITFhigh state, the two transcription factors with the 

most significant co-expression modules and the highest accompanying motif enrichment in these 

modules, are MITF and STAT. MITF is a known driver of (proliferative) melanoma 63, but its 

cooperativity with STAT in melanoma cells is a new prediction. To validate the predicted target 

genes for MITF and STAT1 we used previously published ChIP-seq data and found significant 

enrichment of ChIP-seq peaks at the predicted target regions (Figure 5h). Furthermore, these 

predictions show high specificity, since MITF ChIP-seq peaks are not enriched on predictions of 

other factors (Figure 5i-j). 
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The MITFlow cluster showed up-regulated WNT5A, LOXL2 and ZEB1 expression (both known 

markers of the invasive state 64,65), and correlates significantly with previously published invasive 

gene signatures (Figure S17). However, unlike the ‘classical’ invasive cell state, this MITFlow state 

retains SOX10 expression (Figure S16). The two top transcription factors in this state are NFATC2 

(114 predicted target genes) and NFIB (15 predicted target genes). NFATC2 is involved in 

melanoma dedifferentiation to a stem cell fate and immune escape 66. NFIB on the other hand is 

linked to stem cell behavior of hair follicle and melanocyte stem cells 67 and plays an important role 

in metastatic progression of small cell lung cancer (SCLC) 68. To further explore the potential role 

of the new regulators NFATC2 and NFIB in the MITFlow melanoma state, we performed 

immunohistochemistry on 25 melanoma specimens with varying tumor progression, i.e., 9 primary 

melanomas (4 in radial growth phase and 5 in vertical growth phase), 8 melanoma-containing 

sentinel lymph nodes and 8 melanoma metastases. Interestingly, we found the highest NFIB and 

NFATC2 expression in the sentinel lymph nodes, co-localizing with ZEB1 expression, suggesting a 

relationship with the earliest metastatic events (Figure 5k and S16).  

To further investigate the role of NFATC2 in this cell state we knocked-down NFATC2 using siRNA 

(see Methods) in a melanoma cell line that shows high NFATC2 and NFIB expression, namely 

A375 (Figure 5I), and performed RNA-seq to compare the transcriptome of A375 baseline with 

NFATC2 knock-down. The predicted NFATC2 target genes were significantly upregulated upon 

NFATC2 knockdown (Figure 5m). This is consistent with previously established role as a repressor 
69–71. Interestingly, genes involved in regulation of cell adhesion and extracellular matrix and 

several previously-published gene signatures representing the melanoma invasive state are up-

regulated (Table S1).   

In conclusion, in addition to the well-described proliferative MITFhigh melanoma state, SCENIC 

identified several new regulons for an in vivo MITFlow invasive melanoma state and novel 

regulators governing their respective transcriptional networks, which may play important roles in 

the progression of the disease.   
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Discussion 
We present a new computational approach that significantly improves the identification of cell types 

or cellular states present in a complex, heterogeneous biological sample and their respective 

master regulators and underlying GRNs. These are simultaneously determined using a 

combination of regulatory network inference, cis-regulatory motif enrichment, and identification of 

sub-populations based on rank statistics. For each of these three steps, we developed an 

R/Bioconductor package, accompanied by tutorials and integrative scripts that implement the 

SCENIC workflow.   

First network inference, then cell clustering 
Standard analysis of single-cell RNA-seq data consists of data normalization, clustering cells into 

cell types, visualizing in t-SNE plots, and identification of gene signatures (marker genes) for each 

cell type 4. Here, we explored an alternative approach, to first analyze a single-cell RNA-seq 

expression matrix for gene co-expression relationships, yielding co-expressed gene modules. 

Compared to the multitude of methods that perform cell-centric analyses, only few perform gene-

centric analyses, such as PAGODA 13. SCENIC goes beyond these methods by inferring modules 

of a transcription factor and its putative target genes. To achieve high-quality modules, we 

combined existing methods for TF-target inference that were originally developed for bulk RNA-seq 

or microarray data, namely GENIE3 32 and gradient boosting 72, and found that they perform 

adequately on single-cell RNA-seq data. To overcome the excess of false-positive TF-target 

relations, we augmented these modules with cis-regulatory motif analysis, converting them into 

regulons. We found that such a regulon-centric approach provides several advantages. Firstly, it 

retains more transcription factors compared to a differential expression analysis. Secondly, the 

regulons are immune to drop-outs, because individual missing values are compensated by the 

network neighborhood, providing a more robust quantification of single-cell gene expression levels. 

By using the inferred regulons as features, we achieved a biological dimensionality reduction, 

yielding a regulon activity matrix, rather than a statistical transformation using PCA or similar 

approaches. Thirdly, clustering cells based on similar regulons is more accurate than most of the 

existing clustering algorithms, and is less sensitive to normalization. Clustering methods use a 

normalized gene expression matrix, which can be biased towards the number of genes detected in 

a cell, or the sample of origin. SCENIC effectively removes such technical biases by measuring the 

activity of subnetworks, rather than single genes.  

There are still limitations to using transcription factor motifs to filter and prune co-expression 

modules, the most obvious being that not for all transcription factors motifs are available, that some 

factors have motifs with higher information content than others, and that not all transcription factors 

are co-expressed with their target genes. 
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Finite network diversity in the brain 
Applying SCENIC to the mouse and the human brain, we found that distinct cell states can be 

defined by stable, discrete configurations of a gene regulatory network in which specific 

combinations of "master" transcription factors regulate a critical subset of the genes expressed in 

that cell type. This finding reinforces the premise that a finite number of gene regulatory networks 

are encoded in the genome. The networks overall match almost perfectly with the known cell types 

in the brain, even up to the three known subpopulations (PV, SST, and VIP) of interneurons, which 

can be combined with other cellular states such as “stress/activation” or cell cycle. This is an 

interesting observation, because it suggests that the major cell types have in fact been discovered, 

that they can be confirmed by this unbiased approach of single-cell RNA-seq, and that they 

correspond to specific gene regulatory network configurations. On the other hand, this 

“unsophisticated view” on cell identity opens an intriguing question, namely how the identity of 

more specialized subpopulations of neurons and glia are controlled, since differences in gene 

regulatory networks are not obvious at the current resolution. A related question is whether 

transcriptional switches during cellular differentiation are controlled by different gene regulatory 

networks than the parental or child state. When considering the human oligodendroglioma and 

mouse oligodendrocyte data set, we found few dominant networks (e.g., stem cell, 

oligodendrocyte-like, and astrocyte-like). Transitions between these main states must occur rapidly, 

since only few cells were found in transition.  

Recurrent cancer gene networks compete with tumor-driven transcription 
Single cells from cancer biopsies often cluster by their tumor/patient of origin (e.g. 55–57,73, Figure 3 

and 6a). This contrasts with bulk tumor analyses, where different subtypes can be identified for 

most tumor types 74. The apparent differences between the tumors at single-cell level may be due 

to differences in copy number profiles, which are unique for each tumor and can have a strong 

impact on the gene expression profile 55,57,75. The use of gene regulatory networks effectively 

compensates for this effect, allowing the cells to be grouped by recurrent cancer cell states, thus 

more easily revealing the subtypes known from bulk analyses. The application of SCENIC to the 

oligodendroglioma and melanoma datasets clearly illustrates this possibility. Interestingly, our 

analysis revealed that most oligodendroglioma contain cells from both identified subtypes, namely 

oligodendrocyte-like and astrocyte-like, indicating that the tumor subtype identified through bulk 

analysis 76 is likely to reflect the proportions of cells adopting one of these cell states within a given 

tumor. In contrast, there was no obvious co-occurrence of the identified melanoma cell states, 

namely proliferative and invasive, within the same melanoma lesion. The only cell state shared 

between different tumours is defined as the cycling cells cluster, which strongly resembles the one 

identified in oligodendroglioma. Note that for oligodendroglioma, these cycling cells likely represent 

cancer stem cells, as validated by the authors 75. It is therefore tempting to speculate that this 
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cycling subpopulation may also represent a melanoma stem cell population. However, further 

experiments would be needed to confirm this hypothesis.  

SCENIC identified an “invasive” state largely shared by two of the 14 biopsies, both resected from 

auxiliary lymph nodes. This state, unlike the in vitro invasive state, which is driven by AP-1 and 

TEAD factors, this “in vivo” invasive state features distinct transcription factors, including NFATC2 

and NFIB, which we confirmed to be expressed in early metastatic melanoma cells (i.e. in the initial, 

small tumors in the sentinel lymph node, by immunohistochemistry). Using gene expression 

analysis after NFATC2 knock down, we identified NFATC2 as a transcriptional repressor of the AP-

1 target genes. Thus, these observations suggest that NFATC2 may act as a transcriptional break 

that cells need to overcome to switch to a full-blown invasive cell state. NFATC2 is itself a JUN 

target 77, and may constitute a negative feedback mechanism. A similar repressor function of 

NFATC2 has been previously observed in breast cancer 78. 

Another key observation derived from the SCENIC analysis of these data is that cells in the 

MITFhigh state also have high activity of STAT and IRF downstream targets. This is difficult to 

detect in bulk samples because of the complex mixture of malignant cells with tumor infiltrating 

lymphocytes (TIL) where STAT and IRF also play an important role 79. Here, we show that the 

MITFhigh cells themselves have higher STAT activity than the MITFlow cells (we excluded all benign 

cells from the analysis, including immune cells). This has important consequences for the 

interpretation and prediction of resistance to immune therapy, because these cancer cells with high 

STAT and IRF activity are likely most sensitive to immunotherapy. Indeed, a recent study identified 

the JAK-STAT-IRF axis as driver for the expression of two major targets in immune therapy: PD-L1 

and PD-L2; which results in an inhibition of the anti-tumor immune response on the one hand, but 

an increased response to anti-PD(L)1 immune therapies on the other 80.  

In conclusion, in this work we provide a generally applicable method for the analysis of single-cell 

RNA-seq data, and for the first time exploit transcription factors and cis-regulatory sequences to 

guide the discovery of cellular states.   
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Materials and methods 

SCENIC workflow  
SCENIC is a workflow based on three new R/bioconductor packages: (1) GENIE3, to identify 

potential TF targets based on co-expression, (2) RcisTarget, to perform the TF-motif enrichment 

analysis and identify the direct targets (regulons), and (3) AUCell, to score the activity of regulons 

(or other gene sets) on single cells. We also provide GRNboost, implemented on Spark, as 

scalable alternative to build the co-expression network on bigger datasets (step 1). 

The three R/bioconductor packages, and GRNboost, include detailed tutorials to facilitate their use 

within an automated SCENIC pipeline, as well as independent tools. Links to the tools, SCENIC 

code and tutorials are available at http://scenic.aertslab.org. 

GENIE3 
GENIE3 is a method for inferring gene regulatory networks from gene expression data. In brief, it 

trains random forest models predicting the expression of each gene in the dataset, using as input 

the expression of the transcription factors. The different models are then used to derive weights for 

the transcription factors, measuring their respective relevance for the prediction of the expression 

of each target gene. The highest weights can be translated into TF-target regulatory links 32. 

GENIE3 is available in Python, Matlab and R. To allow for inclusion in SCENIC workflow, we 

optimized the previous R implementation of GENIE3. The core of this new implementation is now 

written in C –which makes it orders of magnitude faster–, it requires lower memory, and supports 

execution in parallel. GENIE3 was the top-performing method for network inference in the 

DREAM4 and DREAM5 challenges 33. The new package provides similar results in the DREAM 

challenge to previously existing implementations, but with improved speed. The comparison is 

available at the developer’s website: http://www.montefiore.ulg.ac.be/~huynh-thu/GENIE3.html.  

The input to GENIE3 is an expression matrix. The preferred expression values are gene-

summarized counts (which might or might not use unique molecular identifiers, UMI 81). Other 

measurements, such as counts or transcripts per million (TPM) and FPKM/RPKM are also 

accepted as input. However, note that the first network-inference step is based on co-expression, 

and some authors recommend avoiding within sample normalizations (i.e. TPM) for this task 

because they may induce artificial co-variation 82. To evaluate to what extent the normalization of 

the input matrix affects the output of SCENIC, we also ran SCENIC on Zeisel’s dataset after 

library-size normalization (using the standard pipeline from scran 83, which performs within-cluster 

size-factor normalization). The results are highly comparable, both in regards to resulting 

clusters/cell types (ARI between the cell types obtained from raw UMI counts or normalized counts: 

0.90, ARI from normalized counts compared to the author’s cell types: 0.87), and the TFs 

identifying the groups (26 out of the 30 regulons highlighted in Figure 2b). Furthermore, during the 
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course of this project we have applied GENIE3 to multiple datasets using UMI counts (e.g. mouse 

brain and oligodendrocytes), and TPM (e.g. human brain and melanoma) and both units provided 

reliable results. 

The output of GENIE3 is a table with the genes, the potential regulators, and their “importance 

measure” (IM), which represents the weight that the transcription factor (input gene) has in the 

prediction of the target. We explored several ways to determine the threshold (e.g. looking at the 

rankings, distributions and outputs after pruning with RcisTarget), and finally opted for building 

multiple gene-sets of potential targets for each transcription factor: (a) setting several IM thresholds 

(IM > 0.001 and IM>0.005), (b) taking the 50 targets with highest IM for each TF, and (c) keeping 

only the top 5, 10 and 50 TFs for each target gene (then, split by TF). In all these cases, only the 

links with IM>0.001 were taken into account. Furthermore, each gene-set was then split into 

positive- and negative- correlated targets (i.e. Spearman correlation between the TF and the 

potential target) to separate likely activated and repressed targets. Finally, only the gene-sets (TF 

co-expression modules) with at least 20 genes were kept for the following step. 

GRNboost 
GRNboost is based on the same concept as GENIE3: inferring regulators for each target gene 

purely from the gene expression matrix. However, it does so using the gradient boosting machines 

(GBM) 72 implementation from the XGBoost library 84. A GBM is an ensemble learning algorithm 

that uses boosting 85 as a strategy to combine weak learners, like shallow trees, into a strong one. 

This contrasts with random forest, the method used by GENIE3, which uses bagging (bootstrap 

aggregation) for model averaging to improve regression accuracy. GRNBoost uses gradient 

boosted stumps (regression trees of depth 1) 86 as the base learner. GRNBoost’s main contribution 

is casting this multiple regression approach into a Map/Reduce 87 framework based on Apache 

Spark 52. In GRNBoost, the core data entry is a tuple of a gene and a vector of TF expression 

values. Using a Spark RDD, GRNBoost first partitions the gene expression vectors over the nodes 

available in the compute cluster. Subsequently, it constructs a predictor matrix that contains the 

expression values for all candidate regulator genes. Using a Spark broadcast variable, the 

predictor matrix is broadcasted to the different compute partitions. In the map phase of the 

framework, GRNBoost iterates over the gene tuples (expression vector) and uses the predictor 

matrix to train the XGBoost regression models with the expression vectors as respective training 

labels. From the trained models, the strengths of the regulator-target relationships are extracted 

and emitted as a set of network edges. In the reduce phase, all sets of edges are combined into 

the final regulatory network. 

The performance of GRNBoost and GENIE3 was compared on a workstation with 2 Intel Xeon 

E2696 V4 CPUs with in total 44 physical cores or 88 threads and 128 GB of 2133Ghz ECC 

memory. Large datasets and hence large predictor matrices cause the network inference to 
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become memory-bound rather than CPU-bound. In order to comfortably fit the amount of memory 

required into the available 128 GB of memory, we decreased the number of partitions to 11, 

therefore having only a maximum of 11 predictor matrices in flight simultaneously. However, we 

increased the number of threads available to each individual XGBoost regression to 8, effectively 

using all available (88) threads in the workstation. GRNBoost is written in the Scala programming 

language and can be used as a software library or be submitted as a Spark job from the command 

line. 

RcisTarget 
RcisTarget is a new R/Bioconductor implementation of the motif enrichment framework of i-

cisTarget and iRegulon. RcisTarget identifies enriched transcription factor binding motifs and 

candidate transcription factors for a gene list. In brief, RcisTarget is based on two steps. First, it 

selects DNA motifs that are significantly over-represented in the surroundings of the transcription 

start site (TSS) of the genes in the gene-set. This is achieved by applying a recovery-based 

method on a database that contains genome-wide cross-species rankings for each motif. The 

motifs that are annotated to the corresponding TF and obtain a Normalized Enrichment Score 

(NES) > 3.0 are retained. Next, for each motif and gene-set, RcisTarget predicts candidate target 

genes (i.e. genes in the gene-set that are ranked above the leading edge). This method is based 

on the approach described by Aerts et al. 88 which is also implemented in i-cisTarget (web interface) 
89 and iRegulon (Cytoscape plug-in) 40. Therefore, when using the same parameters and 

databases, RcisTarget provides the same results as i-cisTarget or iRegulon, benchmarked against 

other TFBS-enrichment tools in Janky et al. 40. More details about the method and its 

implementation in R are given in the package documentation.  

To build the final regulons, we merge the predicted target genes of each TF-module that show 

enrichment of any motif of the given TF. To detect repression, it is theoretically possible to follow 

the same approach with the negative-correlated TF modules. However, in the datasets we 

analyzed, these modules were less numerous and showed very low motif enrichment, suggesting 

that these are lower quality modules. For this reason, we finally decided to exclude the detection of 

inhibition from the workflow, and continue only with the positive-correlated targets. The databases 

used for the analyses presented in this paper are the "18k motif collection" from iRegulon (gene-

based motif rankings) for human and mouse. For each species, we used two gene-motif rankings 

(10kb around the TSS or 500bp upstream the TSS), which determine the search space around the 

transcription start site.  

AUCell 
AUCell is a new method that allows identifying cells with active gene regulatory networks in single-

cell RNA-seq data. The input to AUCell is a gene set or regulon, and the output the regulon 

“activity” (AUC) in each cell. In brief, AUCell’s scoring method is based on a recovery analysis, 
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where the x-axis (Figure 1c) is the ranking of all genes based on expression level (genes with the 

same expression value, e.g. '0', are randomly sorted); and the y-axis is the number of genes 

recovered from the input set. AUCell then uses the "Area Under the Curve" (AUC) to calculate 

whether a critical subset of the input gene set is enriched at the top of the ranking for each cell. In 

this way, the AUC represents the proportion of expressed genes in the signature and their relative 

expression value compared to the other genes within the cell. The output of this step is a matrix 

with the AUC score for each gene-set in each cell. We use either the AUC scores (across regulons) 

directly as continuous values to cluster single-cells, or we generate a binary matrix using a cutoff of 

the AUC score for each regulon. These cutoffs are determined either automatically, or manually 

adjusted by inspecting the distribution of the AUC scores. Some examples of AUC distributions are 

provided in Figure S1. The tutorial included in the package, also includes practical explanations 

and implications of each of the steps of the method.  

Cell clustering based on GRNs 
The cell-regulon activity is summarized in a matrix in which the columns represent the cells and the 

rows the regulons. In the binary regulon activity matrix, the coordinates of the matrix that 

correspond to active regulons in a given cell will contain a “1”, and “0” otherwise. The equivalent 

matrix, containing the continuous AUC values for each cell-regulon, is normally referred to as the 

AUC activity matrix. Clustering of either of the regulon activity matrices reveals groups of regulons 

(jointly a network) that are recurrently active across a subset of cells. The binary activity matrix 

tends to highlight higher-order similarities across cells (and therefore, highly reduces batch effects 

and technical biases), on the other hand, the AUC matrix allows to observe more subtle changes. 

For visualization, we have mostly used t-SNEs  (Rtsne package90, always tested consistency 

across several perplexity values and distance metrics/number of PCs), and heatmaps with 

hierarchical clustering (although the heatmap figures feature selected regulons, the t-SNEs are 

always run on the whole matrices). In the tutorials, we have also included several options to 

explore the results. For example, to detect most likely stable states (higher-density areas in the t-

SNE), and to help identify key regulators, known cell properties (based on the dataset annotation) 

and GO terms (GO enrichment analysis of the genes in the cluster of regulons) that might be 

associated to the detected states. 

Data sources 
Mouse cortex and hippocampus (Zeisel et al.)  

The mouse brain dataset, published by Zeisel et al. 16, includes single-cell RNA-seq of 3005 cells 

from somatosensory cortex and hippocampus (CA1 region) of juvenile mice (21-31 days old). Most 

of the cells were sequenced after dissociation with no specific selection by markers or cell type 

(wild type CD-1 mice). In addition, the dataset also includes 116 cells selected by FACS from 

5HT3a-BACEGFP transgenic mice (likely Htr3a interneurons). The expression matrix was 

downloaded from GEO (GSE60361). This matrix contains the UMI counts for 19972 genes across 
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the 3005 cells that passed their quality controls (e.g. low quality cells and potential doublets). To 

run GENIE3, this matrix was filtered to keep the 13063 genes with more than 90 counts (which 

corresponds to 3 counts in 1% of cells) and detected in more than 30 cells (1% of cells). The rest 

of the SCENIC workflow was run as described in the previous section, leading to an activity matrix 

including 151 regulons. For the purpose of visualization, very sparse regulons can be filtered-out. 

For example, in Figure 2, we have plotted only regulons active in at least 1% of the cells and 

correlated with other regulons in the matrix (absolute correlation > 0.30). However, the 

downstream analyses include all the regulons.  

Human neurons (Lake et al.)  

The human neurons dataset, published by Lake et al. 43, includes single-cell RNA-seq data of 3083 

neuronal cells from a normal brain (retrieved postmortem from a 51-year old female, from six 

different Brodmann areas: BA8, BA10, BA17, BA21, BA22, BA41/42). The expression matrix 

(available at the host laboratory webpage: http://genome-

tech.ucsd.edu/ZhangLab/index.php/data/epigenomics-and-transcriptomics/sns/) contains 

expression values (in TPM) for 25122 genes in 4039 cells. Of these, only 3083 cells are retained 

after filtering out low mapping outliers and potential doublets. Repeated genes, mitochondrial 

genes and non protein coding genes were removed and the matrix was renormalized as 

log2(TPM+1). To run GENIE3, this matrix was filtered to keep the 14941 genes with more than 154 

normalized counts (which corresponds to 5 normalized counts in 1% of cells) and detected in more 

than 31 cells (1% of cells).  The rest of the SCENIC workflow was run as described in the previous 

section, except that the selected AUCell threshold was 0.20 instead of 0.03, leading to an activity 

matrix including 130 regulons. 

Human brain (Darmanis et al.)  

The human brain data set from Darmanis et al.41 provides scRNA-seq data from 466 cells from 

adult and fetal human brains. The fetal samples were taken from four different individuals at 16 to 

18 weeks post-gestation. The adult brain samples were taken from healthy temporal lobe tissue 

(according to the test) from 8 different patients (21, 22, 37, 47, 50, 63 years old) during temporal 

lobectomy surgery for refractory epilepsy and hippocampal sclerosis.  The expression profiles for 

22085 genes in each cell (expressed as raw reads) were downloaded from GEO (GSE67835), 

merged into an expression matrix, and converted to logged CPM [log10(Reads per gene in a 

cell/Total reads in a cell)*1000000+1)]. Genes expressed in overall with less than 9.32 logged 

CPM counts (corresponding to at least 2 counts in 1% of the population) and expressed in less 

than 5 cells (1% of the population) were removed, resulting in an expression matrix with 14703 

genes. The rest of the SCENIC workflow was run as described previously, resulting in a Regulon 

Activity Matrix with 259 regulons. 
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Mouse retina (Macosko et al.) 

The dataset from Macosko et al. 45 contains scRNA-seq data of 44808 cells (after pruning 

singletons) obtained through Drop-seq from mouse retina (14 days post-natal). The expression 

matrix was obtained from GEO (GSE63472), while the cluster information was obtained from the 

host laboratory webpage (http://mccarrolllab.com/dropseq/).  We used the normalized expression 

matrix [given as log((UMI counts per gene in a cell/Total UMI counts in cell)*10000)+1)]. 

In order to reduce the computational cost of the analysis, the dataset was down-sampled into a 

smaller set in which all the given cell types are represented. In mouse retina, the majority of the 

cells are rods 91, which according to the authors, in this data set correspond to more than 29000 

cells. Since rods are the smallest cell type in mouse retina 92 and express fewer genes, they also 

contain higher levels of noise. In order to take a representative sample not overtaken by the rods 

content, Macosko et al. selected cells which express more than 900 genes. We used this same 

down-sampling approach, which resulted in a selection of 11020 cells, to build the gene regulatory 

network. Running GENIE3 (and RcisTarget) on the 12953 genes with more than 55.1 normalized 

counts (0.5 in 1% of the population) and detected in more than ~55 cells (0.5% of the population). 

This network was then evaluated on all the cells in the dataset, which led to an activity matrix 

including 123 regulons. 

Embryonic mouse brain (10X Genomics)  

The Chronium Megacell demonstration dataset contains 1,306,127 cells from cortex, hippocampus 

and subventricular zone of two E18 mice (strain: C57BL/6). We downloaded the expression matrix 

from the authors website (https://support.10xgenomics.com/single-cell-gene-

expression/datasets/1M_neurons), which contains the expression data as 3 arrays in CSC 

(compressed sparse columnar) format compressed into a HDF5 file. Several subsets of this matrix 

were used to benchmark GRNboost (See GRNboost section). 

Mouse oligodendrocytes (Marques et al.) 

The oligodendrocytes data set from Marques et al. 58 contains scRNA-seq data of 5069 cells from 

the oligodendrocyte lineage. Cells were obtained from several different mouse strains and isolated 

from ten different regions of the anterior-posterior and dorsal-ventral axis of the mouse juvenile and 

adult CNS; including white and grey matter. The expression matrix, downloaded from GEO 

(GSE75330), provides the expression values in UMI counts for 23556 genes in those 5069 cells. 

Genes expressed in overall with less than 100 counts (corresponding to 2 counts in 1% of the 

population) or expressed in less than ~51 cells were filtered out for GENIE3 analysis, resulting in 

11985 genes.  The rest of the SCENIC workflow was run as described in the previous section, 

leading to an activity matrix including 128 regulons.  
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Oligodendroglioma (Tirosh et al.)  

The oligodendroglioma data set from Tirosh et al. 7675 includes scRNA-seq expression profiles for 

4347 cells from 6 untreated grade II oligodendroglioma tumors with either IDH1 or IDH2 mutation, 

and 1p/19q co-deletion. The expression data, given as log2(TPM+1), was downloaded from GEO 

(GSE70630). We only used the tumoral cells for the analysis. Most of the non-tumoral cells were 

removed from the data set by the authors based on CNV profile analysis. However, a total of 303 

non-tumoral cells that lacked detectable CNVs were still included in the data set. We removed 

these non-tumoral cells from the expression matrix using hierarchical clustering based on the 

markers cited in the article (mature oligodendrocytes and microglia, respectively). Out of the 23686 

genes in the expression matrix, we run GENIE3 on the genes expressed with more than 202 

logged TPM counts (at least 5 logged TPM counts in 1% of the population) and detected in more 

than 40 cells (1% of the total data set), resulting in an expression matrix with 14728 genes and 

4043 cells. The SCENIC pipeline was executed as previously described, resulting in a Regulon 

Activity Matrix with 159 regulons. 

Melanoma (Tirosh et al.)  

The melanoma dataset from Tirosh et al. 55 provides expression profiles of 23689 genes in 4645 

cells from 19 melanoma tumors. These cells include both, malignant (melanoma cells), and non-

malignant cells (e.g. immune cells). Here we analyze the 1252 melanoma cells (from 14 different 

tumors) that are labeled as malignant by the authors based on their CNV profiles. The expression 

matrix, as downloaded from GEO (GSE72056, on Apr 2016), is provided as logged TPM 

[log2(TPM/10+1)]. Therefore, for running GENIE3 we included the 14566 genes with more than 

62.6 normalized counts per row (5 x 12.52 cells), that were detected (expression>0) in more than 

12 cells (1%). In this way, the application of SCENIC on this dataset, lead to an activity matrix 

including 185 regulons. 

Gene and cell filtering 
For gene filtering to run GENIE3, we applied a soft filter based on the total number of counts of the 

gene, and the number of cells in which it is detected. The first filter, the total number of reads per 

gene, is meant to remove genes that are most likely unreliable and provide only noise. The specific 

value depends on the dataset, for the ones used in this paper we set the thresholds at, for example, 

3 UMI counts (slightly over the median of the non-zero values) multiplied by 1% of the number of 

cells in the dataset (e.g. in mouse brain: 3 UMI counts x 30 (1% of cells) = minimum 90 counts per 

gene). The second filter, the number of cells in which the gene is detected (e.g. >0 UMI, or >1 

log2(TPM)), is to avoid that genes that are only expressed in one, or very few cells, gain a lot of 

weight if they happen to coincide in a given cell. In the workflow, we recommend to set a 

percentage lower than the smallest population of cells to be detected. For example, we initially 

considered setting this threshold at 5% (which might be ok for many datasets), but using this 

threshold with the mouse brain dataset, would have potentially left out many co-expression 
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modules associated to the microglia cells, which, according to the authors, are approximately 3% 

of the total cells in the dataset. In this way, we finally required the genes to be detected in at least 1% 

of the cells. 

Method comparison for cell clustering  
To determine whether the clustering based on gene regulatory network activity matches real cell 

types, we calculated sensitivity and specificity for the GRN assigned to the cells of the mouse brain 

(Figure 2c) according to the cell types assigned by Zeisel et al. For the other datasets, we 

compared the clustering (mainly t-SNE) based on the regulon activity matrices to the cell labels 

provided in the corresponding publications. For the comparison with clustering methods, we build 

on the benchmark presented in the SC3 publication 27, which also uses Zeisel et al., and provides 

the adjusted Rand index (ARI) on this dataset of 6 clustering methods commonly used for single-

cell RNA-seq data. We extended the comparison with SEURAT by adding the results obtained with 

different resolution values.  

Method comparison for batch effects  
The comparison of batch effect removal methods was performed using the Oligodendroglioma 

dataset by Tirosh et al. 75. SCENIC was run in the standard way (see Methods: Oligodendroglioma 

dataset), the t-SNE and diffusion plots were run on the full binary regulon activity matrix (the 

heatmap in Figure 4 illustrates selected stage-specific regulons). Combat 59,60 and Limma 61,62 were 

run to correct for “patient of origin” as source of batch effect (input matrix: 14728 genes and 4043 

cells, same as GENIE3/SCENIC). Diffusion plots were done using the R/Bioconductor package 

destiny 93,94. 

Method comparison for cycling cells 
Gene sets used to identify cycling cells are 46 sets related to the mitotic cell cycle, with at least 10 

genes, retrieved from amiGO and cycleBase 1.0 and 2.0; Cycling cells are those that show 

consistent up-regulation of these genes, and are selected by hierarchical clustering on the matrix 

containing the z-scores for each gene-set. To compare methods, since most of the methods 

provide multiple clusters as output, for each method we selected the cluster with the biggest 

amount of CC cells. This cluster was then used to calculate the precision and recall.  

Combat 59,60 and Limma 61,62 were run using the same logged and filtered matrix as in SCENIC. 

The tumor of origin was specified as the source of batch effect and hierarchical clustering (Ward's 

method) was performed in the batch corrected matrix. The number of clusters was determined by 

the cutreeDynamic function of the dynamicTreeCut package 87. GiniClust 20 was run on the 

unlogged TPM matrix with the default parameters, which resulted in a matrix with 17843 genes and 

one single cluster. PAGODA 13 was run using the unlogged matrix (filter: 13976 genes with more 

than 100 TPM counts per row –at least 3 TPM counts in 1% of the population– and detected in 
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more than 12 cells). The error models were generated using a k-nearest neighbor model fitting 

(minimum of 2 reads for the gene to be initially classified as a non-failed measurement, and at 

least 5 non-failed measurements per gene). The models were fitted based on 1/2 of the most 

similar cells (assuming that there will be two main subpopulations). These thresholds were 

established to avoid the impact of the TPM normalization of the counts. The variance normalization 

–which aims to normalize out technical bias and biological noise– was performed by trimming the 3 

most extreme cells and limiting the maximum adjusted variance to 5. The rest of the PAGODA 

steps were run using default parameters, except: The evaluation of overdispersion of 'de novo' 

gene sets was performed with a trimming value of 7.1 extreme cells, and 50 as the number of 

clusters to be determined; threshold in the determination of top aspects a p-value: 0.01; distance 

threshold for the reduction of redundancy: 0.9. The optimal number of clusters in the data set was 

set to 10. pcaReduce 96 was run using the unlogged TPM matrix, with a similar filter as in SC3. 

The number of times to repeat the pcaReduce framework was set to 100 and the number of 

dimensions to start with was set to 30. Both merging methods (sampling based, S, and probability 

based, M) were tested. The number of clusters in the data set selected was 17 in both cases. 

RaceID 17 was run using an unlogged expression matrix filtered with the package's function 

filterdata. The genes expressed with less than 8 TPM counts in at least 13 cells were discarded, 

resulting in 10371 genes. This matrix was normalized according to the RaceID procedure. The rest 

of the RaceID pipeline was run using default parameters. SC3 14 was run using the unlogged 

expression matrix. Default filters were applied, resulting in a matrix with 11645 genes. The number 

of estimated clusters was set to 21 (based on the output of the sc3_estimate_k function). SEURAT 
45 was run using the unlogged TPM matrix and default parameters, correcting for tumor of origin as 

batch effect. The FindClusters function provided 8 clusters. SIMLR 31 was run with default 

paramaters using the unlogged expression matrix, with a similar filter to SC3. The number of 

clusters to be specified was set to 15. SINCERA 26 was run using the unlogged TPM matrix. A 

gene-by-gene per-cell z-score transformation was performed during the analysis, and hierarchical 

clustering was applied using correlation distances and average clustering. The number of clusters 

identified in the data set defined by the tool was 12. This threshold is set as the highest number of 

possible clusters that generates less than 1 singleton cluster. SNNCliq 15 was run using the scripts 

provided at http://hemberg-lab.github.io. The number of clusters found in the data set was 15. All 

these methods were run in R, except for SNNCliq, which is implemented in Python. Note that there 

are two tools related to cell cycle and single-cell RNA-seq datasets which have not been included 

in this analysis: (1) scLVM allows to correct for cofounding factors. These can be given in the form 

of a gene-set, for example GO gene-sets related to cell cycle, to correct for the cell cycle effect. 

However, to our knowledge, it does not provide an explicit score of the gene set on the cells. (2) 

Cyclone is a method to split cells according to their cell cycle stage. However, it assigns a cell 

cycle state to all the cells in the dataset, and thus, it is not useful for our purpose of identifying the 

cycling cells. 
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Method comparison for TF-motif discovery  
We compared SCENIC to an alternative approach to identify TFs potentially regulating cell states: 

Applying transcription factor motif enrichment analysis on genes differentially expressed between 

clusters (i.e. gene signature, or markers for a cell type). To do so, we started from the ‘gold 

standard’ for the mouse brain dataset: the cell type labels assigned by the authors, which are 

based on their own biclustering algorithm (Backspin) plus annotation based on markers to find the 

correspondence of each cluster to a given cell type. The ‘signatures’ for each cell type or cluster 

are defined based on four alternative approaches: (1) The genes assigned by Backspin to each 

cluster, (2) differentially expressed genes of each cluster versus all other cluster (One versus rest, 

OvR), (3) differentially expressed genes in each cluster versus any of the other clusters (One 

versus any other, OvAny), (4) highly variable genes across clusters (HVG). All the differential 

expression analyses, and the identification of HVG were run using EdgeR. We also run the best 

performing method, OvR, with an alternative differential expression tool, MAST, to confirm that the 

differential expression tool doesn’t have a major impact on the results. Homer and RcisTarget were 

then run on each of the gene-sets resulting from these contrasts: Backspin (pyramidal: 1960g, 

interneurons: 1126g, oligodendrocyte: 579g, microglia: 392g, astrocytes (only): 206g), OvR edger 

(interneurons: 574g, pyramidal: 1031g, oligodendrocytes: 859g, microglia: 1421g, 

endothelial_mural: 1541g, astrocytes_ependymal: 1121g), OvR MAST (pyramidal: 818g, 

interneurons: 688g, oligodendrocytes: 1057g, astrocytes_ependymal: 487g, microglia: 607g, 

endothelial_mural: 549g), OvAny (astrocytes_ependymal: 871g, endothelial_mural: 1019g, 

interneurons: 916g, microglia: 1060g, oligodendrocytes: 1013g, pyramidal: 816g), and 2013 highly 

variable genes (FDR<0.01, logFC>1).  

Homer was run using the default parameters (promoter region: -300 to +50bp around TSS, motifs 

of length 8,10,12 and masking repeats). For the rest of the analysis we only took into account 

known motifs (ignored de-novo motifs), using the TF on the motif name as annotation to 

transcription factors. The equivalent analysis was also run with RcisTarget (the tool used by 

SCENIC), also using the default parameters with the two available databases (0 to - 500b, and -

10kbp to +10kbp around TSS) and only ‘direct annotation’ (TFs annotated to the motif in the 

original motif source). With both tools, we only took into account those TFs that are differentially 

expressed themselves, as this is also a standard approach to prioritize TFs and reduce false 

positives. For comparison with SCENIC, we used the results on the mouse brain presented in this 

paper (“diamond” shape in Figure 2f). Two versions of statistics are presented: One including all 

the TFs returned by SCENIC (including the sparse regulons), and one including only the “cell type” 

regulons, the regulons that are mostly specific to one of the final clusters. During the progress of 

this project, we updated the database of RcisTarget to contain about 2k more motifs, and 

developed GRNboost. Therefore, the figure includes the results for SCENIC using these new 

features (labelled as “DBv2” and “GRNboost”). As “true” TFs for the validation (Table S2), we took 

gene sets from mouse genome informatics (MGI) mammalial phenotype database (sample terms: 
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abnormal [cell type] morphology/physiology, increased/decreased [cell type] number, abnormal 

brain morphology, abnormal blood-brain barrier function) and using the cell type as keyword 

(oligodendrocyte, astrocyte, interneuron, pyramidal, neuron, microglia, brain endothelial), and from 

the gene ontology (e.g. GO:0014013 Regulation of gliogenesis, GO:0022008 Neurogenesis,… ). 

Finally, the precision and recall for each method were calculated according to the TFs identified 

across all the cell types (e.g. joining all cell types, not cell-type specific), since multiple cell-type 

specific TFs known from literature were only available in generic terms (e.g. “brain”, “gliogenesis”), 

not in the cell specific annotations. 

Cross-species network comparisons 
SCENIC was run independently for each of the three datasets used for the GRN comparison: 

Zeisel et al. (mouse brain cells), and Lake et al. (human neurons nuclei) and Darmanis et al. 

(human brain cells). To compare the networks across species, the genes in the human regulons 

were converted into the homologous mouse genes using Biomart (through biomaRt R package 97), 

and vice versa (the mouse regulons into human genes). For the cross-species cell clustering 

(Figure 3c), the genes in the mouse expression matrix were converted into the homologous human 

genes, and merged with Darmanis’ expression matrix by row (only genes available in both matrices 

are kept). The 259 human regulons from Darmanis’ dataset, and the human homologs of the 

mouse regulons were evaluated on this merged matrix to obtain the binary regulon activity 

containing 410 regulons. The cells were clustered based on the binary activity matrix using Ward’s 

hierarchical clustering with Spearman’s distance. Similar results were obtained for the reverse 

approach (converting the expression matrix into mouse genes, to evaluate the mouse regulons). In 

order to provide an alternative approach based only on expression (Figure S9), we also generated 

a merged expression matrix. Since the merged data sets use different measurement units (CPM in 

human and UMI in mouse), each matrix was Z-score normalized by gene before merging.   

Gene Ontology  
To identify enriched GO terms or pathways associated to the states identified, we performed 

functional enrichment analysis on the union of regulons associated to each state (i.e. for the 

synaptic oligodendrocyte group, the union of targets of Hoxa7, Hoxa9, Hoxb7 and Hoxb9). The 

analyses were performed mainly through Mouse Mine 98 (although we also checked DAVID 99,100, 

Enrichr 101,102, which provided similar results). 

Differential expression analysis 
Differential expression between clusters of single cells was performed using MAST 8. Genes 

expressed with less than 9 counts in the population were excluded. Differentially expressed genes 

were evaluated according to their log fold change and adjusted p-values. 
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Immunohistochemistry of melanoma biopsies 
Immunohistochemistry was performed on formalin-fixed, paraffin-embedded melanoma samples 

on the Leica BOND-MAX™ automatic immunostainer (Leica Microsystems). Antigen retrieval was 

performed onboard using a citrate-based (Bond Epitope Retrieval Solution 1, pH 6.0; Leica) or a 

EDTA-based buffer (Bond Epitope Retrieval Solution 2, pH 9.0; Leica) according to the 

manufacturer’s instructions. The antibodies were used for melanA (IR633 from DAKO, initially 

diluted at RTU, but further diluted 1:2 for better contrast; antigen retrieval: pH9.0), EPHA2 (#6997 

from Cell Signaling Technology diluted at 1/50; pH9.0), ZEB1 (sc-25388 from Santa Cruz 

Biotechnology diluted at 1/200; pH9.0), NFATC2 (#5861 from Cell Signaling Technology diluted at 

1/5000; pH6.0) and NFIB (HPA003956 from Sigma Aldrich diluted at 1/250; pH6.0). Alkaline 

phosphatase activity was detected with Bond Polymer Refine Red Detection (Leica) as substrate, 

resulting in a pink/red immunoreactivity. To help identification of melanoma cells in sentinel lymph 

nodes, double immunohistochemical staining with melanA were performed with sequential 

development of peroxidase and alkaline phosphatase with Bond Polymer Refine Detection and 

Bond Polymer Refine Red Detection (Leica Microsystems, Wetzlar, Germany), respectively, 

resulting in contrasting dark brown (marker) and pink/red immunoreactivities (melanA). 

Knock-down of NFATC2 in melanoma cell culture 
A375 cell line was selected based on expression of NFATC2, NFIB (Figure 5l), and SOX10 across 

59 melanoma cell lines from the COSMIC Cancer Cell lines Project103. A375 cells were obtained 

from the ATCC and were cultured in Dulbecco’s Modified Eagle’s Medium with high glucose and 

glutamax (ThermoFisher Scientific), supplemented with 10% fetal bovine serum (Lonza) and 

penicillin-streptomycin (ThermoFisher Scientific). Knockdown of NFATC2 was performed using the 

ON-TARGETplus NFATC2 siRNA SMARTpool (Dharmacon) at a final concentration of 40nM in 

opti-MEM medium (ThermoFisher Scientific). Total RNA was extracted 72 hours after knockdown, 

using the innuPREP RNA mini kit (Analytik Jena), according to the manufacturer’s instructions. 

Quality checks were performed using the Bioanalyzer 1,000 DNA chip (Agilent) after which libraries 

were constructed:  After total RNA purification, mRNA was enriched using the Dynabeads mRNA 

purification kit (Invitrogen). To make cDNA, 1 µl of oligo(dT) primers (500ng/µl; Ambion) and 1 µl of 

10 mM dNTP (Promega) was added to 10 µl of polyA-selected mRNA; incubated at 65°C for 5 min 

and placed on ice. First-strand cDNA synthesis was performed by adding 4 µl of first strand buffer 

(Invitrogen), 2 µl of 100 mM DTT (Invitrogen) and 1 µl of Superscript II (Invitrogen) and incubating 

the mix at 42°C for 50 min, then 70°C for 15 min. The second strand of cDNA was filled in by 

adding 35 µl of water, 15 µl of 5x second strand buffer (Invitrogen), 1.5 µl of 10 mM dNTP, 0.5 µl of 

10 U/µl E Coli DNA ligase (Bioke), 2 µl of 10 U/µl E Coli DNA polymerase I (Bioke), 1 µl of 2 U/µl E 

Coli RNaseH and then incubating at 16°C for 2 hours. The cDNA was purified on a MinElute 

column (Qiagen) and eluted in 15 µl EB buffer. To incorporate sequencing adapters, we combined 

the purified cDNA with 4 µl of Nextera TD buffer (Illumina) and 1 µl of Nextera Tn5 enzyme 
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(Illumina) on ice and incubated at 55°C for 5 min. The tagmented cDNA was purified again on a 

MinElute column and eluted in 20 µl EB buffer. To PCR amplify the fragments, we added 25 µl of 

NEBnext PCR master mix (Bioke), 5 µl of Nextera primer mix and incubated at 72°C for 5 min, 

then at 98°C for 30 sec, followed by 15 cycles of 98°C for 10 sec, 63°C for 30 sec and 72°C for 3 

min. We purified the PCR amplicons with 55 µl AMPure beads (Analis).  

Final libraries were pooled and sequenced on a NextSeq 500 and HiSeq 4000 (Illumina). Raw 

Fastq files of the same sample were merged and adapter sequences were removed using fastq-

mcf. RNA-seq reads were mapped to the genome (hg19) using STAR (v2.5.1b) and reads with 

high mapping quality (Q4) were selected using SAMtools (v1.4). Read counts per gene were 

obtained from the aligned reads using htseq-count. The Bioconductor/R package DESeq2 was 

used for normalization and differential gene expression analysis. Log2FoldChange values were 

used for ranking the genes, and downstream GOrilla and GSEA analysis, as previously described.  

Software packages, code and data availability 
SCENIC workflow and updated links to all packages and tutorials: http://scenic.aertslab.org. Four 

new software packages have been developed within the context of this project. Current versions of 

the packages are available at: GENIE3: https://github.com/aertslab/GENIE3; RcisTarget: 

https://github.com/aertslab/RcisTarget (The motif databases required to perform analyses are 

available as separate data packages); AUCell:  https://github.com/aertslab/AUCell; GRNboost: 

https://github.com/aertslab/GRNBoost. The scripts used for all analyses (including the generation 

of the figures) are provided on the SCENIC website.  

The NFATC2 knock-down RNA-seq data have been deposited in NCBI's Gene Expression 

Omnibus 104 and are accessible through GEO Series accession number GSE99466. 
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Figures and captions 
 

 

 

Figure 1. The SCENIC workflow. (a) In the first step, co-expression modules between 

transcription factors and candidate target genes are inferred with GENIE3 or GRNboost. Each 

module consists of a transcription factor together with its predicted targets, purely based on co-

expression. (b) In the second step, each co-expressed module is analyzed with RcisTarget to 

identify enriched motifs; only modules and targets for which the motif of the TF is enriched are 

retained. Each TF together with its potential direct targets is a regulon. (c) In the third step, the 

activity of each regulon in each cell is evaluated using AUCell, which calculates the Area Under the 

recovery Curve. The AUCell scores are used to generate the Regulon Activity Matrix. This matrix 

can be binarized by setting an AUC threshold for each regulon, which will determine in which cells 

the regulon is “active”. (d) The Regulon Activity Matrix can be used to cluster the cells (e.g. t-SNE) 

and, thereby, identify cell types and states based on the shared activity of a regulatory subnetwork. 
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Figure 2. SCENIC analysis of the mouse brain. (a) AUC histograms for a few key regulons. The 

AUC allows to split the populations of cells with high versus low activity of a regulon. (b) The 

clustered regulon activity matrix reveals that the known cell types have distinct regulatory networks. 

The color bar above the heatmap indicates the cell type assigned by the authors of the dataset. 

Key regulons (rows) are magnified and colored according to the cell type in which they are active. 

The two annotation columns on the right indicate whether the TF is known to be relevant (A: for the 

cell type, manually curated from literature; B: brain-related TFs annotated by MGI), and the main 

DNA motifs. (c) t-SNE on the binary regulon activity matrix. Each cell is assigned the color of the 

most active regulons. (d) Microglia gene regulatory network. The regulons associated to microglia 

can be summarized based on the binding motif of the associated TF (network built in iRegulon). 

The genes that are included in a previously published microglia signature (Lavin et al. 105) are 

indicated by a larger font size; the color of the node indicates the number of regulators (lighter: 
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fewer, darker: more). (e) Performance of different clustering methods on this dataset (ARI: 

Adjusted Rand Index, calculated taking as reference the cell-type assigned by the authors). (f) 
Comparison of the precision and recall of TF prediction by SCENIC versus other methods. (g) t-

SNE on the expression matrix (same input as to SCENIC: UMI counts with no further normalization) 

and (h) t-SNE on the binary regulon activity matrix. Both t-SNEs are PCA-based and colored 

according to the number of genes detected (expression over 0) in each cell.  
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Figure 3. Cross-species comparison of networks and cell types. (a) Reciprocal activity of 

human and mouse Dlx1/2 regulons on mouse and human single-cell data. In both cases, the Dlx 

network is mainly active in interneurons, indicating strong agreement between the species. (b) 

Shared targets between DLX1/2 regulons inferred from mouse and human. The genes highlighted 

in red also have associations with Dlx1/2 in GeneMANIA 106 (protein-protein interactions, genetic 

interactions, co-expression, or literature co-mentioning). (c) Clustering based on GRN activity 

allows combining cells from human and mouse: The clustering is driven by the cell type, rather 

than by the organism (unlike the clustering resulting from the normalized expression matrix, Figure 

S9). Colored TF names show conserved regulons between human and mouse. 
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Figure 4. SCENIC overcomes tumor batch effect and recovers relevant cell types and GRNs 
in oligodendroglioma. (a) Comparison of batch-effect removal methods on an oligodendroglioma 

dataset. t-SNEs and diffusion plots on the raw expression matrix (first row), after correcting by 

tumor of origin with Combat or Limma (rows 2-3), or on the binary activity matrix from SCENIC 

(row 4). The cells are coloured based on the tumor of origin or GRN activity (red: astrocyte-like 

regulons, green: oligodendrocyte-like regulons, blue: regulons related to cell cycle or stemness). (b) 

Simplified binary regulon activity matrix (output of SCENIC) for the oligodendroglioma dataset. 

Highlighted regulons (colored TF names) are known to be characteristic in oligodendrocytes or 

astrocytes, respectively.  
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Figure 5. SCENIC reveals melanoma heterogeneity. (a) t-SNE on the raw melanoma expression 

matrix colored by tumor of origin. (b-f) t-SNE on the binary activity matrix after applying SCENIC. 

(b: cells colored by tumor of origin, c: density plot, d: cells colored by the AUC of the MITF regulon, 

e,f: same for NFATC2 and E2F1). (g) Binary regulon activity matrix for this dataset. The color bar 

above the heatmap indicates the tumor of origin; regulons associated to the cell cycle (green), 

invasive (pink) and proliferative (blue) states are zoomed in. (h) Three most dominant networks: 

MITFhigh, usually known as proliferative, (MITF/STAT); MITFlow, invasive state, (NFATC2/NFIB); 

and cell cycle (E2F). Confirmed by ChIP-seq: a tick indicates that the regulon presents enrichment 

of targets in a ChIP-seq dataset for the same transcription factor. (i-j) Aggregation plots for MITF 

and STAT1 ChIP-seq signal on the predicted target regions of MITF, STAT, and NFATC2, showing 

high specificity of the predictions. (k) Immunohistochemistry (IHC) on 25 human melanomas using 
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NFATC2, NFIB, ZEB1, and EPHA2 antibodies. Biopsies are taken from primary lesions (9) in radial 

growth phase (RGP) or vertical growth phase (VGP), sentinel lymph nodes (8), and metastatic 

lesions (8). On the left, a heatmap summarizes the results of the IHC indicating the percentage of 

cells that are positive for each marker in the given sample. On the right, a representative example 

of IHC for NFIB on a sentinel lymph node (for additional images, see Figure S18; red, melanA, a 

marker for melanoma cells; brown, NFIB; blue, hematoxylin). (l) Z-score normalized expression of 

NFIB and NFATC2 across melanoma cell lines from COSMIC. (m) GSEA plot for genes 

differentially expressed after NFATC2 knock-down in the A375 cell line: the predicted NFATC2 

targets are significantly up-regulated in the NFATC2 knock-down. (n) Cycling cells selected based 

on GO terms related to cell cycle. (o) Comparison of the capacity of different methods to identify 

the cycling cells (SCENICA: High-confidence cells, SCENICB: Lower confidence/regulon activity). 
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